
PAGE 150 PROGRAMMING, PROBLEM SOLVING , AND ABSTRACTION

Problem sizen Solution time (seconds)
25 2.8
26 5.6
27 11.3
28 22.5
29 45.1
30 89.8

Table 9.1: Time taken by functionsubsetsum (Figure 9.4) for various values ofn, measured
in CPU seconds on a 700 MHz Intel Pentium III. In each casek is chosen so that no subset
exists and the value returned is zero.

One problem with generate and test-style algorithms is also brought out in Fig-
ure 9.4, and that is the cost of exhaustive enumeration. To assert that no subset with
the right sum is possible, every combination of then items must be calculated, and
there are an exponentially large number of such combinations. Table 9.1 documents
the cost of searching for a subset that does not exist. Each timen is increased by
one, the time taken to decide the outcome doubles. Unfortunately, this growth rate
means that large problems cannot be solved – even though the program exists, and is
just a dozen or so lines long. For example, extrapolating from the times in the table,
a problem withn equal to40 will require approximately one day of computation; a
problem withn equal to50 will take more than threeyearsof non-stop calculation;
and a problem withn equal to60 will requires more than threethousandyears. As
for a problem of size100, the mind just boggles – it simply can’t be done.

In Chapter 1 an analogy was drawn between physics, the science of energy, and
computer science, which is the study of information. From physics, we know that
perpetual motion is an impossibility; and from chemistry we know that transmutation
of lead into gold is an unrealistic aim. So too in computing it appears that there are
things that are extremely hard to achieve.

Unfortunately, there are a large number of other problems like the subset sum
problem, for which the only known algorithms require exponentially growing time.
Finding ways to obtain partial or approximate solutions to non-trivial instances of
these problems is one of the key challenges in Computer Science.

There are many problems for which all known algorithms require
exponentially growing time. It is also likely that no fast algorithms will
ever be found, making the exact solutions to even mid-sized instances

of these problems impossible to obtain.

The number of moves required by a towers of Hanoi problem is also exponen-
tial, this time inn, the number of disks. Now the high cost arises because there are
that many moves necessary to accomplish the transformation, and not because dif-
ferent move sequences have to be explored to find a “right” one. A generate and test
approach to the towers of Hanoi problem might never end, as there is no obvious
ordering in which to generate possible move sequences, and then evaluate them.

9.3 SIMULATION PAGE 151

The original setting of the towers of Hanoi problem is said to be in a remote
mountainous temple, with generation after generation of dedicated monks manually
working with a stack of60 disks. The lore goes on to say that when the last disk
is moved into its final position, it will mark the end of the world. Based upon the
estimates made above, and the fact that computers are around ten million times faster
than humans, we are probably safe for a few more years yet.

The situation is not so gloomy with respect to other problems such as sorting.
Even the “agricultural” bubble sort is such that arrays containing thousands of items
can be sorted in a few dozens of seconds, and the sorting algorithms introduced in
Chapter 12 are faster still. Several of those techniques exploit the divide and conquer
strategy to obtain their efficiency.

One particular type of divide and conquer algorithm is worth attention, and that
is thegreedyheuristic. The underlying assumption of the greedy heuristic is that a
solution that is good overall can be found by making a sequence of choices at a low
level, each of which maximizes some simple definition of progress. For example,
selection sort (Exercise 7.6 on page 130) is a greedy process, since at each stage the
biggest remaining item is located, and swapped into its correct position. By being
greedy at each individual step, a solution is arrived at to the larger problem.

The greedy heuristic seeks a globally good solution to a problem
through the use of locally maximal choices.

9.3 Simulation

Consider the following game of chance. To enter the game, contestants pay $1. They
then roll two dice. If the total on the dice is eight or more, they are paid their original
stake, plus another $1; except that if the total is twelve, they are paid back their
original stake, plus an additional $5. On the other hand, if the total is less than eight,
they get nothing back.

Suppose a player enters the game with a $5 initial float, and plays these $1 games
until either all their money is gone, or they have reached a total of $20, at which
time they retire happy. How many turns does it take on average before they leave the
gaming table? And what fraction of the time do they leave happy?

It is relatively easy to determine that the casino running this game has a slight
edge, and that in the long run, more players should lose than win. Indeed, a mathe-
matician might be able to precisely calculate the average number of games played by
each player before one of the two stopping conditions is met. Another way to answer
such questions is to make use of asimulation. The top box in Figure 9.5 shows a
program that tracks the outcome of one player, and their initial $5.

A key component of Figure 9.5 is use of the functionssrand andrand , described
in stdlib.h . The first function initializes a pseudo-random number generator by
passing in an integer seed; thereafter, each call torand returns a positive integer
that for most purposes can be assumed to be quite unrelated to the previous values
returned. The actual mechanism involved is beyond the scope of this book. What
is worth stressing is that the sequence is not really random at all, and is completely
and unambiguously determined by the initial seed. Hence, if you are using such a

