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ABSTRACT
A citation network is a structure of linked documents that share
a pool of authors and a pool of subjects, and via citations, pro-
vide references to related documents that have preceded them in
the chronology of research. In this paper we review citation net-
works, and survey and categorize the operations that extract data
from them. Our goal is to create a framework against which pro-
posed implementations can be assessed, and to provide a basis for
research in to algorithms and techniques that might be applied to
citation networks. In particular, we seek to extend the concept of
“search” over a citation network, to allow for ranked retrieval mod-
els in which a wide range of factors influence the list of answers
that is presented to the user in response to a query.

1. INTRODUCTION
Eugene Garfield was an early pioneer in the field of bibliomet-

rics and citation analysis, and as early as 1955 had recognized the
enormous benefit that could accrue from careful tabulation of the
output of scientists – and in particular, that the citations they re-
ported in their published papers were a form of information that
could be of benefit to others [9]. Garfield was also an early adopter
of computing techniques, and founded the Institute for Scientific
Information, or ISI, which in 1964 launched the Science Citation
Index, a service that provided systematic coverage of thousands of
scientific journals via weekly update listings and annual consolida-
tions, available in hard-copy on a subscription basis to University
libraries. Those summaries rapidly became invaluable resources,
and allowed researchers to quickly and accurately identify papers
that cited their published work, or that were related in other ways.
Garfield’s vision in this regard also led to the establishment of pro-
ductivity metrics that allowed the output of researchers and insti-
tutions to be tabulated, and created the necessary data for journal
impact factors to be defined and computed. Garfield remains ac-
tive as Emeritus Chairman of Thompson Scientific ISI, and as an
author. Indeed, in a recent paper he provides a table of researchers
who – identified via ISI data – have been publishing for 69 years
or more [11]. He may be planning to occupy a position in a future
version of that table.
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Complementing that early work, in 1967 Ralph Garner proposed
the use of graph structures as an adjunct to citation analysis [12].
He introduced his concepts with this:

The history of science, as all histories, builds on what
has come before, and to that extent we can say that sci-
ence is an edifice built from units or blocks of knowl-
edge which we call scientific papers. When a block of
knowledge is added to the structure, we indicate which
existing blocks are used to support the new addition,
by providing a citation.

The role of citations in acknowledging previous work, and the anal-
ysis of them using graph and network structures, remains funda-
mental to conventional writing and publishing. On-line and elec-
tronic publishing structures also retain the same elements, even if
employing embedded links that eliminate the explicit bibliography.

The Science Citation Index provided an important resource for
searching in the literature associated with some discipline, and ISI
and SCI continue as a business. A range of other services are also
now available. The most notable of these are, of course, Google
Scholar and Microsoft Academic Search, and in the computing dis-
ciplines, DBLP and ArnetMiner. Citation networks also apply in
less formal domains. The Twitter “re-tweet” can be thought of as a
citation link to previous work, as can the Facebook “like”.

In this paper we review and survey citation networks, starting
with the work of Garfield, and a taxonomy of citation-based search
tasks he proposed in 1979. We then consider graph-based citation
models, and consider how citation relationships can be efficiently
mapped onto manipulable structures amenable to query processing
at scale, and with a view to supporting additional querying modali-
ties that step beyond set-based retrieval, and add notions of “local-
ity” and “nearness” to search in citation networks.

2. A CITATION NETWORK MODEL
This section describes the terminology we use to describe a cita-

tion network; Table 1 provides an summary of those concepts.
We start with a set P of n publications interconnected via ci-

tations. Each paper p ∈ P has associated with it a set of au-
thors, authors(p); a set of subjects, subjects(p); a set of citations,
predecessors(p); and a (single) publication forum, forum(p). The
set of all authors in the citation network is denoted by A; and the
set of all subjects appearing in the citation network is denoted by S.
Similarly, F is the set of all forums in which papers in P have been
published. A forum can represent a single conference/year combi-
nation, or journal/issue combination, or book. Each paper p in the
citation network is published at a specific publication date which is
formalized as pubdate(p). The set of all papers in P published by
author a is referred to as papers(a).



Symbol Description

P Set of all publications
A Set of all authors
S Set of all subjects
F Set of all forums
papers(a) Subset of P for which a is an author
authors(p) Subset of A that are authors of p
coauthors(a) Subset of A that are authors of papers(a)
predecessors(p) Subset of P that are cited by p
predecessors∗(p) Kleene closure of predecessors(p)
successors(p) Subset of P that cite p
successors∗(p) Kleene closure of successors(p)
subjects(p) Subset of S that appear in p
keywords(s) Set of keywords describing s ∈ S
forum(p) Forum in F where p was published
pubdate(p) Publication date of p
contents(p) Contents of p, as a sequence of words

Table 1: Notation used to describe a citation network.

Each of the papers p′ ∈ predecessors(p) is referenced by p
as a part of the context in which the work described in p was
carried out. It is usually the case, but not universally so, that if
p′ ∈ predecessors(p), then pubdate(p′) < pubdate(p): papers
are published after the work that they cite. Exceptions occur when
authors provide “forward” citations to forthcoming work that has
been written and perhaps even accepted, but not yet published. The
Kleene closure predecessors∗(p) of predecessors(p) represents all
previous publications that p has built on.

It is also helpful to include the inverse of those relationships,
and we refer to all publications p′ ∈ P that reference a particu-
lar paper p as successors(p). Similarly, successors∗(p) refers to all
downstream publications building on the results of p, directly or in-
directly. These definitions focus on the citation network as it stands
at a given moment in time, with P fixed and hence successors∗(p)
finite. However, in a dynamic setting, successors∗(p) can be ex-
pected to grow as follow-up papers are published. A system that
manages citations must thus allow for insert and other update oper-
ations, in addition to querying operations.

Each paper p has a set of subjects that categorize its contribu-
tion to the scientific literature. These subjects may or may not be
explicitly stated in the body of p, and if not explicit, may need to
be inferred from the textual content. We regard subjects as being
independent concepts that are not required to partition the space of
all knowledge; they can have partial overlaps, and “is a” hierarchi-
cal relationships if appropriate. So while we might think of “image
compression” ⊂ “data compression”, a paper might be about the
subject “image compression” as well as about “data compression”.
To allow definite statements to be made about querying operations,
we suppose that each subject s in S is associated with a unique set
of keywords keywords(s) that jointly specify that subject, as a cate-
gorization fingerprint. With these definitions, there is no one-to-one
correspondence between subjects and keywords, as a keyword k
might map to multiple distinct subjects: that is, k ∈ keywords(s)
and k ∈ keywords(s′), where s 6= s′.

Without loss of clarity, we sometimes abuse these definitions,
and let successors(X), where X ∈ P is a set of papers, stand for
∪p∈Xsuccessors(p). Similarly, keywords(p) indicates the union of
the set of keywords associated with the subjects in subjects(p).

With these definitions, we are able to model sets of scientific
papers as a domain that makes use of citations; the next section
shows how this formalization addresses information requests.

3. SEARCH IN CITATION NETWORKS
Building a citation network facilitates understanding the flow of

ideas, and can help identify experts and useful papers. In this sec-
tion, we explore typical queries that might be made of citation net-
works. Indeed, even before computers were prevalent in research
institutions, researchers sought (manually curated) citation indexes
to digest published research more efficiently, and to stay abreast of
developments in specialized areas.

In 1979 Garfield [10, Chapter 5] described a set of ten informa-
tion needs. The paper-based Science Citation Index (SCI), which
he had developed a decade earlier, satisfied most of these needs.
Some of Garfield’s search categories do not transfer directly to digi-
tal citation networks, but most describe search tasks still performed
by contemporary researchers. We first revisit a subset of the ten
search tasks and examine their applicability within the constraints
of the citation network model described above. We then summa-
rize and discuss other search tasks proposed in literature; finally,
we consider other search tasks in the context of citation networks.

TASK 1 Bibliographic Verification Search [10, p. 42]: Find the
paper p from author a published in forum f on subject s.

This is a task that is now almost trivially handled via web search
technology, but is nevertheless one that researchers still routinely
carry out. A typical scenario would be that we saw a presentation
at a conference last year, and know the name of one of the authors
and what the paper was about; and seek to obtain full details for
this paper so that we can read it carefully, because we can see that
it is relevant to our own current activities. Remembering the who
and where of a paper is less cognitive overhead than remembering
the other publication details.

TASK 2 Follow-Up Search [10, p. 47]: Given a publication p,
find all p′ ∈ successors∗(p) such that subjects(p) ⊂ subjects(p′).

This task type reflects that it is often of critical interest to con-
tinue to trace research activity that builds on the results of an ear-
lier publication p. Publications on the same subjects(p) directly
citing p will be of interest, as well as subsequent publications p′ ∈
successors∗(p) such that subjects(p) ⊂ subjects(p′).

More than any other, it is this type of search that is associated
with citation indexing – the assumption being that publications pri-
marily building on the results of p would explicitly provide a ci-
tation to p. Note that this search type does not require that every
paper in the chain from p to p′ share subjects with p, and it is cer-
tainly possible for p′ to be a successor of an intervening paper that
does not have common subjects with p.

If the subjects of p or a candidate p′ are not available, keyword
based indicators such as keywords(p′) ∩ keywords(p) may be used
in the search procedure. Note also that the influence of p on sub-
sequent publications potentially diminishes the more distantly they
are connected within the citation network; we return to this notion
below.

TASK 3 Concept Search [10, p. 50]: Given subject s and a pub-
lication p such that s ∈ subjects(p), find all p′ ∈ P such that s ∈
subjects(p′).

Concept Search seeks to identify literature related to a subject s
based on a known publication p. Instead of only seeking p′ ∈



successors∗(p) with s ∈ subjects(p′) (TASK 2), all publications
on the same subject s are of interest. Relevant publications can
thus be found by exploring predecessors and successors of p, and
widening the search iteratively as more papers are identified. Con-
cept search also requires that papers that satisfy the search criteria
but that are not linked to p must also be located. For example,
it is not at all uncommon for authors to inadvertently miss citing
work that is on the same subject, or work that is removed from the
main chronology of a particular discipline area, or published in a
language that renders them less accessible. Hence, relying solely
on citation linkages from a single published paper is not necessar-
ily a sound strategy. To identify such papers, Ap = authors(p)
and f = forum(p) can also be used to find related publications by
exploring successors∗(f) or predecessors∗(Ap), thereby possibly
avoiding the need to traverse the complete network. Note that in-
stead of comparing subjects, keywords(s) may be also used to find
relevant publications.

TASK 4 Quick State-of-the-Art Search [10, p. 57]: Given a time
stamp t, and a subject s, find all publications p ∈ P such that
s ∈ subjects(p) and t ≤ pubdate(p).

The goal of Quick State-of-the-Art Search is to give the searcher an
overview of a specific research area, and avoid the need for them to
have to carry out their own more detailed literature review [10]. The
publications of interest will include survey publications, or papers
that themselves contain multiple citations to papers related to s.
Returning recent results (those with pubdate(p) ≥ t) is also of im-
portance as old surveys will not contain coverage of recent develop-
ments in the area. Survey publications may be identified by the fo-
rum they are published in (for example ACM Computing Surveys)
or via their content (for example, the paper title or paper abstract).
The number of citations and the length of the publication can also
be indicative of survey publications. Publications containing cita-
tions to highly cited work or citations to other identifiably survey
publications might also be regarded as being suitable matches.

TASK 5 Disjunctive Keyword Search : Given a set of keywords
K, find all p ∈ P such that keywords(p) ∩K 6= ∅.

TASK 6 Conjunctive Keyword Search: Given a set of keywords
K, find all p ∈ P such that keywords(p) ∩K = K.

Boolean searches are one of the traditional mechanisms for iden-
tifying relevant documents. Their drawbacks are also well-known:
conjunctive search risks being overly specific, and failing to re-
trieve desired documents; whereas disjunctive search risks being
overly broad, and swamping the user with so many matches that
they are unable to effectively extract the subset that is of inter-
est. Library catalog systems of the 1970s and 1980s were typically
based on Boolean matching, searching over titles-only, or titles and
abstracts. University librarians were respected as the facilitators
of search, and were expert at formulating queries constructed as a
conjunction of required concepts, with each of those concepts ex-
pressed as a disjunction of terms or words.1

TASK 7 Diversity Search : Given a paper p and a target output
size k, return the set of papers Xk ⊂ successors(p) of size at most
k that maximizes |subjects(Xk) \ subjects(p)|.
1Title/abstract searches during the 1970s and 1980s were also expensive: one might
pay $100 or more for thirty minutes of access time over an acoustic-coupler modem,
plus (if in Australia) the cost of the international call to the United States, at several
dollars a minute. The result set – a hard-copy listing of abstracts identified by the
search – would arrive by mail three days later in the US, or ten days later in Australia.
Needless to say, librarians were also respected as the guardians of the institutional
search budget.

This task supposes that a researcher may be interested to know of
new applications or new interpretations of a familiar work p. The
search identifies a set of documents Xk that cite p, and collectively
cover a maximally diverse range of subjects. Significant in TASK 7
is that there will thus be a range of topic areas identified where p
has some bearing on subsequent work, but where that work does
not necessarily share subjects with p. A variant would allow Xk ⊂
successors∗(p) to contribute to Xk, rather than restricting Xk to
successors(p).

TASK 8 Expert Search [3]: Given a set of keywords K, find the
authors that have expertise in the set of subjects associated with K.

Expert search seeks to identify experts in a given field, with the
searcher providing a set of keywords K that they believe specifies
the desired expertise of the authors being sought. An author is re-
garded as having expertise in a subject s indicated by the keywords
K if they have written one or more papers p for which the keywords
in K are indicative of subjects s ∈ subjects(p), and if, across the
set of papers they have authored, all subjects indicated by K are so
covered. Note that the keywords and subjects can also be identified
by a set of papers submitted as a query [15].

TASK 9 Expert Network Search [6]: Given a set of keywords K,
find connected groups of authors such that each group has expertise
in all subjects(K).

As was the case with TASK 8, Expert Network Search seeks to find
authors rather than papers. Now the result can be either a single
author (like TASK 8), or a set of collaborating authors that jointly
have expertise on all subjects s indicated by K. Intuitively, this
search models the process of identifying a research group or other
set of closely connected authors that span a set of subjects. Authors
might be connected by co-authorship, by common sets of forums
they have published in, or by citation of similar papers. Groups
might also contains authors that possess none of the desired exper-
tise, but are required to establish connections between experts.

TASK 10 Recommended Reading [15]: Given a set of papers X ,
return a set of additional papers, disjoint from X , that could be of
interest.

Küçüktunç et al. [15] suggest that the process of searching for ad-
ditional papers based on a set of known resources is an important
step when new publications are being prepared, to ensure that im-
portant citations are not overlooked. The current bibliography X of
the draft paper p is used as a query to explore the citation network
for further papers of interest. The contents of the papers in X , plus
papers in successors(X), plus the forums associated with papers
in X , plus contents(X), might all be factors that are used during
the search.

TASK 11 Recommend Conference or Reviewers [15]: Given a set
of papers X , return a set of forums or authors relevant to X .

The last of the tasks we include in this review is one that imme-
diately precedes the submission of new work for review: that of
deciding a forum to send it to, and the optional task of nominat-
ing possible referees. Editors and Program Committee Chairs must
also find referees for a given paper p that is submitted to their fo-
rum. Küçüktunç et al. [15] suggest that these decisions are often
made based on the bibliography X of the submitted work – au-
thors evaluate potential forums looking for papers covering sub-
jects similar to those addressed in p, including forums containing
papers in X; and editors look for referees who have published in
that forum, or who have been cited by p, or who have expertise in
the subjects of the paper.



4. HEURISTIC SEARCH
We now extend that set of search tasks, by considering a range

of further options.

Sets and sequences. One key change that has taken place in gen-
eral searching areas is the gradual shift to retrieving an ordered list
of items, rather than an unordered set. The majority of the search
tasks described in Section 2 give rise to a set of answers, and all
that is required by a system discharging that task is for the set to be
enumerated. Moreover, although the number of papers published
is growing rapidly, the bibliography of any given paper will con-
tinue to contain, typically, somewhere between ten and a hundred
citations. That is, the sizes of sets predecessors(p) are unlikely to
grow asP grows, and set-based responses are appropriate for many
of the listed tasks.

On the other hand, as the citation network grows in size, some of
the task generate answer sets that similarly grow in size. For exam-
ple, successors(p) and successors∗(p) might both become large;
and a search for related papers via a Concept Search (TASK 3)
might also generate an unmanageable answer set.

Ranked retrieval methods are now the dominant form of access
to large document collections, including the world wide web. In a
ranking system, a scoring heuristic is used to estimate the match,
or degree of “aboutness”, between the query and each document in
the collection. The documents are then presented to the users in
decreasing score order. Rather than regard the answer as being a
set that must be identified in full, a ranking system keeps on offer-
ing further documents to the user until they stop asking for them.
Hence, such systems are often known as “top-k” mechanisms.

In a citation network, several of the tasks are amenable to a top-
k interpretation, with answers presented as the (length-k) prefix of
a sequence, rather than as an unordered set. The large answer set
generated as a result of evaluating a task query can be converted to
a sequence by ordering it using a heuristic score composed a num-
ber of contributing factors. This is akin to a web search service
ordering documents that are a Boolean match against the supplied
query. For example, consider the TASK 2 Followup Search, search-
ing for relevant documents in successors∗(p). In a citation network,
timeliness and recency provide numeric “distance based” compo-
nents that can be fed in to a weighted average; as do the degree of
overlap of subjects and their relative frequencies across the collec-
tion; as do the computed academic standing of the authors of the
paper being scored, and the academic standing of the forum it was
presented in.

Localized searching. Another factor that might usefully be ap-
plied to the search tasks is that of localization. As the sizes of both
successors∗() and predecessors∗() increase, it is not feasible to ex-
plore the entire citation network at query time. To alleviate this,
heuristics that only explore the most promising parts of the net-
work might still lead to interesting results, and execute substantially
faster. Dynamic query pruning techniques in information retrieval
based on structured inverted indexes allow accelerated query pro-
cessing without compromising the integrity of the document rank-
ing to some desired depth k; and it should be possible to apply sim-
ilar techniques to graph search in citation networks, even though
the nominal score assigned to an item is a composite of facets, as
proposed in the previous paragraph.

Personalization. The search tasks described in Section 3 cover
a wide variety of information needs which can be fulfilled by in-
formation stored in a citation network. However, often the search

agent itself is represented within the citation network as an author
or a subject, or even as a paper. Thus, personalized search can
provide additional benefits to the searcher, provided that appropri-
ate navigational and connectivity cues are made available in the
structure storing the network. The paragraphs that follow list a set
of features available from the citation network which might use-
fully add an element of personalization to search tasks, and hence
improve the effectiveness of a search system when sequences are
being returned rather than sets.

Coauthor Network. As an author in the citation network, all in-
teractions with the citation index occur in the context of the author’s
own representation in the network. Thus, information “close” to the
author or to subjects that the author is familiar with can be seen as
being more relevant when search results are being compiled. To
a certain extent, these emphases can also be regarded as exerting
influence through the various connections in the citation network.
Recent work by previous co-authors might be preferenced over pa-
pers by more remote connections or by unconnected authors. That
is, papers in close proximity to the author’s representation in the
network are more likely to be relevant to their ongoing research
interests.

On the other hand, if the author is keen to find a new point of
view, then diversity search is appropriate. That suggests that ex-
tending the concept of diversity to also refer to authorship connec-
tivity, and to forums associated with an author, will also be useful.
Authors may be very familiar with work published by people that
they work with and in the set of forums that they are associated
with, and specifically seek to have related work by non-connected
authors, or in unexpected forums, drawn to their attention. (Which
of us would not want to be informed if a paper we were an author
of was cited in Science or in Journal of the ACM?)

Publication history. The set papers(a) of papers published by the
author a provides a rich context that can enhance the search effec-
tiveness of the citation index. The expertise of a can be modeled
using the union of the papers in papers(a). Search results might
then include papers chosen according to desired (or the absence of
desired) similarity criteria relative to that set.

The last time a has published a paper p on a given subject s pro-
vides an indicator of the knowledge of the author at pubdate(p).
After a long intervening period, without fresh additions to the au-
thor’s body of work (or at least, not in the area of s), that knowledge
can be assumed to have become less relevant to current activities in
the area of s. In turn, that could be used to increase the score of pa-
pers p′ with s ∈ subjects(p′) and pubdate(p′) > pubdate(p) when
searching for s.

Pseudo-relevance feedback, based on the set of subjects writ-
ten about by an author over time, subjects(papers(a)), can also
be used to perform query expansion. This option need not be re-
stricted to the author in question, and it might be that relationships
between subjects can be mined by considering the citation network
as a whole, and looking for commonly co-occurring subject areas
across multiple authors.

Past citations. References to other papers in work created by the
author, papers(a), might help define a broader search scope, and
be of direct interest to the searcher. Papers frequently cited by the
author can either be given more weight (as they are more impor-
tant) or less weight (as the author knows about them already). New
papers cited by co-authors in other work can be also of value. Cita-
tions to papers(a) from other authors can also be used to label and
categorize papers(a). The forums that papers(a) is cited in can



indicate new research paths for the author. Linkages might also be
gleaned by co-occurrence information. A joint citation at a single
location in a paper, “[3,4]”, for example, suggests that references
“[3]” and “[4]” serve a similar role, a relationship that holds even
if neither of “[3]” and “[4]” cite each other.

5. CITATION NETWORK GRAPHS
Garner [12] was the first of many authors to suggest representing

citation networks as graphs. Here we discuss the various graph
representations that are possible, and consider their applicability to
the search tasks defined in the previous sections.

Graph notation. A hypergraph H = (V,E) consists of a set of
(hyper)edges E over a set of vertices V . An edge (vi, vj , . . . vp) ∈
E corresponds to an arbitrary subset of vertices in V of size at least
two. The arity of the set, p, is the size of the edge; in some cases,
all hyperedges are required to have the same size. Two vertices
vi, vj ∈ V are adjacent if there is at least one edge in E containing
both vi and vj . The degree of a vertex corresponds to the number
of edges containing it. In some graphs the edges have weights asso-
ciated with them, where the weight of an edge typically represents
the cost of using that edge in a path or solution.

Both vertices and edges can additionally have labels attached to
them, in which case the graph is referred to as being vertex-labeled
or edge-labeled respectively. One example of a labeling is for each
vertex or edge to be assigned a color from a small palette; solu-
tions to problems may then be constrained to include only certain
colored entities, or to avoid certain color combinations. Typical
coloring arrangements constrain adjacent vertices to have distinct
colors. If the vertices comprising an edge are ordered and the edge
is a sequence rather than a set, the graph is said to be directed. Ver-
tices in directed graphs have in-degrees and out-degrees that need
not be equal. A graph G = (V,E) is an instance of a hypergraph
in which the size of every edge is two.

A common representation. One standard way of modeling a ci-
tation network as a graph G = (V,E) is to take V = P , the
set of papers; and to form a directed edge (p, p′) for each p′ ∈
successors(p). We regard this graph as modeling edges via a re-
lation R, where (p, p′) ∈ R if p′ ∈ successors(p). Batagelj [4]
suggests adding two virtual vertices v−1 and vn to the graph (as-
suming that there are n papers, numbered from 0 to n − 1) to act
as common source and sink respectively, to ensure the graph con-
sists of one connected component. Edges are added from v−1 (the
global source, representing an arbitrarily early paper that any other
paper might have cited) to all vertices vi with in-degree zero; and
from each vj with out-degree zero, to vn (the global sink, repre-
senting a paper written after every other paper, that can potentially
cite any of them). The resulting graph is nearly acyclic, as the great
majority of the edges are from a paper with an earlier publication
time, to a paper with a later publication date.

The edges can also be modeled using the inverse relationship R−1

if required, so that they are directed from a node p to the elements
in predecessors(p). The list R−1(p, x) then represents the papers x
that comprise the bibliography of p. As noted earlier, under certain
conditions, cycles in citation networks can occur; for example, due
to the circulation of journal preprints. Strategies to eliminate these
cycles include deleting edges, and duplicating or shrinking cyclic
subgraphs [4].

Search operations. Taking a paper-centric view of a citation net-
work allows effective access to citation relationships between pa-

p0

p2

p1 p3

p4

a0

a1

a2

a3

Figure 1: Sample citation network representation with correspond-
ing co-authorship graph. In this example, paper p1 is cited by p3
and p4, and in turn cites p0 and p2; and authors a1 and a3 are joint
writers of paper p4.

pers. Thus, Follow-Up Search (TASK 2) can be efficiently resolved
via graph traversals by locating the node vp corresponding to pa-
per p, and, assuming that the edges of the graph represent the re-
lation R, listing the paper associated with the destination vertex of
each edge in the out-set of vp.

A graph that incorporates both R and R−1 can be used to par-
tially perform Concept Search (TASK 3) and Quick State-of-the-Art
Search (TASK 4) by traversing the neighborhood of the vertex v that
corresponds to p. However, finding papers related to search con-
cepts which are not closely connected to vp is more complex in this
structure. Carrying out Recommended Reading Search (TASK 10)
on paper-centric citation graphs has also been shown to be feasi-
ble, by performing random walks with restarts (RWR) to compute
PageRank metrics for adjacent papers from the set of starting ver-
tices [15]. Küçüktunç et al. [15] also use the set of ranked papers to
recommend conferences and reviewers (TASK 11) by accumulating
the scores of papers by their conferences and authors.

Given that each paper p has one or more authors, a parallel co-
authorship graph can be generated against the underlying citation
graph (see Figure 1). Each author is connected to the nodes for
all papers they have written or co-written, and pairs of authors are
connected by undirected edges if they have co-written any papers.
In this structure there are two types (colors) of node, and three types
of edge joining them, two of which are undirected.

Garner [12] proposes a different directed author graph represen-
tation where edges represent influences between authors. For ex-
ample, in Figure 1 paper p2 written by authors a0 and a1 is cited by
paper p1 written by author a3, thus a0 and a1 have influenced a3.
Zhou et al. [24] model author relationship based on their social
ties, which are deemed to arise when researchers co-author papers,
or attend the same conference. This is similar to the two-mode
networks described by Wasserman and Faust [23], in which actors
interact via events.

Modeling different author relationships enables accessing cita-
tion networks from a social or author perspective. If both author
and paper relationships are modeled as shown in Figure 1, perform-
ing Bibliographic Verification Search (TASK 1) by traversing all pa-
pers written by an author ai is efficient. Assuming a set of key pa-
pers on a subject has been identified in the graph, the SALSA [16]
metric finds putative experts by traversing the edges between au-
thor and paper [13]. Identifying Expert Networks (TASK 9) can be
modeled as finding Steiner Trees [6] in the coauthor graph, where
expertise is inferred from the subjects associated with the set of
papers published by each author [21].



Weights. To model the importance of different relationships, weights
can be assigned to edges in the citation network. Thus, weights can
help identify experts (TASK 8) or survey papers (TASK 4) by al-
lowing more efficient, greedy explorations of the network. Garner
[12] assigns weights to edges based on the number of times pa-
per pi cites paper pj . This helps distinguish between what might
be termed “core reliance”, an innate and critical relationship; and
a“passing reference”, a brief mention of a standard technique, for
example. Hummon and Dereian [14] propose three other edge-
weight metrics which measure the importance of an edge by com-
puting the number of times the edge is part of different network ex-
ploration algorithms. The “impact” of papers is commonly related
to the number of citations which can be modeled by its in-bound
links in the graph or by PageRank-like metrics associated with each
vertex in the graph [17]. Similarly inferences can be made between
the “impact” of a paper pi, its authors, and the venue ci it was pub-
lished in [15, 24]. Citations from papers published in more pres-
tigious venues might be modeled with higher edge weights [20],
as might citations by authors who are themselves more highly re-
spected because of their volume of work, or perceived seniority in
some other framework. Both of these enhancements allow easier
identification of important papers in TASK 4. Walker et al. [22]
further incorporate time into the importance of a citation as recent
papers are generally cited more often, and unlike the world wide
web, citations are fixed and cannot be changed retrospectively.

Aggregate data. Different attributes can be attached to vertices
or edges in citation networks. The website ArnetMiner extracts
data such as institution and research interests whenever it can iden-
tify a personal web page for an author in the network [21]. Simi-
larly each paper vertex in the graph is associated with its contents,
contents(p). The contents of each paper can then be used to in-
fer expertise of its authors [21]. ObjectRank [2] stores for each
unique word in a collection a list of vertices in decreasing “im-
portance” order, allowing efficient access to important papers and
experts for each subject. In TASK 3 through to TASK 9, where the
searcher supplies query terms describing different concepts, paper
and expertise importance ordering is key. This is similar to impact-
ordered inverted indexes where postings lists of terms are reordered
based on a fixed similarity score [1].

Alternative representations. As suggested by Garner [12], in-
stead of defining the citation relationship R(pi, pj) (that is, pi is
cited by pj) as a matter of simple “existence” or not, it might be
helpful to also incorporate the fundamental nature of citations –
that they are made in a textual context. A paper pj that cites pa-
per pi may contain multiple textual snippets that expose different
assessments of pi. As is now well understood in the context of
web search [18], the passage of the text containing the citation (the
anchor of the citation) can be used as a description of the content
of pi. An example of this representation is shown in Figure 2.

In the example, paper p8 cites p5 in two contexts, with text an-
chors “proposes Y” and “Y uses more space than W”. From the
labels in the small example, we can infer that p5 is where tech-
nique Y is introduced, that p6 is where technique X is introduced;
and that the authors of p8 regard X as being an inferior mechanism,
so much so, that they didn’t even cite the paper it was originally
proposed in, and instead have cited a follow-on paper p7. This
edge labeling – provided post-publication by experts in the field,
working with the benefit of hindsight – can give insights into the
subjects covered by pi which is valuable for all search tasks de-
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Y
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..compares X, Y and W

X
is

not practical

Figure 2: Multiple links between papers augmented with textual
anchors, to model the flow of information between papers. Note
that these edges are in the R−1 space, and are directed from a paper
to the works that it cites.
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Figure 3: Bipartite time-based author citation graph, modeling au-
thors citing papers at different points in time. In this graph each
edge represents an author who, in some unspecified paper written
at the time corresponding to the label on the edge, creates a citation
to a prior paper.

scribed above. The Microsoft academic research search engine2

provides these anchor texts as “citation contexts” within which a
paper is cited. As already noted, citations of papers close to each
other for example, “[4,7]” also indicate relationships that might not
be explicitly present in the citation network.

Instead of modeling relationship between papers, it is also fea-
sible to use graph structures to model the citation history of indi-
vidual authors. Consider the bipartite graph shown in Figure 3.
It shows that author a4 cites p10 in three different papers at time
stamps t0, t5 and t7. Time-based graph representations allow view-
ing a citation network at a given point in time: for example, to an-
swer a query about which papers have been cited by author a1 prior
to time t7, or when was the first time that author a5 cited p10. An
inverse representation can be constructed showing the time stamps
of the citations associated with papers by an author a. These repre-
sentations allow for interesting variations of different search tasks
described in Section 3. Follow-Up Search (TASK 2) is often per-
formed periodically. A searcher might periodically check on recent

2
http://academic.research.microsoft.com/
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Figure 4: Single citation network graph connecting different entity
types.

developments flowing from their work p; instead of all papers cit-
ing p, they might only be interested in papers cited since the last
time a Follow-Up Search was performed.

Adding labels. In general networks, vertices of different types,
or “colors” can be employed. Figure 4 gives a small example,
where shape is used to denote the label of each vertex. Papers
are shaded round nodes; forums are triangular, and authors are
square. In the example, authors a6 and Author7 jointly wrote pa-
per p14, and hence are associated with f2, that place where that
paper was published. This type of representation is similar to the
entity-relationship models, commonly used to describe database
layouts or semantic web models, where relationships of subject,
predicate, object triples are modeled [7, 8]. Information attached
to the different node types, such as the contents of a paper, can
then propagate through the graph in different ways or using differ-
ent heuristics. As one example, PopRank [19] uses edge weights
to guide how information is passed form node to node. Within this
representation, random walks with restarts (RWR) can find experts,
conferences or recommended reading. Traversing a graph contain-
ing multiple vertex types allows for more complex results and ex-
ploration strategies. For example, traversal starting at a paper ver-
tex can lead to forums, authors and other papers to be explored,
and returned to the searcher. This is similar to common practices
of commercial search engines, which return different types of re-
sults (images, news pages, web pages, extracted summaries) to the
user for any given query.

Hypergraphs. General hypergraphs [5] can also be used to model
citation networks. Taking each vertex to represent an author, each
hyperedge represents a single paper that the authors in the hyper-
edge have co-authored (Figure 5). Similarly, a hypergraph can rep-
resent papers and conferences, where each paper is a distinct vertex,
and is adjacent via an edge to all other papers in the same confer-
ence. Both of these setups has a dual. For example, if each vertex
represents a paper, then each can be used to connect the papers
authored by a single person.

Directed hypergraphs can be used to model citation relationships
between papers, as shown in Figure 6. A hyperedge connects a
source vertex representing some paper p with all papers the p cites.
Again R−1 can be modeled by linking paper p with a single hyper-
edge to all papers p′ ∈ successors(p) which it cites. More complex
many-to-many relationships can also be modeled using directed hy-
pergraphs. For example, a paper can be represented as a set of co-
authors. Paper p citing paper p′ can thus be modeled as a hyperedge
between the author sets of p′ and p.

Many other such relationships are also possible.

a9

a10

a11

a12

a13
a14

a15

a16

p16

p17

p18

p19

p20

Figure 5: Undirected hypergraph representation of a co-authorship
network modeled with authors at the vertices, and papers used to
form hyperedges. In this example, paper p19 is authored by authors
a12 and a13.

p21

p23

p22

p24

p25

p26

Figure 6: Directed hypergraph representation of a citation network
where citation relationships are modeled via directed hyperedges.
In this example the hyperedges represent the inverse relation R−1,
and the edge out of a vertex leads to the bibliography of that paper.

6. DISCUSSION AND FUTURE WORK
We have reviewed a range of previous work in regard to the rep-

resentation of citation networks, including search task types, and
ways of representing them using various types of graphs, hyper-
graphs, and weighted or labeled graphs. We have also discussed
other extended search tasks that build on the notions of ranking and
sequencing, that may be more appropriate for use as citation net-
works continue to grow, and as the scope implied by any search
operation must of necessity become more precise.

The next step is experimentation. We need both (i) data that
is realistic of the scientific citation network in terms of both style
and scale; and (ii) structures and techniques that can efficiently im-
plement the proposed operations. We are at present exploring our
institutional relationship with Springer, with a view to being able to
access and mine their extensive data via our library license. We are
also exploring the possibility of accessing useful volumes of data
from Microsoft Academic Search service. Despite no longer be-
ing an active Microsoft project, the interface continues to be avail-
able, and provides access to a significant data collection. Finally,
while the DBLP collection (www.dblp.org) does not include ci-
tation information, it provides more than 2.5 million bibliographic
records, and may be a useful adjunct to other data, once secured.
We will also document the mechanisms and search functionality



offered by current citation networks, including as the ACM Dig-
ital Library (www.acm.org/dl); Google Scholar (scholar.
google.com); and ArnetMiner (www.arnetminer.org).

Once we have data, we will begin our major project: exploring
the tradeoffs that exist between search effectiveness (that is, the
quality of the answers that are identified) and search efficiency. At
least one full-scale implementation will be constructed and instru-
mented. We will then be in a position to carry out detailed evalua-
tions on the efficiency and usefulness of advanced search options,
noting that the latter might also necessitate the carrying out of a
user study.
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