
Indexing Variable Length Substrings

for Approximate Matching

Gonzalo Navarro and Leena Salmela

November 13th 2008

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 1 / 20

Outline

q-Gram Index for Approximate Matching

Indexing Variable Length Substrings

Experiments

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 2 / 20

q-Gram Index for Approximate Matching

Outline

q-Gram Index for Approximate Matching

Indexing Variable Length Substrings

Experiments

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 3 / 20

q-Gram Index for Approximate Matching

q-Gram Index

◮ For each q-gram that occurs in the text, store a list of all positions
where the q-gram occurs.

Example

The 2-grams of the text aaabaabbaa are:

1 2 3 4 5 6 7 8 9 10 11

a a a b a a b b a a $

Thus the 2-gram index for the text is:

2-gram positions
a$ 10
aa 1, 2, 5, 9
ab 3, 6
ba 4, 8
bb 7

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 4 / 20

q-Gram Index for Approximate Matching

Approximate Searching on the q-Gram Index

Given a pattern P = p1 . . . pm, find all substrings of the text that match
the pattern with at most k differences (insertions, deletions, or
mismatches).

◮ Take k + 1 nonoverlapping q-grams of the pattern. For example:

p1 . . . pq pq+1 . . . p2q . . . pkq+1 . . . p(k+1)q

◮ One of the q-grams must occur exactly in the text substring if the
substring matches the pattern with at most k differences.

◮ Search for the q-grams in the q-gram index and verify around the
positions where the q-grams occur.

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 5 / 20

q-Gram Index for Approximate Matching

Query Time Optimization

All q-grams are not equally frequent. We can speed up the search by
choosing the least frequent non-overlapping q-grams of the pattern.

◮ For each substring of the pattern, calculate the number of
verifications it triggers.

◮ length of the substring < q =⇒ find all q-grams starting with the
substring

◮ length of the substring > q =⇒ use the prefix of the substring

◮ Use dynamic programming to figure out the optimal partition of the
pattern into k + 1 pieces.

◮ Search for the pieces using the q-gram index and verify around the
occurrences of the pieces.

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 6 / 20

q-Gram Index for Approximate Matching

Storing the q-Gram Index

◮ If we store the position lists as 32-bit integers, the space used by the
index is approximately 4 times the text length in bytes.

◮ Storing differences instead of absolute values and encoding these with
variable length integer coding saves space.

Example

2-gram index for the text aaabaabbaa

2-gram positions difference coded positions

a$ 10 10
aa 1, 2, 5, 9 1, 1, 3, 4
ab 3, 6 3, 3
ba 4, 8 4, 4
bb 7 7

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 7 / 20

Indexing Variable Length Substrings

Outline

q-Gram Index for Approximate Matching

Indexing Variable Length Substrings

Experiments

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 8 / 20

Indexing Variable Length Substrings

Substring Index

◮ Choose the indexed substrings so that every position is indexed and
the maximum frequency of the indexed substrings is minimized.

◮ If the index contains two substrings a and ax , a indexes only those
positions where a is not followed by x .

◮ Storage as in q-gram index: Code position lists with differences and
variable length integer coding.

Example

Substring index for text aaabaabbaa:

substring positions

a 3, 6, 10
aa 1, 9
aab 2, 5
ba 4, 8
bb 7

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 9 / 20

Indexing Variable Length Substrings

Approximate Searching on the Substring Index

Searching for a pattern P = p1, . . . , pm with at most k differences:

◮ Search the index for the longest prefix of the pattern and verify the
positions.

◮ If the longest prefix is p1, . . . , pi and the index contains a substring
p1, . . . , pi , x for any x skip the next character of the pattern.

◮ Continue by searching the index for the longest prefix of the remaining
pattern until k + 1 pieces of the pattern have been searched for.

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 10 / 20

Indexing Variable Length Substrings

Searching on the Substring Index: Example
Given the substring index for aaabaabbaa:

substring positions
a 3, 6, 10
aa 1, 9
aab 2, 5
ba 4, 8
bb 7

Searching for abaab with 1 difference:
◮ The longest prefix of abaab found in the index is a, so we verify

around positions 3, 6 and 10.
◮ The index contains the substring aa so we have to skip the second

character.
◮ The longest prefix of aab found in the index is aab so we verify

around positions 2 and 5.
◮ The index does not contain other substrings starting with aab so we

do not need to skip a character. (Which is good as there are no
characters left!)

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 11 / 20

Indexing Variable Length Substrings

Query Time Optimization

To be able to handle shorter patterns and to speed up the search for
longer patterns, we can apply the same kind of optimization at query time
as in the q-gram index.

◮ For each substring of the pattern, calculate the number of verification
it triggers.

◮ Find the longest prefix that is indexed in the substring index
◮ If the whole pattern piece is indexed, include also those substrings that

start with the pattern piece.

◮ Use dynamic programming to figure out the optimal partition of the
pattern into k + 1 pieces.

◮ Search for the pieces in the substring index and verify around the
occurrences of the pieces.

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 12 / 20

Indexing Variable Length Substrings

How to Construct the Substring Index?

The current (brute force) implementation:

◮ Initialize the index by adding the empty string with a position list
containing all the positions.

◮ Until a predefined number of substrings is indexed:
◮ Take the string with the longest position list
◮ Extend the string with the character c that most frequently follows it

in the text and add this to the index.
◮ Split the position list of the original string into two lists: One for those

positions where the string is followed by c and the other for the rest of
the positions.

Employing a suffix tree of the text should be more efficient.
(This is similar to generating fixed length codes for compression as
presented by S.T. Klein and D. Shapira (SPIRE 2008).)

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 13 / 20

Experiments

Outline

q-Gram Index for Approximate Matching

Indexing Variable Length Substrings

Experiments

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 14 / 20

Experiments

Verifications vs Space (Uncompressed Position Lists)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

V
er

ifi
ca

tio
ns

Space

q−gram k=2
substring k=2
q−gram k=1
substring k=1
q−gram k=0
substring k=0

English text, m = 20
Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 15 / 20

Experiments

Verifications vs Space (Compressed Position Lists)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

V
er

ifi
ca

tio
n

ar
ea

Space

q−gram k=3
substring k=3
q−gram k=2
substring k=2
q−gram k=1
substring k=1
q−gram k=0
substring k=0

English text, m = 20
Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 16 / 20

Experiments

Time to Locate vs Space (Compressed Position Lists)

 0

 10

 20

 30

 40

 50

 60

 70

 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

T
im

e
to

 lo
ca

te
 (

s)

Space

q−gram k=3
substring k=3
q−gram k=2
substring k=2
q−gram k=1
substring k=1
q−gram k=0
substring k=0

English text, m = 20
Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 17 / 20

Experiments

Number of q-grams (Substrings) vs Space

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

N
um

be
r

of
 q

−
gr

am
s/

su
bs

tr
in

gs

Space

q−gram
substring

English text
Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 18 / 20

Experiments

Experiments on Other Data

Proteins and DNA

◮ q-gram index and substring index equally good

XML

◮ Worse than with English text (when compared to the q-gram index)

Sources

◮ Better than English text (when compared to the q-gram index)

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 19 / 20

Experiments

Conclusions

◮ q-gram index: fixed length q-grams are indexed

◮ Substring index: variable length substrings indexed

Gonzalo Navarro and Leena Salmela Indexing Variable Length Substrings November 13th 2008 20 / 20

	q-Gram Index for Approximate Matching
	Indexing Variable Length Substrings
	Experiments

