
XML Tree Structure Compression

Sebastian Maneth

Melbourne, Nov. 13th, 2008

NICTA & University of NSW

Joint work with N. Mihaylov and S. Sakr

Outline -- XML Tree Structure Compression

1. Motivation

2. XMill’s compression of XML tree structure

3. Pattern based tree compression

� DAGs

� sGraphs (= Straight Line cf Tree grammar)

4. Binary coding

5. Some algorithms on SLT grammars

1. Motivation

� large part of an XML document consists of markupmarkupmarkupmarkup in the form

of begin and end-element tags, describing the tree structuretree structuretree structuretree structure of the document

� most XML file compressors separateseparateseparateseparate the tree structure from the

rest of the document (data values) and compress them separatelycompress them separatelycompress them separatelycompress them separately

(for data values, classical compression methods can be used)

In this workIn this workIn this workIn this work

� want to find effective (file) compression methodeffective (file) compression methodeffective (file) compression methodeffective (file) compression method for the

tree structure of an XML documenttree structure of an XML documenttree structure of an XML documenttree structure of an XML document

2. XMill

Well-known XML file compressor: XMillXMillXMillXMill [Liefke, Suciu, SIGMOD 2000]

Idea � separate data values from tree structure

� group similar data items together into containers

(similarity is based on tree structure path to the item)

� compress all containers using conventional compression

backends, such as Gzip/Bzip2/PPM

How is the tree structure compressed?

Use (byte-aligned) symbols per each begin-element tag, and one fixed symbol for

every end-element tag.

Compress result string using Gzip/Bzip2/PPM

2. XMill

How is the tree structure compressed?

ExampleExampleExampleExample

<book>

<chapter></chapter>

<chapter><section/><section/><section/></chapter>

<chapter><section/><section/></chapter>

</book>

Becomes

0 1 //// 1 2 //// 2 //// 2 / // // // / 1 2 //// 2 / / // / // / // / /

Plus the symbol table [“book”, “chapter”, “section”]

End element tag: ////

0 1 2

Compress

using

Gzip/Bzip2/PPM

3. Our Approach: Sharing of Tree Patterns

Use inininin----memory (pointermemory (pointermemory (pointermemory (pointer----based) tree compressionbased) tree compressionbased) tree compressionbased) tree compression,

& write suitable binary encoding to disk (possibly plus Gzip/Bzip2/PPM backends)

Pointer-based tree compressions considered:

1)1)1)1) DAGsDAGsDAGsDAGs (Directed-Acyclic Graphs)

� obtained by sharing common subtrees of the XML tree structure

use standard algorithm based on hashing distinct subtrees

2)2)2)2) Sharing graphs Sharing graphs Sharing graphs Sharing graphs [Lamping, POPL 1990]

� obtained by sharing common connected subgraphs in XML tree

use BPLEX algorithm [Busatto, Lohrey, Maneth, DBPL 2005]

3. Our Approach: Sharing of Tree Patterns

Pointer-based tree compressions considered:

1)1)1)1) DAGsDAGsDAGsDAGs (Directed-Acyclic Graphs)

� share common subtrees

use standard algorithm

(lin time: [Downey, Sethi, Tarjan 1980])

2)2)2)2) Sharing graphs Sharing graphs Sharing graphs Sharing graphs [Lamping, POPL 1990]

� share common connected subgraphs

� use BPLEX algorithm

[Busatto, Lohrey, Maneth, DBPL 2005]

•minimal DAG is unique

•can be computed in (amortized)

linear time -- folkore (“hash consing”)

•same as minimal tree automaton for {t}

•minimal sGraph not unique

•NP-complete to compute it

(as finding a minmal cf grammar for

a string)

•same as minimal cf tree gramar for {t}

Minimal DAG

1)1)1)1) DAGsDAGsDAGsDAGs (Directed-Acyclic Graphs)

� obtained by sharing common subtrees of the XML tree structure

Example --- working on binary XML tree (first-child/next-sibling encoding)

book

chapter

chapter

chapter

_

section

section

_

_

section

section

section

_

book

chapter

chapter

chapter

section

section

_

section

_

_

_

_

_

_
repeated subtrees

share

repeated

subtrees

Minimal DAG

Of binary XML tree

Minimal DAG

book

chapter

chapter

chapter

section

section

_

section

(0 : _

1 : section[0, 0]

2 : section[0, 1]

3 : book[chapter[0, chapter[section[0, 2], chapter[2, 0]]], 0])

Sequential representation of minimal DAG

Use own

suitable binarysuitable binarysuitable binarysuitable binary

endocingendocingendocingendocing

Gzip Gzip Gzip Gzip Bzip2 Bzip2 Bzip2 Bzip2 PPM PPM PPM PPM

Final compressed codewords DAG DAGGzip DAGBzip2 DAGPPM

Minimal DAG

� Test DAG,DAGGzip,DAGBzip2,DAGPPM on

diverse XML dataset:

including

* files used by Liefke/Suciu for XMill

* several Wikipedia XML files

* files from EXI W3C working group

Etc.

Documents used in Experiments

� Size (KB) means

XML tree structure only.

Original files are much larger:

457MB (Sprot.xml)

190MB (NCBI_snp.xml) etc

NoteNoteNoteNote

�For each text and attribute

node we have a special place

Holder node in the tree structure.

Minimal DAG

� Test DAG,DAGGzip,DAGBzip2,DAGPPM on

diverse XML dataset:

including

* files used by Liefke/Suciu for XMill

* several Wikipedia XML files

* files from EXI W3C working group

Etc.

Most important observation:

Minimal DAG does not not not not give best compression!

� Only share subtrees of a certain size (more than TRESH-many nodes)

Minimal DAG

� Test DAG,DAGGzip,DAGBzip2,DAGPPM on

diverse XML dataset:

including

* files used by Liefke/Suciu for XMill

* several Wikipedia XML files

* files from EXI W3C working group

Etc.

Optimal TRESH-values

for our datasets:

TRESH=14 for DAG
TRESH=1000 for DAGGzip
TRESH=3000 for DAGBzip2
and DAGPPM

Most important observation:

Minimal DAG does not not not not give best compression!

� Only share subtrees of a certain size (more than TRESH-many nodes)

DAGs, Results

With no backend

compression, DAGDAGDAGDAG

gives worse

compression

than

XMillGzipXMillGzipXMillGzipXMillGzip

(=baseline = 1.0)

Sharing Graphs (SLT grammars)

Idea, share repeated (connected) subgraphsrepeated (connected) subgraphsrepeated (connected) subgraphsrepeated (connected) subgraphs in binary XML tree.

[Lamping, POPL 1990]

c

c

d

c

d

1 2

a

c

c

d

a

S � D(D(A))

D(y) � c(A , d(A , y))

A � c(B , B)

B � a

Context-free tree grammar

Sharing Graphs (SLT grammars)

Idea, share repeated (connected) subgraphsrepeated (connected) subgraphsrepeated (connected) subgraphsrepeated (connected) subgraphs in binary XML tree.

Represent them as trees with parameters.

Example

a

b

e

a

b

e

a

b

e

f

share

repeated

subgraphs
(1: a[b[y1],y2]
2: 1[c,1[d,1[e,f]]])

Sharing graph

(in tree-grammar notation)
using

BPLEX algorithm

repeated subgraph

NoteNoteNoteNote in general these subgraphs are NOT substrings!

Sharing Graphs (SLT grammars)

Known, for usual XML documents:

BPLEX algorithm produces pointer-structures (sharing graphs) with

Approx. 2-3 times less pointers than the DAG.

BPLEX

Brute force linear algorithm

Search in a fixed window for patters of size

· MaxPatSize and with at most MaxNumParam many “outgoing edges”.

Sharing Graphs (SLT grammars)

Known, for usual XML documents:

BPLEX algorithm produces pointer-structures (sharing graphs) with

Approx. 2-3 times less pointers than the DAG.

Consider BPLEX,BPLEXGzip,BPLEXBzip2,BPLEXPPM

� again, do not not not not use “minimal sharing graphs”, but introduce

a TRESH value, similar as for DAGs

Then, optimal performance on our datasets by using

TRESH=14 for BPLEX
TRESH=14 for BPLEXGzip
TRESH=10,000 for BPLEXBzip2
TRESH=30,000 for BPLEXPPM

SLT grammars, Results

With no backend

compression, BPLEX
gives betterbetterbetterbetter

compression

than

XMillGzipXMillGzipXMillGzipXMillGzip!!

(=baseline = 1.0)

On average, size is

68%68%68%68% of XMillGzip.

SLT grammars, Results

Becomes 1094 Bytes!

Becomes 213 KB!

Becomes 3.3 KB

SLT grammars, Results

Note, the “suitable binary encoding” in BPLEX to obtain 68% of XMillGzip,

is a Huffman-coding of a natural representation of the pattern trees.

This encoding can be used with little overhead, to execute queries

(such as XPath or XQuery, or any DOM program) directly on the

compressed structure.

� On average for a tree traversal, constant slow-down (c=4)

� Per operation slow-down at most |G| �

� Can be made constant, using only linearly more space (based on clever LCA algos)

[Gasienic, Kolpakov, Ptapov, Sant DCC 2005–poster]

Gives rise to a VERY SMALL queryable representationVERY SMALL queryable representationVERY SMALL queryable representationVERY SMALL queryable representation, smaller than

any other queryable representation known from the literature.

4. Binary Coding of BPLEX Grammars

The “suitable binary encoding” in BPLEX to obtain 68% of XMillGzip:

(0: _
1: a[b[y1,0],y2]
2: 1[c,1[d,1[e,d]]])

Example (now binary tree to avoid brackets.)

s u x 0 3 a 0 b 0 c 0 d 0 e 0 0 000001101110101111010111011111100011

prologue symbol table grammar code word

fixed

file type

string

encoding type

(one byte)

type=0 means

fixed-length and

non-byte-aligned

needed for

fixed-length coding:

bits/symbol number

a=000,b=001,c=010,d=011,
e=100,y=101,0=110,1=111

Not encoded

(fixed for all grammars)

16 bytes +

36 bits

= 21 bytes

Binary Coding of BPLEX Grammars

The “suitable binary encoding” in BPLEX to obtain 68% of XMillGzip:

(0: _
1: a[b[y1,0],y2]
2: 1[c,1[d,1[e,d]]])

Example (now binary tree to avoid brackets.)

s u x 0 3 a 0 b 0 c 0 d 0 e 0 0 000001101110101111010111011111100011

prologue symbol table grammar code word

fixed

file type

string

encoding type

(one byte)

type=0 means

fixed-length and

non-byte-aligned

needed for

fixed-length coding:

bits/symbol number

a=000,b=001,c=010,d=011,
e=100,y=101,0=110,1=111

Not encoded

(fixed for all grammars)

16 bytes +

36 bits

= 21 bytes

Not this

one.

But use

HuffmanHuffmanHuffmanHuffman

here.

4. SLT grammars, Results

Next best, queryable

format.

Approx. 2x bigger

than BPLEX

Other queryable

formats require

muchmuchmuchmuch more

space still!!

5. Algos on SLT Grammars

Context-Free Tree Grammars (generalize cf grammars to trees)

[Rounds70, PhD Fischer68 “macro grammars”]

New: Nonterminals have parameters y1, y2, ..,

A(y1, y2, y3, y4) � B

y1 y2 y3 y4

� [Lohrey, Maneth CIAA 2005]

Finite tree automaton / CoreXPath on

Straight-Line tree grammar in time

O(nO(nO(nO(nk+1k+1k+1k+1 |G||A|)|G||A|)|G||A|)|G||A|)

k = max number of parameters of NTsk = max number of parameters of NTsk = max number of parameters of NTsk = max number of parameters of NTs

� Equality check in poly time

(use DFLR grammars and

Plandowski’s result on cf string grammars)

� Incremental Updates

[Fisher, Maneth ICDE 2007]

� matching, unification, etc

[Godoy, Schmidt-Schauss LICS 2008, etc]

B(y1, y2, y3,) � g(C(y1, y2),y3)

C(y1, y2) � …

5. Algos on SLT Grammars

Context-Free Tree Grammars (generalize cf grammars to trees)

[Rounds70, PhD Fischer68 “macro grammars”]

New: Nonterminals have parameters y1, y2, ..,

A(y1y1y1y1, y2, y3, y4) � B

y1y1y1y1 y2 y3 y4

B(y1y1y1y1, y2, y3,) � g(C(y1y1y1y1, y2),y3)

C(y1, y2) � …

New Result (DagstuhlNew Result (DagstuhlNew Result (DagstuhlNew Result (Dagstuhl’’’’08)08)08)08)

[Lohrey, Maneth, Schmidt-Schauss 2009]

Any grammar can be made 1111----paramparamparamparam,

with only linear blow up!!

“singleton tree grammars”

[Schmidt-Schauss TR 2005]

� matching, unification, etc

[Godoy, Schmidt-Schauss LICS 2008, etc]

are using

Tree with

one “hole”

Conclusions

For file compressionfile compressionfile compressionfile compression of XML tree structures, DAGs are suitable.

� they can be obtained quickly, using hashing

� using Gzip-backend, they are only 70% of the size of XMillGzip

For inininin----memory compressionmemory compressionmemory compressionmemory compression, e.g., as a queryable data structure,

BPLEX-outputs are extremely well suitable

� they can be queried with little overhead, for Core XPath queries

even with speedup wrt running over uncompressed tree [Lohrey,Maneth2007]

� using nononono backend, they are only 68% of the size of XMillGzip

� problematic: BPLEX runs quite slow! A new, fast tree grammar compressor

based on RePair (Moffat et al) is on its way!

Conclusions

Questions

� How can we obtain better codings for DAGs/BLEX grammars?

� Are there well-known tricks to amortize the cost of a “reference”?

� Anything known about succinct DAGs?

We tried Kieffer/Yang’s grammar transforms. Results were NOT good. �

� Can we use string (grammar) compressors to obtain faster

Approx. algos that produce small tree grammars?

� Grammars with copying of parameters can give double-exp compression ratios.

Useful for tree compression?

(1: a[y1,y1y1,y1y1,y1y1,y1]
2: 1[1[y1]]
3: 2[2[y1]]
4: 3[3[e]])

decompress Full binary tree of

height 2^3

(size 2^{2^3})

Thank you..

.. for your attention!

For questions, please email

sebastian.maneth@nicta.com.au

--------- THE ENDTHE ENDTHE ENDTHE END ----------

