
shuff(1) shuff(1)

NAME
shuff − semi-static canonical coder for files of unsigned integers

SYNOPSIS
shuff −e [−b block_size] [−Z] [−v { 1 | 2 | 3 }] [file]

shuff −e1filename[−v n] [file]

shuff −e2filename[−v n] [file]

shuff −d [−v n] [file]

DESCRIPTION
shuff encodes and decodes a file of unsigned integers using semi-static canonical minimum-redundancy
(Huffman) coding tostdout. There are two options for encoding: two-pass coding, which requires a pass
over the input file to gather the frequencies of the integers, and a second pass to perform the actual coding;
or one-pass coding where the integer file is broken into blocks and two passes are made on each block in
memory (so the file is only read once).

Decoding is the same for files encoded with either method.

Tw o-pass encoding

The two-pass encoding process writes an auxiliary file of integer frequencies which is used as thefilename
argument of the -e1 and -e2 options.The file of frequencies is not required for decoding, sinceshuff stores
a representation of the Huffman code within the compressed output.

−e1filename
Causesshuff to make an intial pass thoughfile or stdin, writing a file of symbol frequencies tofile-
name.

−e2filename
Causesshuff to read the symbol frequency information fromfilename, build a minimum-redun-
dancy canonical prefix code for that distribution, and then pass throughfile or stdin reading
unsigned integers, calculating their corresponding codewords, and writing encoded bits tostdout.
The filefilenameshould previously have been created from the same, or representative, data as is
being compressed during the second pass.

−v n Prints statistical information tostderr showing the operations being performed.The larger the
value ofn the more detailed (and voluminous) the output.

One-pass encoding

One-pass encoding splits thefile or stdin into blocks, and then applies the algorithms of the two-pass
coder to each block in memory, writing bits tostdout. The blocks can be of fixed length (using the-b
blocksizeoption), or can be terminated by integer zeroes in the input file (using the−Z option).

−e Use one pass encoding.

−b block_size
Encodes symbols in blocks ofblock_size.

−Z Treats all symbols between zero symbols as a single block (the -b option is ignored).The zeroes
are also included in the compressed message and reproduced by the decoder, allowing the process
that writes the file of integers to determine where block boundaries should lie − useful when each
integer has a different probability in each block.It is not strictly necessary to have a zero as the
final symbol of the file, but a warning message will be printed if this is not the case.

−v n Outputs summary information.Use ofn=2 outputs information per block in bits per symbol,n=3
outputs information per block in bits.

Andrew Turpin and Alistair Moffat February 2000, February 2002 1

shuff(1) shuff(1)

USAGE
To encode a file namednumbers using two pass coding into a filenumbers-encand then decode to a file
numbers-decyou would proceed as

shuff −e1freqs numbers

shuff −e2freqs numbers > numbers-enc

rm freqs

shuff −d numbers-enc> numbers-dec

The filesnumbers andnumbers-decshould be the same.(Check withcmp numbers numbers-dec)

To encodenumbers in a single pass using a block size of 1 MB (assuming 4-byte integers):

shuff −e −b262144 numbers > numbers-enc

shuff −d numbers-enc> numbers-dec

Again, the filesnumbers andnumbers-decshould be the same.

To encodenumbers in a single pass using zero symbols as block terminators:

shuff −e −Znumbers > numbers-enc

shuff −d numbers-enc> numbers-dec

cmp numbers numbers-dec

ORIGINS
shuff is based upon original work of the two authors, described in "On the Implementation of Minimum-
Redundancy Prefix Codes",IEEE Transactions on Communications,45(10):1200-1207, October 1997, and
"Housekeeping for Prefix Coding",IEEE Transactions on Communications,48(4):622-628, April 2000.

For more details of the implementation, see the two papers listed above, or the bookCompression and Cod-
ing AlgorithmsA. Moffat and A. Turpin, Kluwer Academic Press, February 2002.Further information
about this book is available at http://www.cs.mu.oz.au/caca/

We ask that, if you use this software to derive experimental results that are reported in any way, you cite the
original work in which the underlying processes are described (by referencing either both of the two listed
papers, or the book); and also acknowledge our authorship of the implementation you have used.

BUGS
shuff has not been extensively tested, and should be used for research purposes only. Portability is not
guaranteed. Thereis no warranty, either express or implied, that it is fit for any purpose whatsoever, and
neither the authors nor The University of Melbourne accept any responsibility for any consequences that
may arise from your use of this software.

LICENCE
Use and modify for your personal use, but do not distribute in any way shape or form (for commercial or
noncommercial purposes, modified or unmodified, including by passively making it available on any inter-
net site) without prior consent of the authors.

AUTHORS
Andrew Turpin* and Alistair Moffat, Department of Computer Science and Software Engineering, The
University of Melbourne, Victoria 3010, Australia.Email: aht@cs.mu.oz.au, alistair@cs.mu.oz.au.(*Now
at Curtin University, Perth, Australia, Email: andrew@computing.edu.au)

Andrew Turpin and Alistair Moffat February 2000, February 2002 2

