
Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

comp20005 Intro. to Numerical
Computation in C

Semester One 2023

Chapter 5: Functions

c© The University of Melbourne, 2023

Lecture slides prepared by Alistair Moffat

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

Chapter 5 – Concepts

I Calculation, selection, iteration, and abstraction.

I Functions as a way of hiding details and allowing
reusing of software components.

I Function libraries.

I Recursion.

I Program development as a collection of functions.

I Testing.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.1 Abstraction

Four programming techniques are provided in almost all
languages:

I Calculation: doing arithmetic to compute new values

I Selection: choosing between alternative execution paths

I Iteration: repeating a computation until a desire goal is
arrived at

I Abstraction: creating units which can be reused, and in
which internal detail is hidden from outside inspection

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.1 Abstraction

If the a computation used at one place is also required at
other places, it can be abstracted into a function.

Functions allow computations to be reused.

I savingsfunc.c

I isprimefunc.c

http://people.eng.unimelb.edu.au/ammoffat/ppsaa/c/savingsfunc.c
http://people.eng.unimelb.edu.au/ammoffat/ppsaa/c/isprimefunc.c

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.1 Abstraction

Each function takes arguments, and has a type.

The values of the arguments, plus any local variables that it
declares, are used in the computation.

A value of the indicated type is then passed back via a
return statement.

The function is called as part of an expression, and passed
suitable argument values. It can be passed different
arguments each time it is called.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.1 Abstraction

func(int x, int y) {

/* compute ans from x and y */

...

int ans;

return 0;

main(int argc, char *argv[]) {

int n, m, val;

/* assign values to n and m */

...

int

return ans;

}

...
/* now use val */

val = func(n, m);

}

int

1

5

3

24

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.1 Abstraction

In detail:

I The values of the argument expressions are evaluated
using the context applicable at the point of call.

I Those values are assigned as the initial values of the
corresponding argument variables, with any necessary
assignment type conversions carried out.

I The body of the function is executed, through until a
return.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.1 Abstraction

I The expression associated with the return statement is
evaluated in the context of the function.

I That value is passed back to the point at which the call
was made.

I All local and argument variables in the function are
destroyed.

Functions also help us think about programs – the various
parts of the task to be performed are naturally implemented
as separate functions.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.1 Persistence

The argument variables store local copies of the argument
expressions, and are discarded when the function returns.

Argument variables can be changed within the function,
even if the corresponding argument expressions are not
simple variables.

But the changes made are always lost.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.1 Exercise 1

Write a function int max 3 that takes three int arguments
and returns the largest of them as the value of the
function.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.2 Compilation with functions, option 1

Include function in the same source file as main program.

Typical structure:

I symbolic constants;

I prototypes for all functions;

I main function; then

I function definitions.

Compiler builds a single executable.

Execution commences with the main function.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.2 Compilation with functions, option 2

Put function into separate source file.

Structure:

I Use #include "func.c" to bring function text from file
func.c into main program file.

I Plus, use #include "func.h" to include a prototype.

I Combination of func.h and func.c form a module.

Having just one version of the function, makes reuse and
maintenance easier.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.2 Compilation with functions, option 3

Make use of separate compilation.

Structure:

I Include prototype from func.h in all modules or files
needing to make use of that collection of functions.

I Compile using “-c” option to create “.o” object file.

I Use gcc to link together required object files and
generate executable.

I Tool called make allows file dependencies to be
specified, and minimal recompilations to be requested.

Avoids recompilation of “finished” or “standard” modules.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.3 Library functions

Collections of related functions may be standardized and
brought together into a library. C has many standard
libraries.

The library described by stdio.h includes functions for input
and output, and constants like EOF.

The library described by stdlib.h covers a range of
general-purpose functions, and constants like EXIT FAILURE.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.3 Library functions

The library described by math.h covers mathematical
functions, such as sqrt, sin, and pow.

Constants like M PI are often provided in math.h, but are not
part of the 1989 ANSI C standard, and may not be portable.

I usemathlib.c

The -lm flag tells the compiler to draw compiled functions
from the maths library.

http://people.eng.unimelb.edu.au/ammoffat/ppsaa/c/usemathlib.c

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.3 Library functions

Other useful libraries:

I ctype.h – character-level functions, such as isalpha

and tolower

I string.h – functions on strings such as strlen and
strcpy

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.3 Exercise 2

The function islower returns true if its int argument is a
lowercase character. Write your own version of islower
called myislower.

Then write your own version of toupper, also in ctype.h,
which converts lowercase letters to uppercase letters, and
leaves all other characters unchanged.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.4 Generalizing the abstraction

To broaden the usefulness of a function, further arguments
might be added, including ones not required at first.

Designing a function is a compromise between generality of
purpose and simplicity of use.

If not required, fixed values can be passed in as the initial
values of the additional arguments.

I savingsfuncgen.c

http://people.eng.unimelb.edu.au/ammoffat/ppsaa/c/savingsfuncgen.c

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.4 A common mistake

“Input” to a function is via the arguments; “output” via the
return value.

Don’t need to worry about how the argument values are
being generated; just write the function as a stand-alone
component that assumes that the arguments have values.

Normally no need for scanf or printf calls in a function.
Exception is when (a) the task of the function is to perform
explicit input or output operations; or (b) in error situations.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.5 Recursion

In some situations it is appropriate for a function to call
“itself”. This is recursion.

A base case must be provided if the recursion is not to be
endless.

I triangle.c

http://people.eng.unimelb.edu.au/ammoffat/ppsaa/c/triangle.c

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.5 Recursion

Evaluating t rec(3) with a stack of
pending function calls. Each execution
is suspended while waiting
for a returned value.

t_rec(3):
return 3+t_rec(2)

t_rec(3):
return 3+t_rec(2)

t_rec(3):
return 3+t_rec(2)

t_rec(3):
return 3+t_rec(2)

t_rec(2):
return 2+t_rec(1)

t_rec(2):
return 2+t_rec(1)

t_rec(2):
return 2+t_rec(1)

t_rec(1):
return 1+t_rec(0)

t_rec(1):
return 1+t_rec(0)

t_rec(0):
return 0

during
first
call

during
second

call

during
third
call

during
fourth
call

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.5 Recursion

Pending function executions are recorded by allocating each
function call a frame on a stack. The frame contains local
variables (including arguments), and a return address.

When an instance of a function returns, its frame is popped
off the stack.

In some languages recursion replaces iterative control
structures.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.5 Exercise 5.14

The function log∗ is defined by:

log∗ x =

{
0 if x ≤ 1
1 + log∗(log2 x) otherwise.

Write a C function int logstar(double).

(What is the smallest number x for which log∗ x ≥ 4?)

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.6 Case study

If x is an approximation of the cube root of v , then
x ′ = (2x + v/x2)/3 is a better approximation. For v
between 10−6 ≤ |v | ≤ 106, a total of 25 iterations of this
formula is enough, starting from x = 1.0.

Write a function cube root that receives a double

argument and calculates and returns an approximate cube
root for it. Then write a main program to test it.

I croot.c

http://people.eng.unimelb.edu.au/ammoffat/ppsaa/c/croot.c

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.7 Testing functions and programs

I Design the functional decomposition – how to break up
the task into smaller parts.

I Create stubs for the corresponding functions, and
scaffolding that allows the first function to be written.

I When first function has been implemented and tested,
change the scaffolding, and move to second function.

I If any “finished” function requires modification, be sure
to fully test it all over again.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.7 Testing functions and programs

Functions should check their arguments – the person or
program calling the function may not understand its
interface.

Invalid arguments should be reported, and then exit used to
terminate program execution. Values read from files should
be similarly tested.

Programs that silently continue their computations based
upon erroneous values are dangerous.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

5.7 Testing functions and programs

Functions and programs need to be exhaustively tested
before being relied upon.

Tests should cover simple cases, complex cases, absurd
cases, inputs just inside the design boundaries of the
software, and inputs that lie outside the design parameters.

Careful design, evaluation, and recording of appropriate test
cases is an integral part of the original software design.

Don’t regard testing as an afterthought.

Programming,
Problem Solving,
and Abstraction

with C

ch05

Concepts

5.1 Abstraction

5.2 Compilation

5.3 Libraries

5.4 Generalizing

5.5 Recursion

5.6 Case study

5.7 Testing

Summary

Chapter 5 – Summary

I Functions provide the ability to reuse “proven” code. In
general, the more arguments, the greater the flexibility.

I Recursion is an important programming tool.

I Non-trivial programs are designed as a collection of
functions.

I Then developed incrementally, one function at a time.

I Rigorous testing is required of all critical software. But
remember that testing only ever shows the presence of
errors, and never their absence.

	Concepts
	5.1 Abstraction
	5.2 Compilation with functions
	5.3 Library functions
	5.4 Generalizing the abstraction
	5.5 Recursion
	5.6 Case study
	5.7 Testing functions
	Summary

