
User-Oriented Metrics for Search Engine Deterministic Sort Orders

Alistair Moffat (ORCiD: 0000-0002-6638-0232)

School of Computing and Information Systems,
The University of Melbourne, Australia

Abstract

A recent paper proposes the “buying power” (bp) metric for assessing the quality of the

product rankings generated by e-commerce sites such as Amazon and eBay. Focusing on the

“ordered by price” type of product listing that is often viewed after a keyword search, bp is

offered as a way of differentiating between helpful rankings (high bp scores) and unhelpful

rankings (low bp scores), with those bp scores intended to reflect both the quality of the

product match and also the relative pricing of the items that are listed. In this paper we

adopt a user-centric viewpoint from which to evaluate the merits of bp as a scoring mechanism

for product rankings, and provide an example that shows bp acting in opposition to likely

user reactions. We then describe an alternative product ranking effectiveness metric, price

biased gain (PBG), arguing that since it embeds a more plausible user model, it is more likely

to reflect the opinions of the user viewing any given product ranking. We give a number of

scenarios and motivating examples in support of our alternative proposal, and also discuss its

limitations.
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1. Introduction and Background

Search engine result pages (SERPs) are usually abstracted as ordered sequences of indi-

vidual items, the i th of which is either relevant or not relevant to the user’s information need

(binary relevance, ri ∈ {0, 1}); or has a relevance gain value over a continuous range (graded

relevance, typically 0 ≤ ri ≤ 1). Given that context, a wide range of effectiveness metrics

have been developed, taking as input a gain vector r̂ = [ri | 1 ≤ i ≤ k] and computing from

it a numeric metric score, where k is the length of the ranking provided by the system, or is,

at least, the length of the prefix of the ranking that is provided to the evaluation process.

For example, the well-known precision at depth k metric is computed as Prec@k(r̂) =

(
∑k

i=1 ri)/k, and the equally well-known reciprocal rank is defined for binary relevance as

RR@k(r̂) = 1/m(1, k), where m(1, k) is the position in the ranking of the first relevant item,
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or infinity if there are no relevant items amongst the first k in the SERP.1 Precision has

the advantage of even-handedly weighing up the ranking as a whole, all the way through to

the k th element; RR has the complementary advantage of tightly focusing on the effort the

user must make to find a single relevant item. Between these two extremes a range of other

top-weighted effectiveness metrics have been proposed, including average precision, AP [4];

normalized discounted cumulative gain, NDCG [10]; rank-biased precision, RBP [14]; expected

reciprocal rank , ERR [7]; time-biased gain, TBG [20]; and metrics based around the C/W/L/A

framework [16]. Moffat [13] discusses the overall context of evaluation in the context of search

engine rankings, and the interpretation placed on effectiveness measurement.

Given that search engines are measured and compared via a combination of one or more

of these metrics, when presented with a keyword query the search software faces the challenge

of somehow estimating a similarity score sd for each item d within its purview. It hopes (to

the extent possible) to estimate an sd that is correlated with the unknown value rd, that is,

the goal is for sd ≈ f(rd), where f() is a monotonic relationship. The search system then

creates a SERP by reverse-sorting the available elements according to the sd estimates, and

presenting a k-element prefix. Once that is done, the evaluation process measures the SERP

using ri values developed post-hoc, to obtain a score that is an assessment of the quality – or

usefulness – of the search system’s estimation algorithm.

In the case of product search, each possible item d also has a purchase price cd associated

with it. Similarly, there may be an “average review rating” attribute to be considered in the

case of hotel search; a “distance from current location” attribute in the case of restaurant

search; a “total journey duration” in the case of air-travel search; and so on. Moreover,

product search services often allow users to “sort by attribute” as part of the search interface.

When that option is requested, the elements in SERP are expected to comply, even though

the ordering is algorithmically more complex [17, 21]. Taking “sort by increasing price” as a

canonical “sort by” requirement, that means that in a k-item product SERP the computed

similarity score sd is no longer the only value used by the system when preparing the SERP,

because the k items placed into the SERP must also comply with ci ≤ ci+1 for 1 ≤ i < k.

That difference raises several key research questions:

RQ1: How should “sort by” product rankings be evaluated?

RQ2: Do metrics such as RR@k, average precision, or rank-biased precision, still

give good guidance in regard to user satisfaction?

RQ3: Can tailored measurement approaches that incorporate a user browsing

model provide more informative measurement of “sorted by” results listings?

1The SERP argument “(r̂)” to effectiveness measures will be omitted in the development below when there

is no risk of ambiguity.
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In a recent paper Trotman and Kitchen [23] seek to answer the first two of these three

questions, proposing a metric that they name “buying power at depth k”, bp@k. Trotman and

Kitchen also describe a multi-item variant of bp@k which we denote here as bp4T(T )@k, with

T representing the number of products that are to be purchased; that is, with bp4T(1)@k ≡
bp@k as one particular possibility, corresponding to the situation when a single matching item

is being sought for purchase.

In this paper we first critique Trotman and Kitchen’s proposal, identifying anomalies in

the behavior of bp@k and bp4T@k that suggest – at least in some cases – that they may

not correlate well with user satisfaction. We then address RQ3, describing an alternative

approach to product ranking effectiveness measurement that we argue avoids the issues that

affect bp and bp4T, and corresponds to a more plausible user behavior model; and hence is

likely to lead to product search evaluations that more accurately reflect the search experience

of users.

2. Buying Power

This section first defines the bp@k product ranking effectiveness metric of Trotman and

Kitchen [23]; and gives some examples of the computations that arise when using it. An

alternative metric for scoring product search SERPs is then presented in Section 3.

2.1. An Example

As part of their presentation, Trotman and Kitchen provide the example shown in Table 1,

assuming that the rk relevance values in the second column are binary. Trotman and Kitchen

suggest that users be regarded as “consuming” the elements in the ranking until they find

one that is relevant, at which point they stop, in the same way that RR@k models the user

as stopping at the first relevant answer they encounter. In the case of RR, the “effort” spent

by the user to achieve that one relevant outcome is counted via the number of documents (or

snippets) inspected before they exit the ranking [3]. Trotman and Kitchen propose that users

be thought of as actually purchasing every item in the ranking down to, and including, the first

one that is relevant. In Table 1, for example, Trotman and Kitchen argue that inspecting (and

hence purchasing) the first three elements in the ranking “costs” the user $1 + $2 + $5 = $8.

Moreover, given the external knowledge that the item exists and is available (somewhere) for

$2.50, the user would have ideally only needed to spend $2.50. The ratio between these two,

$2.50/$8, gives the listed bp@k score of 0.3125 shown in Table 1 for k ≥ 3. Prior to depth

k = 3 the user has spent money on unwanted goods, and not yet not acquired the product

they were searching for; and hence bp@1 = bp@2 = 0.
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Rank k rk ck
∑k

i=1 ci m(1, k) bp@k

1 0 $1 $1 ∞ 0

2 0 $2 $3 ∞ 0

3 1 $5 $8 3 0.3125

4 0 $9 $17 3 0.3125

5 1 $11 $28 3 0.3125

6 0 $12 $40 3 0.3125

Table 1: Example of the bp@k “buying power” metric, adapted from Trotman and Kitchen

[23, Table 2]. A set of six products are presented in a SERP in “sort by price” order, with

two of the products (shown without strike-through at ranks 3 and 5) regarded by the user

as matching their purchase criteria, that is, as being relevant. In this example it is assumed

that cmin = $2.50 is the best available price for the item being sought, but that the vendor

offering that price did not get included in the SERP.

2.2. Definition

More precisely, suppose that a k-element SERP being evaluated is now abstracted as an

ordered sequence of k “(relevance, cost)” pairs, r̂c = [(ri, ci) | 1 ≤ i ≤ k], and that

cmin = min{cd | rd = 1} (1)

is the smallest cost of any relevant item across the whole collection (that is, including items

that do not appear in the SERP being measured). Note that we do not include the product

description, or a photograph, or other meta-data such as color in this abstraction, and that for

SERP evaluation purposes we are interested solely in whether or not the user will regard the

corresponding product as being what they searched for (represented by the binary indicator

ri), and its cost (represented by the strictly positive value ci). Then

bp@k =

 cmin/
(∑m(1, k)

i=1 ci
)

if 1 ≤ m(1, k) ≤ k
0 if m(1, k) =∞ ,

(2)

where

m(1, k) = min({i | 1 ≤ i ≤ k ∧ ri = 1} ∪ {∞}) (3)

is, as was anticipated in connection with RR in Section 1, the rank position of the first relevant

document amongst the first k items in the SERP, or infinity if there are no relevant documents

in the first k. The two cases in Equation 2 represent, respectively, the situation in which the

user exits the ranking having encountered a relevant item (the case m(1, k) ≤ k), and the

situation where they reach the end of the ranking at depth k without finding a relevant item,

in which case the sum
∑m(1, k)

i=1 ci is taken to be ∞, resulting in bp@k = 0. The second to last
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k rk ck
∑k

i=1 ci m(1, k) bp@k

1 0 $1 $1 ∞ 0

2 0 $1 $2 ∞ 0

3 0 $1 $3 ∞ 0

4 0 $1 $4 ∞ 0

5 1 $110 $114 5 0.8772

k rk ck
∑k

i=1 ci m(1, k) bp@k

1 0 $100 $100 ∞ 0

2 1 $105 $205 2 0.4878

3 0 $110 $315 2 0.4878

4 0 $110 $425 2 0.4878

5 1 $110 $535 2 0.4878

(a) Product search SERP from System A (b) Product search SERP from System B

Table 2: Further examples of the buying power metric bp@k being used to score product

search rankings. Two SERPs of length k = 5 are shown, both in “sort by price” order. In this

example it is assumed that cmin = $100 is the best available price for the item being sought,

and that Systems A (left) and B (right) are being compared via the bp@5 scores in the last

row.

column in Table 1 shows m(1, k) for each evaluation depth 1 ≤ k ≤ 6; the last column then

shows the corresponding bp@k values for the example SERP.

Trotman and Kitchen also mention a third stopping criteria, the case in which the user

chooses to exit the ranking without finding a relevant item and also without reaching the end

of k items presented in the SERP, but do not give an explanation of conditions (that is, a user

model) under which that might happen. That third possibility does not affect the concerns

presented in this section, and will be returned to in the next section.

2.3. A Surprising Comparison

The reader is now invited to consider the two rankings shown in Table 2, presented in the

same format as was used in Table 1; and imagine that they come from two different search

services that are being compared. Which is the better ranking? According to the bp@5 scores

shown in the last row of the tables, System A on the left achieves a 0.8772 outcome, which

makes it rather better than System B on the right, which only attains a score of 0.4878. But

is that “System A > System B” outcome plausible from a user-experience point of view?

In our opinion the relationship illustrated in Table 2 is rather implausible; and that in fact

“System B > System A” is the conclusion that would be reached by almost all search system

users considering those two SERPs to depth 5. In particular, the System A user must both

look further through the ranking than the System B user before they find a relevant item, and

if they do buy that first relevant item, the System A user is obliged to pay more for it. That

is, System A is worse than System B in terms of both price and search effort , a “lose-lose”

situation; and thus the suggestion that System A is better than System B seems untenable.

Also of concern is that if the costs ck are not included in the evaluation, and the two SERPs

are compared purely based on the relevance column on each side of the table (headed “rk”),
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any metric that preferred System A would be regarded as being axiomatically indefensible,

see, for example, Busin and Mizzaro [5] and Moffat [12, 13].

The mismatch between the bp scores and anticipated user reaction is caused by the sum-

mation in Equation 2, and the assumption that as the user steps past non-relevant items they

will purchase each of them, even though they are immediately identified as being not wanted.

Trotman and Kitchen [23] defend this structure, writing2 (in their Section 4.1):

imagine a user interacting with a digital assistant and saying “send me your cheap-

est box of cornflakes” and being sent . . . tuna. The postage price of returning the

tuna is higher than the purchase price of the tuna so our customer does not return

it, they simply return to their digital assistant and say “that isn’t cornflakes, send

me your cheapest box of cornflakes”. Each time this happens they accumulate a

loss equal to the cost of the item that was shipped.

We suggest that the “too cheap to bother returning it” rationale might conceivably apply in

regard to one tin of tuna, and might conceivably apply once, but is implausible as a general

expectation. For example, in the scenario shown in Table 2(b) it seems unlikely that the

$100 first item could be erroneously ordered, and then simply written off as being bad luck.

Moreover, the “too cheap to bother returning it” assumption would also be unlikely to be

tolerated indefinitely – would a user really continue to trust their digital assistant through

the sequence of steps shown in Table 2(a), even if it were “merely” four tins of tuna that

had arrived in four consecutive deliveries? (Or might the user, regardless of how cheap or

expensive those first four purchases were, be tempted to make fifth request “Hey, digital

assistant, send me a better digital assistant, and then switch yourself off”?)

In further explanation of their proposal, Trotman and Kitchen also write (their Section 9):

If the cost is distance . . . then this is equivalent to saying that the user must travel

to [the restaurant] in order to discover that it is closed . . .

But this argument also seems to be unrealistic. When looking at a “sorted by distance”

list of restaurants, most users are likely to spend a minute or two considering each of the

suggestions in the SERP, to (at a minimum) check that they are open. That is, broadly

speaking, they will spend constant time evaluating each item in the ranking as they engage in

the user-oriented process of making relevance decisions. They do not just walk to the closest

suggestion, and if it is closed, sigh philosophically, walk back to their starting point, and

then start walking to the option that was originally the second-closest location in the original

SERP. At a minimum, they will search again using their new current location, as is also noted

2Noting that this example was motivated by a shopping SERP observed by Trotman and Kitchen [23] from

a supermarket web site, which did indeed place flaked tuna ahead of cornflakes.
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by Trotman and Kitchen, to minimize the extent of any backtracking that might be required.

The additional suggestion made here is that, if they did indeed make the mistake of walking

to a closed restaurant, they would learn from that experience, and would reformulate their

query too, adding a “still open” requirement.

Finally in a “sort by travel duration” flight booking scenario, suppose that a search for

flights from (say) Singapore to London offered a flight from Singapore to Melbourne at the

top of the SERP, because of its shorter flight time. There is no question that the presence of

a non-relevant item in that first position should be penalized. But it seems inconceivable to

suggest that the traveler should actually “experience” the non-relevant flight from Singapore

to Melbourne. Rather, they spend a constant (and, compared to the flight time, mercifully

brief) time evaluating that option, form their relevance assessment (perhaps at the same time

thinking, “well, that was weird, this service is a bit flaky”), and then move on to the next

item in the SERP.

2.4. Finding T Relevant Items

Trotman and Kitchen [23] go on to consider the issue of scoring e-commerce SERPs in

which the user wishes to find more than a single relevant product. They extend bp@k to

suppose that T items are to be purchased,3 defining:

bp4T@k =

 (T · cmin,T ) /
(∑m(T, k)

i=1 ci
)

if 1 ≤ m(T, k) ≤ k
0 if m(T, k) =∞ ,

(4)

where (again, assuming that all relevance values are binary, ri ∈ {0, 1})

m(T, k) = min({i | 1 ≤ i ≤ k ∧

 i∑
j=1

ri

 ≥ T} ∪ {∞}) (5)

is the rank within the k products proposed in the SERP of the T th relevant listing, or ∞ if

there are fewer than T acceptable products within the first k, and where cmin,T is the average

price of the cheapest T instances of a relevant product in the collection, and might be greater

than cmin. Given this formulation, it is clear that bp@k ≡ bp4T@k in the case T = 1.

Note that bp4T@k is zero if there are fewer than T acceptable products in the k that are

shown in the SERP, and there is no “partial credit” awarded. Trotman and Kitchen write

(their Section 4.2):

If there are fewer than T [replacing K by T throughout] relevant items in the

results list then the search engine cannot fulfil the user’s needs . . . consequently,

[we] give a score of 0 (even if the search engine can fulfil a request for T −1 items)

3Trotman and Kitchen use the symbol K for that same quantity, but we prefer to use T to avoid any risk

of confusion against k, the evaluation depth; and to align with other work in which the user is anticipated as

wanting T relevant documents [15].
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This decision means that in Table 2 both System A and System B would be assigned bp4T@5

scores of zero if the user had intended to purchase T = 3 products at the time they issued

their query, even though it might be reasonably argued that System B has come closer to

meeting the request than has System A.

2.5. Availability Counts

Trotman and Kitchen [23] further observe that product search interfaces also often include

a “quantity available” indicator. In this case, we can abstract a SERP S as an ordered k-

sequence of triples, namely ˆrcn = [(ri, ci, ni) | 1 ≤ i ≤ k], with the third component ni a

bound of the number of instances of the product that may be purchased at this time.

The presence of ni complicates the bp4T@k mechanism. If (say) T = 10 boxes of cornflakes

are being sought, the digital assistant risks ordering 10 tins of tuna, increasing the total

amount wasted by the user. To address this dilemma, Trotman and Kitchen write (their

Section 4.2):

If an item is not relevant then it is not relevant for that group of items . . . That

is, the penalty is only given once . . .

But this calculation is inconsistent with Trotman and Kitchen’s “total dollars spent” moti-

vation that was summarized in Section 2.3. If the digital assistant selects the product that is

listed first in the SERP and orders T tins of tuna, are we now to assume that T − 1 of them

are returned if a mis-match is detected, but that one tin is retained? Or, if the suggestion is

that the digital assistant only ordered one instance rather than T , are we to assume that it

somehow divined that the tuna was not the desired product? If so, why did it even order one

tin, when it could have bypassed that product completely and gone on to the next element in

the SERP?

3. A C/W/L/A Model for Price-Ordered Product Retrieval

Having expressed concerns in regard to the proposal of Trotman and Kitchen, we now

present a grounded metric for ordered retrieval. We begin by documenting the “all other

things being equal” behaviors that a sorted-by metric might be argued to require; then take

direction and guidance from the C/W/L/A framework of Moffat et al. [16], describing a model

of user behavior as price-ordered SERPs are consumed; and then translate that into an effec-

tiveness metric and provide an operational description. Finally, we provide a range of numeric

examples and SERP pair comparisons, and argue for the plausibility of the relationships that

they imply.

We note that Smucker and Clarke [20], Azzopardi [1], Zhang et al. [25], Azzopardi et al.

[2], and Su et al. [22] have also considered ways in which search behaviors might be modeled,

with Moffat and Zobel [14] providing an early description of a metric based upon anticipated

user behavior.
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3.1. Underlying Principles

Following the lead of Moffat et al. [15], who describe a set of monotonic desiderata for

normal effectiveness metrics using “all other things being equal” as an equalizing device to

allow the effect of individual factors to be isolated, we propose the following principles for

“sorted-by” evaluation metrics, supposing that the user is seeking T “units” of relevance at

the lowest overall “price”:

D1 All other things being equal, the higher the initial value of T , the greater the depth the

user is likely to reach in the SERP before exiting.

D2 All other things being equal, the greater the price of the item at rank d is relative to

the known minimum possible purchase price, the more likely it is that the user will exit

the SERP without considering the merits of that d th or any subsequent item.

D3 All other things being equal, the closer the user is to having achieved their target of T

units of purchase after considering the item at depth d, the more likely it is that the

user will exit the SERP at that point, without considering the item at depth d+ 1.

D4 All other things being equal, the lower the per item cost achieved is relative to the

known minimum possible purchase price, the more satisfied the user is likely to be when

they exit the SERP.

D5 All other things being equal, the closer the number of purchased items is to T , the more

satisfied the user is likely to be when they exit the SERP.

The first three of these desiderata contribute to the manner in which the user proceeds

through the SERP; and then the fourth and fifth contribute to their overall sense of satisfaction

with the SERP at the time they end their perusal of it.

We trust that the reader will agree that these are all reasonable statements, and allow

them to be used as the basis of a model for the manner in which users consume sorted-by

SERPs. The next subsection summarizes a mechanism that allows such user models to then

be interpreted as effectiveness metrics.

3.2. The C/W/L/A Framework and User Behavior

In the C/W/L/A framework [6, 16] user SERP browsing behavior is modeled via the

function C(i), the conditional continuation probability that the user will proceed from the

item at rank i to the item at rank i+ 1 in their sequential top-down scan through the SERP.

In regular web search the conditional continuation probability might be influenced by any

or all of: the value of i; the relevance values observed through until depth i (that is, rj

for 1 ≤ j ≤ i); and by T , the relevance target sought. Knowledge of C(i) then allows the
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“last” function L(i) to be computed, the fraction of the user population that exits the SERP

immediately after having examined the item at rank i:

L(i) = (1− C(i)) · L(i− 1) ,

with L(0) ≡ 1 as a base case for the recurrence. For example, if C(i) = 1 for some rank i, then

L(i) = 0, because there are no users arriving at rank i that don’t also continue on to rank i+1.

A wide range of C() functions have been considered in connection with retrieval effectiveness

metrics [16]. One simple option is the constant function C(i) = φ for some constant φ, which

is the defining equation for the rank-biased precision effectiveness metric, RBP [14].

A second function is then added: A(i) represents the “aggregation” of utility perceived

by a user that exits at rank i. There have again been a range of A() functions proposed as

being ways to capture the impression a user has assembled in regard to a SERP through until

depth i, with possible influencing factors also including all of i; the relevance values observed

through until depth i; and T . For example, one simple aggregation function is provided by

A(i) =
∑i

j=1 rj , the sum of the relevance encountered to that depth [16]. With L(i) the

fraction of the user population that exit the ranking at depth i, and A(i) their perceived net

benefit, the metric value is then the expectation on benefit:

Metric =
∞∑
i=1

L(i) ·A(i) . (6)

To define a metric we thus need to propose a combination of C() and A(), and then argue

for them as being “appropriate” in some way. As an example, consider Trotman and Kitchen’s

“searching for one item” metric, bp@k. For binary relevance, it is defined via the conditional

continuation probability

C(i) =

{
1− ri if i < k

0 if i ≥ k
(7)

which then means that L(i) = 0 unless one of two cases applies: when either m(1, i) = i; or

when i = k and m(1, k) = ∞. That continuation function is coupled with an aggregation

function that computes A(i) = cmin/(
∑m(1,i)

j=1 cj).

3.3. C/W/L/A For Shoppers

We suggest changes to both C() and to A() in order to obtain a product search effectiveness

metric that we argue better resonates with the anticipated actions of shoppers.

First, consider the A() function that indicates the “value” that is acquired by a user who

exits the SERP after encountering the products shown at ranks 1 to i inclusive. We suggest

that A(i) needs to incorporate two separate components: one that indicates how satisfied the

user is in regard to the price that they were obliged to pay in order to secure the items that

they have purchased (relationship D4 in Section 3.1); and a second that reflects how much
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progress they have made in their quest to purchase T items that match their query and intent

relationship (D5 in Section 3.1). Like Trotman and Kitchen, we handle the second of these

two factors by summing the costs of the purchased items and computing a ratio between “best

possible” and “actual”. The second factor affecting A(i) tracks how close each user is to their

search goal. For example, if a user is engaged in a T = 5 search and at depth i would have

purchased 4 items, this second factor is 4/5. In the first rule in Equation 8, we argue that

the user’s net state in regard to the outcome of their search is unchanged in the event that

they encounter a non-relevant item. The first and second multiplicands in the second ri = 1

rule in Equation 8 then correspond respectively to the two components described earlier in

this paragraph:

A(i) =

{
A(i− 1) if ri = 0

(pi · cmin/si) · (pi/T ) if ri = 1 ,
(8)

in which A(0) = 0 is defined as a base case, and where pi is the number of purchases made

up to and including row i of the SERP, calculated via p0 = 0 and then (recall that ni is the

availability of the item listed at position i in the SERP) the recurrence:

pi =

{
pi−1 if ri = 0

pi−1 + min(ni, T − pi−1) if ri = 1 .
(9)

Similarly, the quantity si is the total payment through to depth i that resulted in the purchase

of those pi chosen items:

si =
i∑

j=1

cj · (pj − pj−1) .

For example, A(i) = 0.5 might arise via the purchase of T items at a total price of 2 · cmin,

or via the purchase of T/2 items at a best-possible price of cmin dollars each, or via some

combination in between those two.

Note that Equation 8 also includes a small variation in the way that multi-item searches are

normalized. Equation 4 (taken from Trotman and Kitchen [23]) makes use of a quantity cmin,T ,

the average price across the T cheapest instances of a matching product in the collection. In

line with the user-oriented perspective proposed here, we prefer to use the single value cmin,

assuming that the user will expect that as many products as are required are available in

the collection at that minimum price, regardless of what the system is able to deliver. For

example, suppose that a user wanted to purchase T = 3 items, but had to go to two different

vendors and ended up paying $100, $100, and $120 for them. That might indeed be the lowest

combination of prices possible (with cmin,T = $106.67 in this instance), but the user might

nevertheless feel a sense of chagrin as a result of their shopping experience, and not be “1.0

satisfied”. This is why Equation 8 takes (as is the intention throughout this proposal) a user-

oriented point of view, and a score of 1.0 is only generated if T items all costing exactly cmin

are available at the head of the SERP. This slight change to the normalization regime also
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allows cmin to be set externally in some way, for example, if the user had seen an advertised

lower price from a competing shopping service.

Next, consider the user behavior to be modeled using the C() function. We want users to

stop if they attain T units of relevance. We also expect that they will exit the SERP if they

encounter “sticker shock”, where the price of the items on offer has gradually increased to the

point where they regard them as being overpriced. Finally, we also want users to eventually

stop even if they don’t encounter any matching products, and even if all of the listed products

have the same price. That means that we cannot allow C(i) = 1 indefinitely for non-matching

products, even if they all have the same price. Each of these three influences (corresponding in

aggregate to relationships D1, D2, and D3 in Section 3.1) is incorporated into the proposed

C(i) function shown in Equation 10, below. First, if the product at depth i was a match to

the query and as a consequence the user has now acquired their target of T items purchased,

they do not continue. That is achieved by explicitly setting C(i) = 0, and is captured as the

first case in Equation 10.

Second, to measure the degree of sticker shock at depth i, and quantify its effect on C(i),

once ci ≥ cmin we compute the ratio ci/ci+1, comparing the price of the current item and the

price of the next one as a way of gauging whether or not the user will continue. This factor

will be 1.0 if the two items have the same price, which seems reasonable – once any particular

user has stepped to any given price level, they can be assumed to be willing to continue

considering products at that price level. That is, after they have evaluated the item at rank

i in the SERP, we suggest that each user implicitly (or perhaps even explicitly) employs the

price step to the next product in the SERP, at rank i + 1, as a factor in their decision as to

whether the i th item is the last one they will consider. With this formulation, the telescoping

C(i) products mean that once ci is double cmin at most 50% of the user population will still

be consuming the SERP. The second case in Equation 10 covers this situation when ri = 1,

when one or more purchases have been made at depth i, and when more purchases are still

hoped for.

Finally, to prevent endless scanning if there is a long sequence of non-matching products

all of the same price, when ri = 0 we also include the “fixed continuation probability” factor

that was introduced as part of the rank-biased precision (RBP) effectiveness metric [14]. When

the user has just viewed a non-matching product at depth i, they are modeled as computing

the same price ratio between adjacent rows, but then subconsciously discounting it slightly,

by some factor φ. The value chosen for φ then controls the background “dissatisfaction”

probability of the user drifting away from the SERP. For example, if φ = 0.95, users will in

expectation look at 20 same-price rows in the SERP – each perhaps listing multiple identical

non-matching items for sale – before they abandon their scanning. Given this context, the

third rule in Equation 10 covers the case when the minimum purchase prices has not yet been

reached; and the fourth rule then also incorporates the sticker shock of prices that increase
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beyond that value. In the examples reported shortly we use φ = 0.95 as a persistence value

for illustrative purposes. Any particular product search evaluation might choose to adopt

different values of φ, based on specific knowledge of the behavior of their user population; and

can also use other relationships between the various visible parameters.

Assembling these ideas we arrive at this four-way definition:

C(i) =


0 if ri = 1 and pi ≥ T .
ci/ci+1 if ri = 1 and pi < T

φ if ri = 0 and ci ≤ cmin

φ · ci/ci+1 if ri = 0 and ci > cmin

(10)

The SERP length k does not appear in Equation 10, and as a consequence the user model

is able to handle the “infinite scroll” interfaces that are common in e-commerce sites. Nor is

it necessary for T items to be acquired before stopping is permissible, and instead we allow

users to drift away from (or be scared away from, by high prices!) the SERP before they have

completed their intended set of purchases. On the other hand, Equation 10 by design ensures

that users never purchase more than T products in total – they leave the SERP once they

have their desired T items in their shopping basket.

If the SERP is fixed-length and contains k items, there are several options that can be

considered for C(k). One alternative is to say “well, that’s it, there aren’t any more products

on offer”, and define C(k) = 0. In this case the metric value and expected number of items

purchased are calculated using those k available product rows. A second option is to calculate

C(k) via Equation 10, and then compute a residual [14], a score range based on the best and

worst that might occur at ranks k+1 and beyond; that is, considering all possibilities for all of

(rk+1, ck+1, nk+1), then the same at depths k+2, k+3, and so on. An example showing this is

provided shortly. The third alternative is to consider session-level metrics, with a “next page”

conditional continuation probability computed via a page-level continuation function Cp()

that also accounts for the reluctance most users show in regard to crossing page boundaries

[11, 26, 24].

3.4. User Model and Score Computation

In combination, Equations 8 to 10 then defined an evaluation measure for “ordered by”

product SERPs that we refer to as PBG, standing for price biased gain, in which user progress

through the SERP is affected by both price and quality, and in which their satisfaction upon

exit is affected by the extent to which they have realized their search goal, and the expenditure

associated with the items that they have purchased. Price biased gain is thus an expectation

over a population of stochastic users, in the same was as RBP is an expectation over a cohort

of users who have different behaviors as individuals, but predictable aggregate behavior when

considered as a population.
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i = 0,
p0 = 0 i = i + 1 i th item 

suitable?
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use A(.) and L(.) 
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Figure 1: Flow diagram of user model when viewing “sort by price” e-commerce SERPs.

Algorithm 1 provides further details of how this user model corresponds to a calculable metric.

Figure 1 shows in schematic form the user model that is assumed in this proposal and

for which Equations 8 and 10 provide the details. The same structure is also captured in the

pseudocode shown in Algorithm 1. A population of users commences browsing the SERP at

item i = 1, and examines products in the order they are presented. If the product matches

the query that was issued, items are acquired from that product row, with pi and si being

larger than pi−1 and si−1. Or, if that product row is not a match, pi and si are equal to

pi−1 and si−1. Either way, the values of A(i) and C(i) are next calculated, with the latter

determining L(i), and then a new fraction (recorded in variable frac in Algorithm 1) of the

user population that are regarded as still being active within the SERP is computed.

The metric value is then calculated from L(i) and A(i) at step 13, as determined by

Equation 6. If frac reaches zero by the end of the SERP at depth k, the metric computation

ends at a single value. This occurs when T items have been accumulated. The case when

frac > 0 is discussed in Section 3.6; step 17 in Algorithm 1, and the variable range, will also

discussed at that time.

3.5. Detailed Example

With Equations 8 to 10 defining a C/W/L/A metric PBG that has been argued for by

considering user product SERP browsing behavior and user “value assessment”, it remains

now to consider what occurs for typical product rankings. Table 3 provides a first example,

in which a set of T = 6 items are desired. They can be purchased at ranks two (3 items),

four (another 2 items), and five (1 more item selected, of the 3 available for purchase), for

a total purchase price of $12 × 3 + $14 × 2 + $15 × 1 = $79. The value of A(5) is thus

(6× 10/79) · (6/6) = 0.7595, as shown in the table – a user who exits the SERP at rank 5 is
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Algorithm 1 Computing an effectiveness score for SERP S = [(ri, ci, ni) | 1 ≤ i ≤ k], where

T items are required, the minimum cost is cmin, and the background persistence parameter

is φ. This pseudocode should be considered in conjunction with Figure 1.

function scorer(S, k, cmin,T , φ)

2: frac ← 1 . fraction of all users that are still viewing SERP S

A(0)← 0 and p0 ← 0 and s0 ← 0

4: for i← 1 to k do . for each supplied rank position in S

if ri = 1 then

6: num ← min(ni, T − pi−1) . useful item, make some “purchases”

pi ← pi−1 + num and si ← si−1 + num · ci
8: else

pi ← pi−1 and si ← si−1 . non-useful item, no purchases made

10: compute A(i) and C(i) using Equations 8 and 10

L(i)← (1− C(i)) · frac

12: frac ← frac · C(i) . update the fraction of all users still active

score ←
∑k

i=1 L(i) ·A(i) . compute the metric inner product

14: if frac = 0 then

range ← 0 . all users have been accounted for, no score uncertainty

16: else

range ← compute score range from L(i) and A(i) by searching over ck+1

18: return score and range

sated in terms of quantity, and “76% satisfied” in terms of price paid. Because there are six

items located by rank five, C(5) = 0, and all of the users in the population are modeled as

having exited the SERP by that point. Over all depths (that is, all exit points from depth 1

to depth 5) the expected benefit gained is 0.6008, and hence this is the score assigned to this

combination of SERP, T , and φ. That is, balancing quantity acquired and price paid, the

expected “satisfaction of users” across all SERP exit points is 60%. In this search instance

all users end their scanning prior to the end of the SERP, meaning that the metric score (the

final value in the last row) is fully determined.

Since L(5) = 66% and p5 = 6, two-thirds of the user population are modeled as exiting the

SERP having accumulated T = 6 items of the suitable products. But the other third of the

user population is modeled as exiting the SERP with fewer than six items. In expectation,

a T = 6 search in the SERP shown in Table 3 results in
∑k

i=1 L(k) · pk = 4.69 items being

acquired. Broadly speaking, the higher the metric score, the closer the expected number of

items acquired will be to T , the user’s initial search target; and at the same time, the closer

the average purchase price will be to cmin. The implications of the average user only securing
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k rk ck nk buy pk C(k) L(k) A(k) L(k) ·A(k)

1 0 $11 2 – 0 0.8708 0.1292 0.0000 0.0000

2 1 $12 3 3 3 1.0000 0.0000 0.4167 0.0000

3 0 $12 5 – 3 0.8143 0.1617 0.4167 0.0674

4 1 $14 2 2 5 0.9333 0.0473 0.6510 0.0308

5 1 $15 3 1 6 0.0000 0.6618 0.7595 0.5027

6 0 $18 4 – 6 0.0000 0.0000 0.7595 0.0000

Totals 6 1.0000 0.6008

Table 3: An example showing the new PBG proposal for sorted product search evaluation. It

is assumed that cmin = $10 is the best available price, that T = 6 items are sought, and that

the background persistence parameter φ has the value 0.95.

k rk ck nk buy pk C(k) L(k) A(k) L(k) ·A(k)

1 0 $11 2 – 0 0.8708 0.1292 0.0000 0.0000

2 1 $12 3 3 3 1.0000 0.0000 0.2500 0.0000

3 0 $12 5 – 3 0.8143 0.1617 0.2500 0.0404

4 1 $14 2 2 5 0.9333 0.0473 0.3906 0.0185

5 1 $15 3 3 8 0.8333 0.1103 0.5872 0.0648

6 0 $18 4 – 8 0.0000 0.5515 0.5872 0.3238

Totals 8 1.0000 0.4475

Table 4: A second example of the proposed PBG mechanism. It is again assumed that

cmin = $10 is the best available price, and that φ = 0.95. But now T = 10 items are sought,

and the known SERP prefix down to depth k = 6 can only supply pk = 8 of them.

4.69 items when they had intended to acquire T = 6 are discussed in Section 4.2.

3.6. Score Ranges and Residuals

Table 4 shows the same SERP, but now evaluated against T = 10. There are fewer than

T = 10 matching products available in the visible SERP, and hence no naturally-arising value

C(i) = 0. So now the metric calculation is forced to end by setting C(6) = 0 in the last row

of the table, mirroring the behavior of users who might wish to scan more product rows, but

find they cannot. The final score of 0.4475 indicates that in expectation a T = 10 user is

less satisfied than the T = 6 users depicted in Table 3. The T = 10 score that arises from

C(k) = 0 truncation at k = 6 also corresponds to normal processing (that is, following the

progress established by Equation 10) of an infinite SERP in which there are no more matching

products to be found at any ranks, and hence for which pi = 6 for all i ≥ 7.
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Figure 2: Final score as a function of the hypothetical ck+1 value, the price at depth k+ 1 at

which the remaining T −pk = 2 units of demand are acquired in connection with the scenario

shown in Table 4. The dashed horizontal line shows the score that would result if no more

matching products appear below depth k in the ranking.

It might thus be tempting to assume that 0.4475 is a lower bound on the score that can

result if what is being measured is indeed a k = 6 fixed-length prefix of an infinite SERP. And

that if any further relevance did occur in the non-visible SERP tail at k ≥ 7, then the score

would become greater than 0.4475 – in other words, that 0.4475 marks the bottom end of the

score range that would emerge if the prefix was extended. But that assumption is incorrect,

an observation that is illustrated in Figure 2.

In Figure 2 the horizontal axis depicts possible prices ck+1 at depth k + 1 = 7 in the

setting established by Table 4, starting at ck+1 = ck = $18. Each possible value for ck+1

determines (via Equation 10) a value for C(k) which, in turn, determines (via Equation 8)

the contribution to the metric score that results from A(k) ·L(k). That contribution replaces

the corresponding one in the k = 6 row in Table 4. Moreover, if it is supposed that rk+1 = 1

and nk+1 ≥ T − pk, so that all unmet demand can be met at depth k + 1 and hence that

C(k + 1) = 0, then the hypothesized value for ck+1 can also be used to determine sk+1, and

then A(k+1), and hence the contribution A(k+1) ·L(k+1). Those two score contributions –

a revised penultimate one at rank k and an added final one at k+1 – complete the evaluation

of the metric, and those final metric scores are what is plotted on the vertical axis in Figure 2.

The vertical extent of the curve in Figure 2 thus represents the spread of metric scores

that can arise as ck+1 varies. As can be seen, the maximum metric score occurs when ck+1 =

ck = $18, and the purchase can be completed at the “current price”. That occurs at the left

end of the graph. Then, as the price ck+1 increases, the final metric score decreases; moreover,
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it decreases below the value that would result if there were no more matching products at all

(the dashed line). Then, once ck+1 starts becoming so large that C(k)→ 0, the metric climbs

again, back towards the “no more matching products” value shown in the last row of Table 4

and also plotted as the dashed line in Figure 2.

For any given SERP this relationship is captured by:

PBG@(k + 1) = PBG@(k − 1) + frac · ((1− C(k)) ·A(k) + C(k) ·A(k + 1)) (11)

in which ck+1 is the only independent variable; in which all of ck, pk, sk, and pk+1 = T are

constant; in which C(k + 1) = 0 by definition; in which PBG@(k − 1) =
∑k−1

i=1 L(i) · A(i)

is constant and is the sum of the first k − 1 terms of the metric computation; in which

frac =
∏k−1

i=1 C(i) is constant and is the fraction of users that enter the k th row of the SERP;

and in which sk+1 and C(k) depend on ck+1. Equation 11 is thus minimized when

(1− C(k)) ·A(k) + C(k) ·A(k + 1) (12)

is minimized. In the case rk = 1 Equation 12 expands to(
1− ck

ck+1

)
· p

2
k · cmin

sk · T
+

ck
ck+1

· T · cmin

sk + (T − pk) · ck+1
; (13)

and when rk = 0 it expands to either(
1− φ · ck

ck+1

)
· p

2
k · cmin

sk · T
+
φ · ck
ck+1

· T · cmin

sk + (T − pk) · ck+1
, (14)

or to

(1− φ) · p
2
k · cmin

sk · T
+ φ · T · cmin

sk + (T − pk) · ck+1
. (15)

All of Equations 13 to 15 can be differentiated with respect to ck+1 and equated to zero to

determine their minimizing ck+1 values, for substitution back into Equation 11; or (as we have

done for the results provided in this paper) an exhaustive scan can be performed over ck+1

values in steps of (say) $0.01, starting at ck+1 = ck. For the example presented in Table 4

and plotted in Figure 2 the minimizing price is $81.75, and the attainable score range is from

0.4221 at ck+1 = $81.75 to 0.5012 at ck+1 = $18.00, with (in expectation) between 6.25 and

7.06 items purchased respectively. Note that both of those final values – as is the expected

purchase quantity associated with every other point on the red line in Figure 2 – are greater

than the expectation of 6.02 items purchased if it is assumed that there are no further relevant

items in the ranking at any price (the blue dashed line).

3.7. Further Examples

The next several figures illustrate the behavior of the PBG metric in a range of simple

situations, and compare that behavior to the scores that would be assigned to the same SERPs

via the bp4T approach of Trotman and Kitchen [23].
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SERP A

$110

$120

$130

$140

$150

SERP B

$110

$120

$130

$140

$150

SERP C

$110

$120

$130

$140

$150

SERP
bp4T@5 PBG@5 PBG@5

score score purch.

A 0.3077 0.6524 1.63

B 0.3077 0.5666 1.50

C 0.3077 0.4497 1.30

Figure 3: Example showing top-weightedness effects on SERPs of length k = 5, assuming

that cmin = $100 is the minimum price for the desired product, that T = 2 items are being

sought, that each row offers a single product instance (ni = 1 throughout), and that for PBG

the global parameter φ = 0.95. The calculation of bp4T also assumes that there are two or

more items available at cmin,T = $100, none of which were surfaced in these SERPs. The final

column in the score table shows the expected number of items acquired by the users modeled

by PBG.

SERP D

$10

$10

$10

$10

$110

SERP E

$70

$70

$70

$70

$110

SERP F

$105

$105

$105

$105

$110

SERP
bp4T@5 PBG@5 PBG@5

score score purch.

D 0.6667 0.7405 0.81

E 0.2564 0.7405 0.81

F 0.1887 0.7068 0.78

Figure 4: Example showing the effect of cheap incorrect products entering the SERP, assuming

that T = 1 items are sought, with other parameter settings as for Figure 3.

Figure 3 considers three SERPs with T = 2. Because bp4T scores rankings based on the

sum of all product prices down to the position of the T th purchase, all of SERPs A, B, and C

are assigned the same score. On the other hand, even though the second purchased item is at

rank five in each example SERP, PBG prefers SERPs A and B to SERP C, because the first of

the two matches is found earlier, and costs less. The bp4T user is modeled as always making

two purchases from these rankings, whereas the PBG user is modeled as acquiring between

1.30 and 1.63 items – some of the users are discouraged by the non-relevant items, and leave

the SERP before making two purchases, or (in the case of SERPs B and C) even before finding

one item to buy. Note that in PBG the degree of top-weightedness can be adjusted via the

parameter φ; here we have modeled relatively patient users by setting φ = 0.95, so as to be

consistent with the earlier examples. Choosing a smaller value such as φ = 0.5 would create

harsher penalties for SERPs B and C and result in PBG being more strongly top-weighted, if

that is what is desired.

Figure 4 illustrates the situation that was noted in connection with Table 2, in which
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SERP G

$110

$120

$130

$140

$150

SERP H

$110

$120

$130

$140

$150

SERP I

$110

$120

$130

$140

$150

SERP
bp4T@5 PBG@5 PBG@5

score score purch.

G 0.4615 0.6474 2.47

H 0.0000 0.4742–0.6404 1.80–2.43

I 0.0000 0.2885–0.5591 1.00–2.19

Figure 5: Example showing scores assigned when there is a product shortfall, and fewer

than T = 3 items can be supplied, with the other parameters as described for Figure 3, and

assuming that there are three or more items available at cmin = cmin,T = $100, none of which

surfaced in these SERPs.

implausibly cheap – and hence non-matching – items occupy early positions in the SERP.

Because bp4T sums the prices of all of the products in the SERP rather than just the relevant

ones, its scores are affected by items the users does not want. In particular, bp4T rates

SERP D much more highly than SERP E, whereas PBG scores them equally. In this trio

of SERPs PBG down-rates SERP F slightly, because in this one the incorrect items have

prices greater than cmin, which is modeled as being somewhat discouraging to the user (see

Equation 10). The users modeled by bp4T will again always acquire one item, whereas the

users modeled by PBG will in expectation only acquire around 0.8 items each, because none

of these rankings is considered by a PBG user to be “ideal”. This difference in purchase

behavior, and what it then suggests in terms of longer-term user actions, is discussed further

in Section 4.2.

A final trio of example SERPs is shown in Figure 5. Amongst these three, only SERP G

can deliver the T = 3 items that are sought, whereas SERPs K and L cannot. As a result, bp4T

assigns scores of zero to the latter two SERPs and signals them as being failures. On the other

hand, PBG assigns partial credit for partial product supply; note also the computed ranges

for both PBG score and PBG acquisitions, in accordance with the discussion in Section 3.6.

In combination, the nine SERPs shown in Figures 3 to 5 also illustrate the effects of the

five monotonic desiderata that were proposed in Section 3.1 and then incorporated into PBG

via the various factors making up Equations 8 and 10.

4. Discussion and Conclusions

We have presented a batch effectiveness measure for price-ordered and other “sorted-by”-

style SERPs, expressed in the C/W/L/A framework by describing a continuation function

C(i) and an aggregation function A(i). Our argument in favor of the proposed formulation

of these two functions is largely based on rhetoric, and in essence is an appeal to what is

probably best referred to as “informed common sense”. We have argued for the plausibility
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of the relationships that the two functions encapsulate, based on what we believe to be likely

user behavior, but without being able to prove that our claims are correct, nor demonstrate

their validity experimentally. We comment further on that aspect of our work shortly.

Our presentation commenced with a critique of Trotman and Kitchen’s bp4T metric, and

the observation that it gives rise to some SERP relationships that we regard as implausible.

Developing a “sorted by” metric that avoids those concerns was a key aim of this work; but

we also regard the manner in which we have presented the PBG metric as being a further

contribution, in that it serves as a tutorial on the C/W/L/A framework, showing how the

framework allows effectiveness metrics for new applications to be developed based on prin-

cipled foundations. Given that context, the second subsection below considers limitations

that may affect the validity of those relationships, and considers ways in which they might

be varied. The third subsection then considers possible future directions in which this work

might be taken.

4.1. Experimentation

Research in information retrieval is often presented as a mix of theory and experimenta-

tion, and most research papers contain both – new ideas are motivated by insightful research

questions and are then validated via experimentation. In the area addressed by this paper

– that of effectiveness measurement and the connection through to user satisfaction – exper-

imentation must thus connect metric scores and user-perceived SERP usefulness, since the

latter is what the score is intended to approximate. This kind of experimentation is challeng-

ing to carry out, and is a research study in its own right. For example, Zhang et al. [27], Sakai

and Zeng [19], and Moffat et al. [16] have all carried out studies that seek to measure corre-

lations between metric scores and either user self-reported satisfaction, or some measurable

surrogate for it such as click, scrolling, or reformulation behavior.

To experimentally confirm that any proposed “sorted-by” effectiveness metric of the type

presented here is a suitable choice requires that similar studies be undertaken. In particular,

it is worth reiterating that the scores assigned by different metrics are incomparable and of

themselves do not allow comparison – statements such as “metric X assigns a higher average

score than does metric Y ” are meaningless, even when statistically significant.

Another possible approach is to apply a suite of metrics to a suitable dataset of queries,

relevance judgments, and system runs (SERPs), so as to establish the relative system or-

dering induced by each of the alternative metrics. Indeed, this is exactly the nature of the

experimentation reported by Trotman and Kitchen, over a collection of 150 topics and a set

of fourteen systems. In such an experiment, if a proposed new metric consistently induces

the same system ordering as another metric, we might conclude that one (or the other) of

them is redundant; or might conclude that the pool of systems is too small to draw out any

difference. But if the new metric induces a different ordering, we can only conclude that it is
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measuring something different, and must not make the mistake of believing that “different”

equates to “better”.

The challenge of establishing and interpreting a suitable experimentation regime is why we

have avoided tabulations of system scores and correlation coefficients in this paper. Instead

we have established plausibility by employing the C/W/L/A framework, and then arguing for

certain user behaviors in the context of the user model that is embedded in that framework.

If the desiderata D1 to D5 and Equations 8 to 10 resonate with anticipated user behavior,

then their combination into a metric must represent a useful development.

Carefully structured user studies that employ “sorted-by” rankings of different qualities,

and seek to directly correlate user satisfaction and metric scores, represent a substantial fresh

challenge that we defer for future work.

4.2. Limitations

While our proposals for the C() and A() functions are motivated by a desire to capture,

respectively, user browsing behavior and user aggregate assessment, it needs to be acknowl-

edged they express broad influences rather than exact numeric relationships. For example,

the use of ci/ci+1 in the definition of C() captures our belief that users will become increas-

ingly discouraged as prices rise. Given that belief, division of ci by ci+1 is merely one obvious

choice that leads to the desired relationship, and hence happens to be the one written into

Equation 10. But there are myriad other possibilities, and, in most general terms, what we

are arguing for is that C() is correlated with some further function f(ci, ci+1) that is non-

decreasing in its first argument and non-increasing in its second. With detailed user-based

experimentation and voluminous data it might be possible to infer that function f(·, ·) and

all of the consequential coefficients. In other words, Equations 8 and 10 are proposed not be-

cause we believe that they represent the “exact best formulation”, but because they represent

directions in which “good” or even “great” formulations might lie. Similarly, the parameter

φ might also take on different values in different application areas, and our use of φ = 0.95

here is illustrative and most certainly not intended to be prescriptive.

Another area of possible concern is the assumption that cmin is somehow known to the

community of users, since the C() and A() functions make use of that value when calculating

the continuation probability and the aggregated benefit. The bp and bp4T metrics make the

same assumption [23]. While it might be that each user has a fair idea of what the best

possible price for any particular product might be, that still doesn’t necessary match the

value of cmin in the collection, and might be higher or lower. To address that discrepancy

we could consider formulating Equations 8 and 10 according to each user’s perception of

the best possible price available and hence further personalize the set of responses to any

given SERP, but would then need to introduce a distribution over individual cmin values,

and carry that through the computation; and personalizing by user would also mean that we
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should consider introducing a distribution over T too, since each user is likely to be seeking a

different purchase quantity, even if they issue the same query to find it. Rather than add to

the complexity of the definitions, we prefer to assume that at the time they issue their query

the user is in possession of an accurate estimate for cmin. We note that Diaz and Ferraro [8]

explore comparison techniques for normal SERPs that make use of a distribution over T , the

desired quantity of relevance being sought.

A third aspect in which our proposal might be refined is in regard to unsatisfied demand.

The bp4T mechanism of Trotman and Kitchen reports a score of zero if there are fewer

than T purchasable items in the visible SERP, whereas (as a conscious preference, seeking

to model the user’s experience) our mechanism assigns a partial score for partial satisfaction.

Moreover, even when there are T purchasable items in the visible SERP, our mechanism

may, as an expectation over the universe of users modeled by the probabilistic C/W/L/A

framework, result in fewer than T items on average being purchased. For example, the T = 6

example shown in Table 3 results in a prediction that the average user being modeled by

the PBG user model will purchase 4.69 items. What does the user do then to make up the

shortfall? As with all search tasks, we suggest that after they exit each SERP users make

a higher-level decision: “am I now sufficiently satisfied, or will I reformulate my query and

examine another SERP, or will I open a new browser tab and try my query at a different

provider?” Should they decide to reformulate or to change provider, this user can be regarded

as now searching for T ′ = 1.31 items. But note that the new SERP might be a more fertile

source of products than the original one, and as a result of viewing the second SERP the

user might even remove some of the items sitting in their current shopping basket, preferring

instead cheaper products that may have been surfaced by the second SERP.

4.3. Future Directions

Like Trotman and Kitchen [23], we have focused on binary relevance, with ri ∈ {0, 1} for

each element in the SERP. However, in the context of web search a wide range of continuous

relevance mechanisms have been developed, including ERR [7], which is a continuous version

of RR; NDCG [10]; and RBP [14]. Other binary relevance metrics have also had continuous

gain modes added [9, 18].

Another possible way of thinking about sorted-by product SERPs could thus be that each

gain value indicates the user’s degree of interest in that product, with price factored in. For

example, an unwanted product might always have a gain of zero, regardless of how cheap

it is; with a matching product having a gain of one only if its price ci = cmin, to directly

reflect its utility to the user. With this approach any search effectiveness metric has a sorted-

by equivalent possible. Moreover, metrics such as INST [15], which have T as a parameter

denoting the user’s desired volume of relevance, might then be suitable as alternatives to bp4T

and PBG.
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A benefit of this approach is that products if have both “degree of match” indicators

and “degree of best price component”, then the two can be combined. For example, if a blue

256 GiB iPhone has relevance ri = 1 in response to the query “blue iPhone 256 memory”, then

maybe a blue 128 GiB iPhone has a background relevance of ri = 0.8 to the user, and a grey

256 GiB iPhone has background relevance of ri = 0.9, with those relevance values converted

to metric gain values by multiplying them by cmin/ci. Developing such approaches by devis-

ing the corresponding C() and A() functions might be a further useful line of investigation,

complementing the point of view that we have taken here.

Different interface options also require different evaluation regimes. The discussion in

Trotman and Kitchen [23] and the current work abstracts SERPs as one-dimensional lists, each

containing k product options, and assumes that each user consumes each SERP sequentially

from top to either bottom, or until exit. But many interfaces display two-dimensional grids,

especially when images are also involved, with users following different scanning paths through

the grid. Each user can thus be linearized, but with potentially multiple different linearization

patterns. Extending the C/W/L/A framework into another probabilistic dimension, using a

“what gets looked at next” distribution and a two-dimensional C(·, ·) function, is another

interesting possibility.

It might also be interesting to look at multi-objective “sort by” operations. For example,

could a “sort by price and distance” grid be formed with price ordered via one dimension,

and distance in the second? And if so, how should it be evaluated?

A final area in which more development may be possible is the issue of sessions. The

previous subsection noted that PBG assumes that shoppers might obtain only part of their

need from any given SERP, purchasing fewer than T items either because T are not available,

or because they became discouraged and exited the SERP prior to encountering T useful

items. Submitting a reformulated query is one way of then seeking to expose further useful

items; as is the more curt step of switching to a different provider. But switching provider

might bring in different costs, such as further delivery fees, and so on. This is another

aspect in which shopping services might differ from conventional search, with a comprehensive

evaluation framework needing to allow for sessions, and all of the nuances they entail, as well

as individual SERPs. Probabilistic session-level metrics have been considered for normal web

search tasks [24], and might be able to be combined with the PBG mechanism described here,

and the C/W/L/A framework in general, to develop ways of describing models for session-level

evaluation of sorted-by product search sequences, should they be required.
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