PAGE 88 PROGRAMMING, PROBLEM SOLVING, AND ABSTRACTION

int z=2;

int

main(int argc, char **argv) {
int x=3;
printf("main: x=%2d, z=%2d\n", x, z);
func(x);
printf("main: x=%2d, z=%2d\n", x, z);
func(z);
printf("main: x=%2d, z=%2d\n", x, z);
return O;

}

void
func(int x) {
X = X+1;
Z = X+z+1;
printf("func: x=%2d, z=%2d\n", x, z);

main: x= 3, z= 2
func: x= 4, z= 7
main: x= 3, z= 7
func: x= 8, z=16
main: x= 3, z=16

Figure 6.3: A program fragment showing that all functions in a file have access to global
variables. The lower box shows an execution of the program.

The ability to declare global variables does raise one problem: it is possible to
have multiple variables declared with the same name. Figure 6.4 shows an example
program that does this. In Figure 6.4, variablés global. But the function also
declares a variable, which is local. The rules of scope stipulate that any reference
to a multiply declared variable applies to the local one; and a global variable can only
be referred to if there is no local variable of the same name (irrespective of type)
that shadowst. The same rule applies to function names, and can be a cause for
confusion — declaring a variable callegrt in a function (perhaps because it is to
hold the square root of some value being manipulated in the function) automatically
makes thesqrt routine from the mathematics library unavailable in that function.
You need to choose variable names with a little bit of care:

double sqgrt, x=10.0;
sqrt = M_PI + sqrt(x);

This program fragment results in an error message from the C compiler:

sqrtvar.c: In function ‘main’:
sqrtvar.c:10: called object is not a function

The error arises because, in this scapgt, is not a function and cannot be called.

6.4 (GLOBAL VARIABLES PAGE 89

int z=2;

int

main(int argc, char **argv) {
int x=3;
printf("main: x=%2d, z=%2d\n", x, z);
func(x);
printf("main: x=%2d, z=%2d\n", x, z);
func(z);
printf("main: x=%2d, z=%2d\n", x, z);
return O;

}

void
func(int x) {
int z=7;
X = x+1;
Z = X+z+1;
printf("func: x=%2d, z=%2d\n", x, z);

main: x= 3, z= 2
func: x= 4, z=12
main: x= 3, z= 2
func: x= 3, z=11
main: x= 3, z= 2

Figure 6.4: A program fragment showing the shadowing of a global variable. The lower box
shows an execution of the program.

Local variable declarations in a function shadow global variables and
functions of the same name, and render them inaccessible to the
function.

More subtle errors arise from the unexpected shadowing of global variables, or
even of argument variables, when there is no such type clash identified by the com-
piler. For example, it is legal in C to declare a local variable that has the same name
as an argument variable in the same function, in which case the argument variable is
shadowed. A good C compiler will issue a warning message in this situajton (
-Wall certainly does); nevertheless, you should remain alert to the possibility that
you may have inadvertently shadowed a global or argument variable.

Does this mean that if we want to write functions that have side effects, we must
make use of global variables? Fortunately, the answer is “no”. Sections 6.6 and 6.7
describe a rather more elegant way of allowing a function to alter the environment it
got called from, and that is the mechanism that should be used when side effects are
required.

Global variables should be used sparingly. Relying on them for
communications to and from a function makes the function less
general, less robust, and harder to reuse.

