shuf(1) shuf(1)

NAME
shuf - semi-static canonical coder for files of unsignedgets

SYNOPSIS
shuff —e[b blodk_size] [-Z][-v{1]2|3}]] file]

shuff —elfilename —v n]][file]
shuff —e2filename —v n][file]
shuff -d[-vn]][file]

DESCRIPTION
shuff encodes and decodes a file of unsignedyerte using semi-static canonical minimum-redunganc
(Huffman) coding tostdout There are tw options for encoding: tarpass coding, which requires a pass
over the input file to gther the frequencies of the igegs, and a second pass to perform the actual coding;
or one-pass coding where the e file is brokn into blocks and tavpasses are made on each block in
memory (so the file is only read once).

Decoding is the same for files encoded with either method.
Two-pass encoding

The two-pass encoding process writes an auxiliary file ofjetérequencies which is used as fitename
argument of the -e1 and -e2 optionEhe file of frequencies is not required for decoding, setedf stores
a representation of the Hinfian code within the compressed output.

—-elfilename
Causeshuff to male an intial pass thougfile or stdin, writing a file of symbol frequencies fite-
name

—-e2filename
Causesshuff to read the symbol frequenénformation fromfilename build a minimum-redun-
dang canonical prefix code for that distution, and then pass throudite or stdin reading
unsigned intgers, calculating their corresponding cededs, and writing encoded bits sddout
The file filenameshould preiously hare been created from the same, or represergtadata as is
being compressed during the second pass.

-vn Prints statistical information tetderr shoving the operations being performedhe lager the
value ofnthe more detailed (andluminous) the output.

One-pass encoding

One-pass encoding splits tfiee or stdin into blocks, and then applies the algorithms of the-pass
coder to each block in memomyriting bits tostdout The blocks can be of f&d length (using theb
blodksizeoption), or can be terminated by igéx zeroes in the input file (using th& option).

-e Use one pass encoding.

-b blodk_size
Encodes symbols in blocks loiodk_size

-Z Treats all symbols between zero symbols as a single block (the -b option is igridred)eroes
are also included in the compressed message and reproduced by the dibowiley the process
that writes the file of intgers to determine where block boundaries should lie — useful when each
integer has a diérent probability in each blockit is not strictly necessary to Y& a 2ro as the
final symbol of the file, bt a warning message will be printed if this is not the case.

-vn Outputs summary informatiorlJse ofn=2 outputs information per block in bits per symhwot3
outputs information per block in bits.

Andrew Turpin and Alistair Mofat February 2000, February 2002 1

shuf(1) shuf(1)

USAGE
To encode a file namedumbes using two pass coding into a filaumbes-encand then decode to a file
numbes-decyou would proceed as

shuff —elfreqs number

shuff —e2freqs number> numbes-enc

rm freqs

shuff —d numbes-enc> numbes-dec

The filesnumbes andnumbes-decshould be the samdCheck withcmp numbes numbes-dec)

To encodenumbesin a single pass using a block size of 1 MB (assuming 4-byigeirge
shuff —e —b262144 number> numbes-enc

shuff —d numbes-enc> numbes-dec

Again, the filesaumbes andnumbes-decshould be the same.

To encodenumbesin a single pass using zero symbols as block terminators:
shuff —e —Znumbes > numbes-enc

shuff —d numbes-enc> numbes-dec

cmp numbes rumbes-dec

ORIGINS
shuff is based upon originalavk of the two authors, described in "On the Implementation of Minimum-
Redundang Prefix Codes"]EEE Transactions on Communicationd(10):1200-1207, October 1997, and
"Houseleeping for Prefix Coding'lEEE Transactions on Communicatior(4):622-628, April 2000.

For more details of the implementation, see the papers listed abe, or the bookCompession and Cod-
ing AlgorithmsA. Moffat and A. Turpin, Kluwer Academic Press, February 20@2urther information
about this book iswailable at http://wwwcs.mu.oz.au/caca/

We @k that, if you use this softwe to dexie experimental results that are reported iy @y, you cite the
original work in which the underlying processes are described (by referencing either both aof tistetiv
papers, or the book); and also ackterige our authorship of the implementation yovehased.

BUGS
shuff has not beenxéensiely tested, and should be used for research purposes Boitability is not
guaranteed. Therie no warranty either express or implied, that it is fit for grpurpose whatsaer, and
neither the authors nor The Waisity of Melbourne accept gresponsibility for ap consequences that
may arise from your use of this soée.

LICENCE
Use and modify for your personal uset o not distrinte in aiy way shape or form (for commercial or
noncommercial purposes, modified or unmodified, including byyeEhssnaking it available on ay inter
net site) without prior consent of the authors.

AUTHORS
Andrew Turpin* and Alistair Mofat, Department of Computer Science and SafewEngineering, The
University of Melbourne, Yttoria 3010, Australia Email: aht@cs.mu.oz.au, alistair@cs.mu.oz.gilow
at Curtin Unversity, Perth, Australia, Email: andng@computing.edu.au)

Andrew Turpin and Alistair Mofat February 2000, February 2002 2

