Experimenting with Burrows-Wheeler Compression

Juha Kärkkäinen

University of Helsinki

(Work done mostly as Visiting Scientist at Google Zürich)

3rd Workshop on Compression, Text and Algorithms Melbourne, Australia, 13 November 2008

Experimental Burrows-Wheeler Compressor

Goals for the project

- Fast BW transform with large block sizes on repetitive texts
- Platform for experimenting with different techniques for
 - BW transform
 - compressing BWT
- Study the effect of block size on compression
- Compressor with high compression and good speed

Reverse and add sentine	els	
BANANA	\longrightarrow	#ANANAB#

Split into prefix and suffix at every position Sort by suffix and take the last symbols of prefix

#	0	ANANAB#		#ANANA	В	6	#
#A	1	NANAB#		#ANA	Ν	4	AB#
#AN	2	ANAB#		#A	Ν	2	ANAB#
#ANA	3	NAB#	\longrightarrow		#	0	ANANAB#
#ANAN	4	AB#		#ANAN	А	5	B#
#ANANA	5	B#		#AN	А	3	NAB#
#ANANAB	6	#		#	A	1	NANAB#

BWT = BNN # AAA

Example

sprang up, mounted their horses, and gallo self had attempted the ascent. It was alm He then observed that the grass partly h a sound and seized the bird's two feet wit the price, he paid the man in gold, who, s ed." "Good," said the czar. "If you have t your word, " said the hunter. He then be "Very well," said the hunter. "'You will if they can, " said the czar. The hunter wa ome nankeen, " said the second. The younge if he could behold the top of the mountain e Unlucky was told that an enormous army o tiful skies." And the apple began to roll es and riders! And this had been the end o

All characters following "th" in a 16 KiB block of English.

eeeeeioaaeeaoereeeeeeeeeaaeaaeeeeieeeeeee eeeeiiiiii ieee. e ρ Ο 1 eiiiiee,er oo e i i i ,

- 1. Divide text into blocks (if necessary)
- 2. Compute BWT for each block
- 3. Compress the BWT with an entropy compressor
- BWT brings characters with similar context together.
- Easy to compress using simple local models
 - Run-length encoding
 - Move-to-front encoding

Compressing Distant Repeats

- Many compression algorithms need a compression model with a "long memory".
- BW compression survives with "short memory" entropy compressor.
- BW compression needs BW transform for large blocks.
 - bzip2 blocksize is only 900 KB

Computing BWT is demanding when

- blocksize is large
- text contains lots of repeats, i.e., is highly compressible
 - bzip2 performance suffers

Combination of techniques

- Optimized induced copying
- Tuned multikey quicksort
- ▶ Difference cover sampling $\rightarrow O(n \log n)$ worst case
- Inverse BWT modified for large blocks

Entropy Compressor for BWT

- Inspired by *bbb* compressor by Matt Mahoney
- 1. Run-length encoding aaabbbbb... \rightarrow (a,3)(b,5)...
- 2. Bit encoding: (8 bit code, Elias gamma code) (a,3)(b,5)... \rightarrow (01100001,101)(01100010,11001)
- 3. Determine a probability for each bit
 - Complex adaptive model
- 4. Arithmetic coding

Predicting Bits

- Each bit has a context
- Character bit context depends on
 - position of bit in the byte
 - preceding bits in the byte
 - last few preceding distinct characters (MTF)
 - + Are the preceding bits same?
 - + If yes, the bit in this position
- Run length code bit context depends on
 - bit position
 - associated character (first bit)
 - some preceding bits

Stationary model

- Each context has its own stored probability
- Small adjustment with each bit

Non-stationary model

Each bit causes a state transition in an automaton.

- Each state has a slowly adapting probability.
 - Neighbour states adjusted too.

WCTA08 – p.17

Things to do

- Computing BWT
 - Faster
 - Use less space \rightarrow larger blocks
- Faster entropy (de)compression
 - Reduce bits: Huffman?
 - From bits to larger units
- Better compression?
- Pre-BWT compression: LZ?
- Compressed self-indexes