
PAGE 234 PROGRAMMING, PROBLEM SOLVING , AND ABSTRACTION

Worth commenting on is the unfortunate reuse of an operator symbol for a quite
different purpose: “&” also means “address of”, and so the compiler must determine
which interpretation to apply to an “&” operator by examining the context in which it
is used. This issue is referred to asoverloading, and can cause confusion. Similarly,
in C the operator “* ” means both multiplication and address dereferencing.

Left shift operations are equivalent to multiplying by a power of two, and the sim-
ilar right shift operator “>>” has the effect of dividing by a power of two. There are
also bitwise operators for the “or” of two integers, “| ”; and for the bitwise comple-
ment of an integer, “˜ ”. For example,1101 | 1001 yields1101, and˜ 1101 is 0010.
Finally, there is a bitwiseexclusive oroperator “̂ ” that sets a bit in the result to1 if
the corresponding bits in the two operands differ:1101 ˆ 1001 gives0100.

The use of “&” as shown in Figure 13.1 is sometimes known as amaskingopera-
tion, since it selects from the first operand the bits that match places where the second
operand has a1 bit. Using these two bit operations, the program in Figure 13.1 ex-
tracts in turn each bit of the integer valueval , and prints either a zero or a one.

Looking at the output, some of the earlier overflow behavior of integers can now
be explained. Thew = 32 binary equivalent for thirteen is easily checked, and, with
a bit more work, the value for one million can also be verified. The last three values
represent some of the limiting values for32-bit integers, and fit the general pattern
shown in Table 13.3. Can you see now why the program fragment on page 16 gives
the results it does?

By now you will also have realized that the C typeunsigned declares an un-
signed integer variable. The right shift operator “>>” has different behavior on signed
values than on unsigned values, and you need to be careful – any variables that are
participating in these logical operations should be declared to beunsigned . Using
the w = 32 bit wordsize associated with most computer hardware, anunsigned

variable can take on values that are between0 and232 − 1 = 4,294,967,295. It is
also possible to declareunsigned char variables, andlong andshort integers.
None of the byte sizes for these different integer types are tightly specified, but a
char variable will usually havew = 8 bits; ashort variable is often represented in
w = 16 bits; andint andlong integers inw = 32 bits. Some C systems also offer
a long long type which might providew = 64 bits. All of these integer types can
also beunsigned . For example, anunsigned char variable takes only positive
values, and on most hardware can hold a number between0 and255.

Variables that are declared asunsigned types store positive values
only.

The two floating point typesfloat anddouble are represented in three parts:
a sign, an integerexponent, and a fractionalmantissa. Typically in a float one bit
is used for the sign; seven bits are used for the exponent, which is either a power of
two or a power of16, and stored as an integer; and another24 bits for the mantissa,
stored as a value between zero and one either as24 bits following an implicit binary
point, or as6 hexadecimal (base16) digits after an implicit radix-16 point. Twenty-
four binary digits corresponds to approximately seven decimal digits of accuracy. In
a double , the sizes of the fields allocated to the exponent and mantissa are approxi-
mately doubled into a64 bit two-word quantity, and the number of decimal digits of



13.3 THE PREPROCESSOR PAGE 235

Number Number Exponent Mantissa Representation
(decimal) (binary) (decimal) (binary) (bits)

0.5 0.1 0 .100000000000 0 000 1000 0000 0000
0.375 0.011 −1 .110000000000 0 111 1100 0000 0000
3.1415 11.001001000011· · · 2 .110010010000 0 010 1100 1001 0000

-0.1 -0.0001100110011· · · −3 .110011001100 1 101 1100 1100 1100

Table 13.4: Floating point representation whenws = 1, we = 3 andwm = 12, and the
exponent is a binary numbers stored usingwe-bit twos-complement representation, and the
mantissa is awm-bit binary fraction.

precision that can be manipulated before rounding errors intrude also approximately
doubles.

Variables of typefloat anddouble are stored as an integer exponent
part, and a fractional mantissa part.

As an example, suppose that on some computerfloat variables are stored in
16 bits, with ws = 1 bit used for a sign, awe = 3 bit binary exponent part, and a
wm = 12 bit fractional binary mantissa. Table 13.4 shows the bit representation for
four values. Note how even a number as simple as one tenth in decimal has a non-
terminating binary representation. The last column shows the16-bit combination that
would actually be stored in this hypothetical representation. The inverse value for the
last entry is

−1× 2−3 × (2−1 + 2−2 + 2−5 + 2−6 + 2−9 + 2−10)

which in decimal is calculated as

−0.125× (0.5 + 0.25 + 0.03125 + 0.015625 + 0.001953125 + 0.0009765625)

and equals.0999755859375. Can you see now where floating point rounding errors
come from?

To complete this section, Table 13.5 lists all of the C operators, and their prece-
dence, and replaces the earlier version of the same table given on page 31. The same
advice as has already been given continues to apply: if in doubt, parenthesize.

13.3 The C preprocessor

The#define was introduced in Chapter 2. It is one of the facilities provided by the
preprocessor, the first pass of the C compiler. The preprocessor searches for lines
that start with a “#”, and removes them from the file that is passed onto the main
part of the compiler. Those lines are instead taken to be directives that determine the
final form of what gets compiled. For example, the value established by a#define

directive is replaced everywhere that identifier appears in the program, and provides
symbolic constants.


