
PAGE 34 PROGRAMMING, PROBLEM SOLVING , AND ABSTRACTION

if (n < 0)
num_neg += 1;

if (scanf("%d%d%d", &n, &m, &r) != 3) {
printf("scanf failed to read three items\n");
exit(EXIT_FAILURE);

}

length_of_year = 365;
if (year%4==0 && (year%100!=0 || year%400==0)) {

/* need to allow for leap years */
length_of_year += 1;

}

if (year%4==0 && (year%100!=0 || year%400==0)) {
/* need to allow for leap years */
length_of_year = 366;
length_of_feb = 29;

} else {
/* not a leap year */
length_of_year = 365;
length_of_feb = 28;

}

if (month==2) {
length_of_month = length_of_feb;

} else if (month==4 || month==6 ||
month==9 || month==11) {

/* thirty days hath september, april, june,
and november */

length_of_month = 30;
} else {

/* all the rest have 31, except february... */
length_of_month = 31;

}

Figure 3.2: Examples of the use of theif statement. Statements between a “{” and “}” pair
are a compound statement, and treated as a single statement.

3.3 Pitfalls to watch for

There are a number of pitfalls associated with the use ofif statements, usually in
connection with the guard. Figure 3.3 shows the most common of these problems.
At face value, when the number zero is entered the program should print a message
that more students can be accepted. But when the program is executed (the lower
box in Figure 3.3), the other message is printed, and it is clear that theif statement
took the first of the two alternative paths. Why? Well, you were warned about this
earlier – look carefully at the guard in theif , and count the number of “=” characters.

3.3 PITFALLS PAGE 35

#define MAX_CLASS_SIZE 50

int class_size;
printf("Enter class size: ");
scanf("%d", &class_size);
if (class_size = MAX_CLASS_SIZE) {

printf("Class is now full\n");
} else {

printf("More students can be accepted\n");
}

vice: gcc -o equalinif equalinif.c
vice: ./equalinif
Enter class size: 0
Class is now full
vice: gcc -Wall -ansi -o equalinif equalinif.c
equalinif.c: In function ‘main’:
equalinif.c:11: warning: suggest parentheses around

assignment used as truth value

Figure 3.3: A flawed if statement. The program always prints “Class is now full”, even if
a class size of 0 is entered. The reason why is revealed in the second compilation line
shown in the lower box, when all warning messages are requested using “-Wall ”. Now the
compiler draws attention to the assignment statement inside the guard of theif statement,
and suggests that it might be problematic, despite that fact that the program is technically
correct as it stands.

Two are required for an equality test, and when there is only one, it is an assignment
statement. So that guard says “assign the valueMAXCLASSSIZE to the variable
class size , and then, if the value that was assigned is non-zero, execute the first
branch of theif statement”.

Some – unfortunately, not all – C compilers allow you to check for this kind of
problem. Thegcc compiler used while preparing this book does not naturally give
such warnings (see the first compilation line in the lower box of Figure 3.3), but can
be instructed to look for potential problems via the use of the “all ” option to the
“ -W” compiler warnings-level flag (the second compilation line), which asks for all
warning messages to be listed. The-ansi flag similarly asks that thegcc compiler
not accept any constructs that are not part of the ANSI standard definition of C.
There is no reason at all why you shouldn’talwaysuse these warning and diagnostic
facilities if they are available.

What about the program fragment in Figure 3.4? What is the final value ofz?
Should be6, right? The first guard is true, but the second guard is false, right? So
z remains unchanged, right? Wrong! The rule is that anelse part attaches to the
most recent unmatchedif that is available to it, irrespective of program layout. So
the else in this fragment belongs to the secondif , and when the second guard is
false, the statementz=8 is executed.

