
PAGE 208 PROGRAMMING, PROBLEM SOLVING , AND ABSTRACTION

be declared, and the ID number used to directly index the array. In this example, the
first 1,000 pointers in the array would definitely never be used, and perhaps many
of the other pointers would also be leftNULL. The actual number of pointers used
would equal the number of staff being handled, so there might be thousands of unused
pointers. Nevertheless, the memory space they consume is warranted, as the resultant
search structure allows searching inO(1) time – that is, searching in time that is
constant and independent of the numbern of items stored in the dictionary.

But what if the domain of key values is not so conveniently compact? What if
staff ID numbers are eight-digits long, or ifstaff t records must be searched by
name, which is a character string? The fundamental idea in hashing is to create a
compact set of integers fromanyset of keys, and then use those integers to directly
index a table of pointers.

For example, suppose that staff ID numbers are eight-digit values in the range
10,000,000 to 99,999,999. If there are only5,000 different staff at any given time,
then declaring an array of100 million pointers is outrageously wasteful, and cannot
be contemplated. Suppose instead that an array of10,000 pointers is declared, and
the last four digits of the ID number is used to index the table.

Unless all staff ID numbers can be guaranteed to have a unique combination of
the last four digits (which is a big ask), using those digits to index the table results
in collisions, with different objects competing to use the same slot in the table of
pointers. So instead of an array of10,000 pointers, an array of10,000 linked lists
is created. Each list stores the set of objects that share the last four digits, and each
search operation performs a linear search in one of the lists. If we are lucky, the
number of long lists is relatively small, and most search operations are fast. After
all, at least half of the lists must be empty, and if the original staff ID numbers are
random, on average each non-empty list contains only one or two objects.

A hash function converts a value drawn from a large or indeterminate
range into a seemingly random integer over a constrained range.

Taking the last four digits of each staff ID as the index is a simple and obvious
transformation to reduce a large number into a more compact integer range, but has
a serious drawback – it doesn’t involve all of the digits of the original number, and
should not be used in practice. For example, both86,864,007 and87,864,007 hash
to the same location. If the staff ID values are genuinely random, this doesn’t re-
ally matter. But real-life values are rarely random – for example, in a staff number
like this, there might be a two-digit code to indicate year of commencement, then
a three-digit code to indicate the cost center for salary payments, and then a three
digit sequence number assigned starting at000 for each cost center, each year. There
will thus be far more ID codes ending with “x000” than with “x999”, meaning that
the randomness assumption is out the window, and with it the good “on average”
behavior of the hash table.

The need for randomness should never be underestimated, and it is critically im-
portant that the hash function assigns seemingly random hash values, even when the
input values are in some way similar. In particular, all components of the input value
should affect the eventual constrained-range output value. So rather than extract-
ing the last four digits, which is tantamount to taking the remainder mod10,000,



12.3 HASHING PAGE 209

a slightly different table size should be used. One way of ensuring that all dig-
its contribute is to make the table size a prime number. For example,9,973 is the
largest prime number less than10,000; and taking remainders mod9,973 trans-
forms 86,864,007 into 9,150; the number87,864,007 into 1,877; and88,864,007
into 4,577. That is, it is probably preferable to design the hash function to use mod-
ulus9,973 and deliberately leave27 of the10,000 possible hash values unused.

Hash functions should be constructed so that all parts of the key
contribute to the calculated hash value.

Successful hashing of character strings – where “success” is measured according
to the seeming randomness of the hash value for realistic sets of input data – is even
more of a challenge. Figures 12.2 and 12.3 show one way of constructing a hash
function for character strings. In order that the table can be any size (including round
numbers such as10,000), great care is taken with the construction of the hash func-
tion. In Figure 12.2, the functioncreate hash adopts the usual pattern of allocating
space for a structure, and then returning a pointer to it. It takes two arguments, a seed
with which to start the random number generator, and a table size.

Each combination ofseed andtabsize gives rise to a different set ofvalues in
the array associated with thehash t structure. The consequence of this arrangement

#define NVALUES 10

typedef struct {
unsigned nvalues;
unsigned *values;
unsigned tabsize;

} hash_t;

hash_t
*create_hash(unsigned seed, unsigned tabsize) {

int i;
hash_t *h;
/* allocate the required memory space */
h = malloc(sizeof(*h));
assert(h != NULL);
h->values = malloc(NVALUES*sizeof(*(h->values)));
assert(h->values != NULL);
h->nvalues = NVALUES;
/* start the random number generator */
srand(seed);
/* then create a sequence of prime numbers from it */
for (i=0; i<NVALUES; i++) {

h->values[i] = nextprime(tabsize + rand()%tabsize);
}
h->tabsize = tabsize;
return h;

}

Figure 12.2: Initializing a hash function for use on character strings.


