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Abstract Large-scale retrieval systems are often implemented as a cascading se-
quence of phases – a first filtering step, in which a large set of candidate documents
are extracted using a simple technique such as Boolean matching and/or static doc-
ument scores; and then one or more ranking steps, in which the pool of documents
retrieved by the filter is scored more precisely using dozens or perhaps hundreds of
different features. The documents returned to the user are then taken from the head of
the final ranked list. Here we examine methods for measuring the quality of filtering
and preliminary ranking stages, and show how to use these measurements to tune the
overall performance of the system. Standard top-weighted metrics used for overall
system evaluation are not appropriate for assessing filtering stages, since the output
is a set of documents, rather than an ordered sequence of documents. Instead, we use
an approach in which a quality score is computed based on the discrepancy between
filtered and full evaluation. Unlike previous approaches, our methods do not require
relevance judgments, and thus can be used with virtually any query set. We show that
this quality score directly correlates with actual differences in measured effectiveness
when relevance judgments are available. Since the quality score does not require rel-
evance judgments, it can be used to identify queries that perform particularly poorly
for a given filter. Using these methods, we explore a wide range of filtering options
using thousands of queries, categorize the relative merits of the different approaches,
and identify useful parameter combinations.
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1 Introduction

The purpose of an information retrieval system is well-defined: given a query q, and a
large collection D of documents, identify and present a small subset of the collection
by identifying documents that are deemed responsive to q. Typical collections contain
billions of documents and occupy terabytes of storage. Queries are a often a few
words long, and answer lists contain between ten and a few hundred items. Zobel and
Moffat [32] and Büttcher et al. [6] provide surveys of these processes.

The systems that have been developed in response to these goals are assembled
from a suite of possible components, with many different ways of generating query-
document similarity scores so that documents can be ranked. But in broad terms,
most retrieval systems can be thought of as being composed from a small number
of underlying building blocks that can be categorized into three groups: pre-ordering
stages, that make use of static index-time data such as page-rank or document quality
scores (including spam scores); filtering stages, in which a subset of the collection is
extracted; and then one or more detailed ranking phases, in which a comprehensive
evaluation of those documents is undertaken, so that the final top-k ranked list can
be generated. Each of these stages can in turn be composed of one or more steps.
In this work we differentiate only between the filtering stage that identifies potential
candidate documents, and the final ranking stage that works with a smaller subset of
documents drawn from the entire collection.

The end-to-end effectiveness of an IR system is measured using any one of a large
range of metrics such as precision (P), average precision (AP), discounted cumulative
gain (DCG), normalized discounted cumulative gain (NDCG), rank-biased precision
(RBP), the Q-Measure (QM), reciprocal rank (RR), expected reciprocal rank (ERR),
time-biased gain (TBG), and so on [7, 13, 18, 22, 23]. Two broad families can be
identified – metrics that are recall dependent, for which the calculated score is relative
to the best that could be attained by any ranking, and hence can be regarded as an
absolute assessment (AP, NDCG, QM); and metrics that are recall independent, for
which the calculated score reflects the user’s experience of the supplied ranking, and
is not affected by the density or otherwise of relevant documents in the unseen part
of the collection (P, DCG, RBP, RR, ERR, TBG).

Conventional metrics are not directly applicable to the task of measuring the qual-
ity (that is, contribution to overall search performance) of the pre-ordering stage, or
of the filtering stage. For example, Boolean conjunction has been suggested as a use-
ful filtering stage, so that every presented answer document has every query term in
it somewhere [14]. But applying AP or NDCG to the output of a Boolean conjunction
is unhelpful, since before it is seen by the user, that set of documents might be (and
quite probably will be) permuted in to an entirely different ordering by the ranking
stages.

Contributions
We make two key contributions. First, we demonstrate the applicability of a filter-
stage evaluation approach that is based on bounding the loss of end-to-end effec-
tiveness that can occur as a result of the filtering process. This quantification of the
possible degradation is straightforward to compute for all recall-independent metrics;
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and, in the experiments described below, is validated using data and topics for which
relevance judgments are available. Second, we then use that approach to examine
thousands of queries for which relevance judgments are not available, and compare a
variety of possible early-stage filters.

Those results then provide the basis for estimating the combined multi-stage re-
trieval time versus effectiveness trade-off options for large-scale retrieval. Extending
prior results [2], our findings show that conjunctive Boolean mechanisms are unlikely
to provide useful trade-offs, despite their high retrieval speed. On the other hand, ag-
gressive WAND evaluation strategies [5], in which answer list “safeness” is sacrificed
for evaluation speed, do offer appealing options.

2 Background

A retrieval system can be regarded as being a composition of multiple phases, with
any of the phases potentially being omitted, or broken in to sub-phases. We now
group possible retrieval tasks into the three general phases; then describe each phase
and the systems that result when they are composed in various ways; and finally in
this section discuss ways in which system effectiveness can be evaluated.

Static Ordering
The first phase is a method for static ranking, or pre-ordering the documents in the
collection. A function S(D, k) is provided that processesD according to some query-
independent scoring regime, and then returns as an ordered set the k documents with
the highest static scores. The abbreviated notation S(D) indicates S(D, |D|), a com-
plete ordering of D according to static score, rather than a top-k truncated rank-
ing. Examples of this first phase include orderings based on page rank, spam score,
document length, perceived document quality, plus combinations of these and other
query-agnostic features.

Filtering
The second phase of a retrieval system is a filtering stage F (D, q, k) that extracts
a k-subset of the collection D in response to a query q, usually (but not always)
selecting those that match q in some manner. At most k documents are selected by
the filter, which retains the same ordering of documents in the output as was supplied
in the input. Again, as a notational convenience, we use F (D, q) for F (D, q, |D|)
to cover situations in which all of the documents in D might potentially be allowed
through by the filter. A trivial filter could simply transmit the first k documents that
are presented, regardless of their merits, and withhold the remainder of the collection.
A more complex filter might implement a conjunctive AND operation that selects
the set of documents that contain all of the query terms. Or third, a simple-but-fast
ranking system might be employed as a filter, passing through the top (say) k = 103

documents according to a scoring mechanism such as term overlap count.
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Ranking
The third phase of a retrieval system is a ranking or reordering stage R(D, q, k) that
selects at most k documents from D, according to their perceived relevance to query
q, and returns as an ordered sequence the top k documents in decreasing score order.
For example, a BM25 or Language Model similarity computation based on collection,
term, and document statistics might be used to score each document in the collection
(see Zobel and Moffat [32] or Büttcher et al. [6, Chapters 8 and 9]), and then the
documents with the top k scores extracted and returned. As before, the shorthand
R(D, q) is used to represent R(D, q, |D|), with (potentially) every document in the
collection assigned a score and then returned by the ranker.

System Options
These different processes might be implemented using different underlying structures
and mechanisms. For example, the pre-scoring process might happen at index con-
struction time, and involve explicit reordering of the documents in the collection so
that high-quality documents have low document numbers. The filtering stage might
then be supported by a document-level (non-positional) inverted index, so that docu-
ments matching the filter’s specification can be quickly identified. The ranking stage
might be supported by the same index augmented by term positions; or, especially
if complex features based on phrases or term proximities are being employed, might
be based on document surrogates computed at the time the collection was indexed (a
“direct” file).

Combining the various retrieval options in different ways gives a range of possible
retrieval systems.
— Constant: A simple ordered list, such as a newspaper home page. In this configura-
tion,D is the set of newspaper stories ordered temporally; S() is a query-free scoring
regime based on story recency and story importance as determined by non-query fea-
tures, such as user profile or past reading behavior; and the retrieval system is of the
form S(D, k), where k ≈ 10, for example, is the number of stories to be presented.
— Boolean: General Boolean querying, such as 1980s-style abstract search systems.
In this configuration, D is the set of abstracts; q is expressed as a conjunction of con-
cepts, each described as a disjunction of terms or negated terms; F () is a Boolean
matching process; and the retrieval system is of the form F (D, q); in this configura-
tion there is no limit on the number of answers provided, and no particular ordering
within the documents that match the query.
— Conjunctive-Ranked: Ordered conjunctive querying, of a style used by some early
search systems. In this configuration, D is the set of web pages; q is a list of query
terms; F () is a Boolean conjunction over those terms; and the retrieval system is
of the form F (S(D), q, k), where k ≈ 10 and S() provides a static collection-wide
ordering of some sort.
— Normal-Ranked: Standard document ranking, such as the systems developed by
academic groups participating in TREC Ad-Hoc and Web Tracks. In this configura-
tion,D is the set of web pages; q is a list of query terms;R() is a ranking computation;
and the retrieval system has the form R(D, q, k), where k is of the order of 1,000.
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— Multi-Level-Ranked: Multi-phase systems, including the ones presumed to be
deployed by commercial web search providers. The retrieval system has the form
R(F (D, q, k1), q, k2), where k1 ≈ 103, and k1 � k2 ≈ 10 or 20. The filter F ()
might be a Boolean conjunction [14], or might be a simple-but-fast ranker [30] that
returns not more than k1 (and at least k2 documents) from the collection. The ranker
R() then selects and returns the top k2 of those k1 documents, employing a large set
of features, possibly including term proximities and adjacencies, and possibly includ-
ing the application of learning-to-rank techniques. There is no requirement that the
top k2 documents are a proper subset of the k1 documents returned from any single
filter. It is entirely possible for the candidate document set k1 to be a composition of
documents drawn from several different filtering approaches.

Note that all of these descriptions are declarative rather than procedural, and define
the result of the computation, not a literal prescription as to how the computation is
to be implemented. In an actual implementation the phases’ computations might be
tightly integrated into one process; or they might be separated. What is of interest is
the logical structure of the computation, not the implementation details.

Effectiveness Evaluation
An effectiveness metric is a function M(Dq,J q) → v, where Dq is an ordered or
unordered sub-collection generated by some ranking system for query q; J q ⊆ D is
a set of corresponding positive judgments for query q; and v ∈ R is a real-valued
number, usually in the range zero to one. To compute a numeric effectiveness score,
each element in Dq is checked against J q . Suppose that di is the i th element of Dq ,
whether Dq is ordered or unordered. Then the (binary) relevance at the i th position
of query q’s ranking is given by

ri =

{
1 if di ∈ J q

0 otherwise .

Different metrics can be defined in terms of which ri values are considered, and
how they are combined. Relevance score ri can also be regarded as being fractional
rather than integral, with 0 ≤ ri ≤ 1 indicating the strength of relevance of di, a
situation known as graded relevance. There are also evaluation situations in which
ri is dependent not just on di, but on d1 through to di−1 as well, considered as a
set. For example, the first time a particular document is encountered in a ranking,
or a particular intent interpretation of a query is encountered, the relevance score
ri might be 1. But a subsequent listing of a duplicate document, or of a document
that addresses the same intent, might be considered as corresponding to ri = 0.
One way of interpreting the value ri is that it is the utility, or benefit that the user
accrues by encountering that document in the ranking. In this work we assume that
the ri values can be computed in some appropriate manner, taking into account the
supplied ranking, and that what is required is that the set of ri values be converted to
a numeric effectiveness score.

Metrics
A large number of effectiveness metrics have been proposed. Precision is a standard
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metric applied to Boolean querying (which has as its output a set rather than a se-
quence), defined as the fraction of Dq that appears in J q . Similarly, Recall is the
fraction of J q that appears in Dq; and from these two, F1 is calculated as the har-
monic mean of Precision and Recall. Variants of precision and recall can also be used
to provide effectiveness scores for the ranked sequences generated by the Constant,
Conjunctive-Ranked and Normal-Ranked retrieval systems defined earlier in this sec-
tion, with scoring typically computed “to depth k”, for some chosen value of k. Eval-
uating precision in this way results in a top-weighted effectiveness metric, since it
is biased in favor of the top-k documents. Within the k documents, however, all are
treated equally.

A range of other top-weighted metrics have been defined, with behaviors that pro-
vide a smoother transition from top to bottom of the ranking than does Precision@k.
These include average precision, AP; normalized discounted cumulative gain, NDCG
[13]; rank-biased precision, RBP [18]; the Q-measure, QM [22]; and time-biased gain,
TBG [23]. Each of these top-weighted metrics can be applied to whole rankings, or,
with varying degrees of imprecision (and varying degrees of knowledge about the
magnitude of that imprecision), to fixed-length depth-k prefixes.

Provided that the required relevance judgments J q are available to depth k for
each member q of a set of test topicsQ, two rankers Ra() and Rb() can be compared
by measuring the relative performance, and calculating a paired significance test over
the set of corresponding values of an effectiveness metric M:

〈M(Ra(D, q, k),J q),M(Rb(D, q, k),J q) | q ∈ Q〉 .

Judgments
A critical question that arises is how the judgments J q are formed. In most eval-
uations human judges examine documents, deciding for each whether or not it is
relevant or irrelevant. Construction of exhaustive judgments is impossibly expensive,
and so only subsets of the collection are normally judged, with pooling to depth `
one strategy that can be used to control the cost of forming judgments so that a set
of systems can be evaluated. In this approach, a document is judged for a query if
and only if its minimum rank in any of the system runs being pooled is ` or less.
Hence, the set J q of judged relevant documents for a query q is likely to be a subset
of the true set of relevant documents [31]. As a result, the documents in Dq will fall
in to one of three categories: those judged relevant; those judged non-relevant; and
those that are unjudged. One way of handling unjudged documents is to remove them
from the ranking and form a condensed sequence [21]; the more common mechanism
is to assume that unjudged documents are non-relevant. Weighted-precision metrics,
including RBP, provide the capacity to retain a “residual” that reflects the range of
scores that could arise, with the size of that range depending on where in the rank-
ing the unjudged documents appear, and reflecting the maximum and minimum score
that could be achieved if those documents were respectively found (were they to be
judged) to be relevant or not relevant [18].

If the evaluation depth k is less than the pooling depth `, all documents required
during scoring of the contributing runs will have been judged, and the comparison is
unlikely to be biased. On the other hand, if the evaluation depth k exceeds the pooling
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depth `, or if runs are to be scored that were not included when the pool was formed,
then comparing effectiveness scores may not be appropriate without also allowing
for the unjudged documents [31]. All three options – assuming that unjudged implies
not relevant; condensing the sequence; or maintaining error ranges on scores – have
drawbacks.

Safe Filtering
In some special cases a filter might be matched to a corresponding ranker and be said
to be set safe to depth k, in that it selects exactly the final k documents as a set, but
not necessarily in the same final order as assigned by the ranker. That is, F () andR()
are a “set safe to depth k” combination if, when considered as sequences,

R(D, q, k) = R(F (D, q, k), q) .

If this is the case, then the imposition of the filtering stage will not affect overall
retrieval effectiveness [27].

The more usual situation is when both the filter F () and the rankerR() contribute
to the quality of the overall results listings presented to the users of the system, the
ranker in a positive sense, and the filter in a possibly negative sense. Given the large
number of ways that filters (which select an unordered subset of the collection, pos-
sibly of bounded size) and rankers (which select an ordered subset of the collection,
again possibly of bounded size) can be implemented, mechanisms are required that
allow rankers and filters to be compared, and/or their behavior numerically quanti-
fied.

3 Multi-Phase Effectiveness

Now consider effectiveness evaluation for a system composed of distinct filtering and
reranking phases. One possibility is to treat retrieval as an end-to-end process that
creates a ranked sequence; and then interpret the output list R(F (D, q, k1), q, k2)
exactly the same way as the result of a Normal-Ranked system would be. That is, if
overall performance is all that matters, then assessment can be via a standard metric
M, and the system can be regarded as being a single entity, despite the fact that it is
assembled from distinct components.

But suppose that the measurement must focus on the usefulness of a filtering
stage F (), so as to establish (for example) a separate effectiveness-efficiency trade-
off curve for it; or to understand what effect k1 has on overall effectiveness. Or, as a
second scenario, suppose that alternative filters Fa() and Fb() are provided, and that
their usefulness is to be compared in the context of a specified third-phase ranker.
How should the quality of a pre-ordering, or of a filter, be measured?

Recall
One possible approach is to use available relevance judgments J to determine the
coverage of the filter. Ideally, the filter would identify every document relevant to the
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query and return it as part of the (unordered) answer set; which suggests that it makes
sense to measure the quality of the filter by computing

Recall(D′) = |D
′ ∩ J q|
|J q|

(1)

where D′ = F (D,Q, k) is the set of k documents the filter extracted from the col-
lection. If a filter has a high recall according to Equation 1, then the set of documents
passed to the ranking stage contains all or most of those that the ranker could pos-
sibly preference, and so retrieval effectiveness should not be degraded by the filter’s
presence. However, the converse is not true: a low recall score does not necessar-
ily give rise to a low score from the final effectiveness metric, since the final metric
might be strongly top-weighted, and there might be many relevant documents for the
filter to select amongst. Unfortunately, recall requires relevance judgments, limiting
to applicability to queries which have judgments available.

Overlap
If two filters are to be compared, the outputsDa = Fa(D, q, k) andDb = Fb(D, q, k)
can be tested against each other, and an overlap coefficient computed, an approach
that avoids the need for relevance judgments. If it is assumed that the eventual eval-
uation metric M is insensitive to small changes in the sets, and Da and Db are close
to being the same, then substituting Fa() by Fb() in a Multi-Level-Ranked system
should be plausible. That is, the difference between the sets generated by two filters
might in some situations be a valid surrogate for the evaluation of the eventual metric.
One possible overlap coefficient is given by the Jaccard similarity coefficient:

Overlap(Da,Db) =
|Da ∩ Db|
|Da ∪ Db|

, (2)

which is zero when the two sets are disjoint, and is one if and only they are identical.
A variation on the overlap computation replaces the denominator of Equation 2 by
min{|Da|, |Db|}. Other coefficients are possible, including ones that are asymmetric
and compute the fraction of one set that is present in the other as a coverage ratio.

Overlap-based approaches are effective if the two sets are of comparable size, and
if the differences between them are small. They also have the considerable benefit
of not requiring that relevance judgments be available. But in the case of ranking
systems it is also desirable to be able to compare the outcomes obtained when the
two sets might be of quite different sizes. For example, one filter might generate a
subset of the collection that is a tenth the size of another; what matters in this case
is what change arises in the downstream effectiveness score generated by the final
metric. Given that most metrics are top-weighted, the fact that Da and Db differ in
size may be less important than Equation 2 might suggest.

Rank-Biased Overlap
Top-weighted set overlap computations applicable to ordered sequences have also
been presented. Webber et al. [29] describe a method they call Rank-Biased Overlap,
or RBO, which computes a top-weighted overlap score between two sequences. A
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user model akin to that of the rank-biased precision effectiveness metric is presumed,
in which the reader scans from the top of the two lists, determining the depth that
they will view the two sequences to according to a geometric probability distribution
governed by a parameter p. The value of p is the conditional probability of the user
stepping from depth i to depth i + 1 in the pair of sequences. When p is close to
one, the user is “patient”, and expects to examine a relatively long prefix of the two
sequences; when p is smaller, the user is modeled as only examining a relatively short
prefix. The RBO score between the two sequences is then computed as a weighted
average of overlap ratios:

RBO(Da,Db) = (1− p)
∞∑
i=1

pi−1 · |D
a
1..i ∩ D

b
1..i|

i
, (3)

where D1..i refers to the first i elements in ordered sequence D.
Like Overlap, RBO has the advantage of not requiring that relevance judgments be

available, and hence experiments can be carried out automatically over large sets of
sample queries, allowing high levels of confidence in the measured outcomes. But
note that RBO can only be used if the filter F () generates an ordered sequence of
documents – it cannot be applied if the filter produces a set as its output. Nor does
it exactly match any particular eventual effectiveness metric, although there is strong
relationship between RBP and RBO. Being metric-agnostic can be thought of as being
a strength of several of these approaches, but also as a weakness.

Another top-heavy measure is Dice Top (DT), introduced by Macdonald et al.
[17]. Macdonald et al. primarily use DT to characterize features which improve ef-
fectiveness in a learning to rank model, but it could also be used to compare the
similarity between any two result sets.

End-to-End Effectiveness
Another way of measuring the effectiveness of a filter is to determine the extent to
which the insertion of the filter alters the metric score compared to the pure ranking
scheme, assuming that the filter extracts a subset D′ = F (D, q, k) of the collection
for subsequent processing. That is, both the with-filter and without-filter systems are
regarded as being “end to end”, and a statistical test is carried out using pairs

〈M(R(D, q),J q),M(R(D′, q),J q) | q ∈ Q〉

A comparison using this methodology might, for example, seek to demonstrate that
the introduction of the filter allows rejection of the hypothesis that “the filter reduces
the effectiveness scores attained by ε or more”, for some small ε specified as part of
the experimental design. Like the recall-based method (Equation 1), this approach
requires that relevance judgments be available.

Maximized Effectiveness Difference (MED)
Recent work by Tan and Clarke [25] offers a further alternative, and provides the basis
for the evaluation in our experiments. Given two documents sequences Da and Db

and a chosen metric M, a set of judgments J ′ is identified that maximally separates
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the M-scores for the two orderings. The resulting value is the maximum effectiveness
difference with respect to M:

MEDM(Da,Db) = max
J⊆Da∪Db

|M(Da,J )−M(Db,J )| . (4)

The methodology presented by Tan and Clarke allows a set of partial judgments
J ′ ⊆ J to be specified as an additional constraint, plus a list of documents that
may not be members of J . Computation of MEDM when M is recall-independent is
straightforward [25], even when these additional constraints are added. To see the
usefulness of this concept for evaluating two-level retrieval systems, suppose that
Da = R(F (D, q, k), q) and that Db = R(D, q) for some query q and complete col-
lectionD. That is, suppose thatDb is the sequence generated by rankerR() without a
filtering step, andDa is the sequence generated by the ranking when k documents are
selected by the filter F (). Then MEDM(Da,Db), as defined by Equation 4, represents
the maximum possible degradation in measured effectiveness (according to metric M)
that results from the insertion of F () in to the processing pipeline.

For example, suppose that some query gives rise to the ranking

Db = 〈20, 45, 17, 11, 33, 29, 18, 56, 72, 91, 54, 83, 22, . . .〉

and that the documents allowed by the filter give rise to the subsequence

Da = 〈20, 45, 17, 33, 29, 56, 72, 91, 54, 22, . . .〉 .

Suppose further that the metric being used to measure system effectiveness is rank-
biased precision RBP with the parameter p = 0.8. The definition of MED, and the
definition of RBP, mean that MEDRBP arises when the documents that are common
to the two sequences are deemed to be non-relevant, making RBP(Da) = 0; and the
documents that appear in Db only are all deemed to be fully relevant, that is, with
ri = 1. In the case of the example rankings, that gives rise to the two computations

RBP0.8(Db) = RBP0.8(〈0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, . . .〉)
= 0.2(0.83 + 0.86 + 0.810)

= 0.176

RBP0.8(Da) = RBP0.8(〈0, 0, 0, 0, 0, 0, 0, 0, . . .〉)
= 0.0 .

So, MEDRBP0.8(Da,Db) = 0.176, and is an upper bound on the effectiveness loss
when the filtered ranking Da is used to approximate the full ranking Db when the
runs are scored using RBP with p = 0.8. Note that no judgments are required in this
computation; it is derived solely from the full and filtered sequences of document
numbers. Moreover, it can be based on any recall-independent effectiveness metric,
meaning that in many situations it will be possible to employ the metric that is used
to measure end-to-end system effectiveness.

Tan and Clarke [25] indicate that the MED family of metrics was directly inspired
by the wish to generalize RBO. In the same way that there is a close association be-
tween RBP and RBO, MED provides a general procedure for deriving a rank similar-
ity measure from a (recall independent) effectiveness measure. Tan and Clarke [25]
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Algorithm 1 Boolean Intersection Algorithm (Boolean)
INPUT: A list of q ordered sets S1 . . . S|q|.
OUTPUT: An ordered set of documents R.
1: set R← ∅
2: initialize each Si with its least element as its candidate
3: SORT(S1 . . . S|q|) based on candidate
4: set x← the candidate from S|q|
5: while x is defined do
6: if the candidate from S1 is equal to x then
7: APPEND(R, x)

8: set x← SUCCESSOR(S|q|, x)
9: for i = 1 to |q| − 1 do

10: F-SEARCH(Si, x)

11: SORT(S1 . . . S|q|) based on candidate
12: set x← the candidate from S|q|

return R

show that MEDRBP is highly correlated with RBO, supporting our choice of the MED
family for measuring filter-stage effectiveness.

4 Filters

We next describe the various filters that might be employed in a staged retrieval
system, and then in Section 5 present validation experiments that confirm the rela-
tionship between MEDM and the effectiveness loss (relative to metric M) that arises
when filtering is employed. Section 6 steps away from the use of relevance judg-
ments, and expands the experimentation to a large query sequence. A key goal is to
demonstrate that the MEDM approach yields usable information about filtering-stage
effectiveness, but we are also able to compare and contrast the relative efficiency of
the various filtering mechanisms.

Pure Boolean Conjunction
Conjunctive Boolean queries have been extensively studied by the IR research com-
munity [9, 14]. Using hybrid postings lists that combine bitvectors and compressed
postings can significantly improve the efficiency in terms of both time and space.
Efficiency can be further improved using document reordering [14]. However, the
fastest of these approaches cannot use the same inverted index for ranked querying
and Boolean filtering.

The experiments reported below make use of two different Conjunctive Boolean
Algorithms. The first variant is the #band operator in Indri1 which performs a full
Boolean pass over the index. We also implement a second variant based on the Adap-
tive Intersection Algorithm [10, 11] which is easily amenable to a block-compressed
inverted index, and can be processed in a document-at-a-time manner similar to
WAND [5]. The algorithm used is shown in Algorithm 1. First the smallest document

1 http://www.lemurproject.org/indri/
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identifier is selected as the target identifier x, and all lists are sorted in increasing or-
der by the current document id cursor. If the first cursor and last cursor are equal, the
identifier is appended to the results list. Next, the target identifier x is set as the suc-
cessor from the last postings list, and the cursors in every list are forwarded to x, or
its successor. When the end of any postings list is reached, the algorithm terminates.

In contrast to the term-at-a-time based intersection algorithm SvS used by Asadi
and Lin [3], this intersection algorithm is directly amenable to document-at-a-time
scoring algorithms such as WAND. If a full conjunctive Boolean result set is desir-
able, using a SvS approach is the most efficient processing scheme in practice [9].
However, SvS does not easily support early termination after k items have been iden-
tified, but a WAND-like traversal of the lists does.

Boolean Conjunction with Static Scores
The effectiveness of Boolean conjunction as a filtering stage can be enhanced by
the inclusion of a static scoring process. This is commonly achieved by reordering
the document collection using a static score before constructing the index. Common
static scoring regimes include spam score [8], PageRank [19], or document length. If
k documents are to be retrieved, the first k that are identified at step 7 of Algorithm 1
are the ones returned – they will have the highest static score amongst all documents
that contain all of the query terms.

It is also possible to integrate on-the-fly static scoring into Algorithm 1 by adding
a min-heap structure as part of the APPEND operation at step 7. The advantage of this
arrangement is that the same index can be used to evaluate a range of different static
scores; the drawback is that processing must be completed across all documents, and
execution cannot be terminated once k matching items have been determined. Unless
otherwise noted, we assume here that the collection is pre-ordered according to static
score, and that the first k that contain all of the query terms according to a single
static scoring method are the ones passed through to the ranking stage.

WAND and MaxScore
A third filtering option to use is an efficient bag-of-words scoring algorithm such as
WAND (Weak AND, or Weighted AND) [5] or MaxScore [24, 27]. Both algorithms
can be used with a variety of ranking functions, including the Okapi BM25 compu-
tation and methods based on language models. Macdonald et al. [16] document the
advantages and disadvantages of using a bag-of-words filtering step for second stage
learning to rank algorithms. Asadi and Lin [3] and Wang et al. [28] also investigate
various trade-offs with bag-of-words filtering in multi-stage retrieval architectures.

Aggressive WAND
The WAND algorithm is defined as follows. Given a list of Boolean indicator vari-
ables x, x, . . . , xq with xi ∈ {0, 1} indicating whether or not the i th term in the
query appears in the current document, a list of positive weights U, U, . . . , Uq with
Ui indicating the largest score contribution that the i th term in the query gives rise to
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in any document in the collection, and a threshold t,

WAND(x, U, . . . , xq, Uq, t) ≡

 ∑
1≤i≤q

xiUi ≥ t

 .

Therefore, WAND is a Boolean indicator that is 0 when there is no possibility that the
score for the current document can exceed t, and 1 if and only if it can. Let smin be
the value of the k th largest document score that has been generated to date in the
computation. In the aggressive WAND strategy the indicator

WAND(x, U, . . . , xq, Uq, θ · smin)

is used to provide guidance as to whether the current document should have its score
computed.

If θ = 1 then a standard evaluation takes place, and every document that might
be able to enter the heap will be scored, with the overall top-k items guaranteed to be
returned. When θ > 1, the barrier is raised, and fewer documents are scored, on the
presumption that any documents that have scores that are close to the heap’s lower
limit at the time they are first encountered are likely to either not make it in to the
heap at all, once their scores are computed; or even if they do make it in to the heap,
to be evicted again during the course of the remaining processing. The risk is that
there are more documents with WAND estimates a little above smin at the time they
are processed, plus have actual similarity scores also greater than smin; and that the
computation as a whole has stabilized, so that smin does not rise very much subse-
quently, and hence that these documents would enter the heap and then remain there.
The larger θ, the greater the risk that such errors might occur. In the limit, if θ =∞,
only the first k documents evaluated get added to the heap, and no other documents
will be scored. The experiments reported in the next section consider several θ values
greater than one, exploring the balance between filtering effectiveness and processing
efficiency. In their paper describing WAND, Broder et al. [5] also note that θ might
be used as a parameter to accelerate searching while risking the score-safe nature of
the computation. One of the contributions of this paper is a detailed exploration of
the usefulness of the aggressive WAND approach.

Scored Boolean WAND
Another variation on WAND is to only Okapi-score documents which are a full con-
junctive match, and contain all of the query terms. This is implemented as a modifica-
tion to the Adaptive Intersection algorithm shown in Algorithm 1, with the APPEND
operation at step 7 replaced by first an evaluation of the Okapi score of that docu-
ment, then a test against the entry threshold for a min-heap containing the k largest
scores accumulated for documents processed to this moment, and then finally, if the
new score is greater, suitable heap operations to update the state of the heap. This
variation on WAND has a similar effectiveness profile to the #band operator in Indri,
which is not optimized for performance. In general, θ has less of an effect on scored
Boolean WAND than it does in the standard Okapi computation, since the fact that all
of the query terms must always appear means that the sum of the upper bound scores
in pivot evaluation is always relatively high.
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Other Approaches
Wu and Fang [30] present another compromise between Scored Boolean and Static
Boolean. The key idea is to use a decision tree with per term IDF values to pri-
oritize the matches. The efficiency and effectiveness horizon of this approach lies
between the two methods explored in this work. Asadi and Lin [3] also investigate
the impact of disjunctive and conjunctive WAND when used as a filtering step for a
learning-to-rank second stage derived from Lambda Mart. Asadi and Lin conclude
that conjunctive WAND was the best compromise as the final effectiveness results
were statistically indistinguishable from the disjunctive WAND filter. But they do not
consider aggressive WAND variations, or the impact of alternative second stage runs.
Finally, Wang et al. [28] present a cascaded learning-to-rank approach to iteratively
shrink the candidates evaluated. The approach is efficient and effective in practice,
but relatively difficult to separate into distinct stages for independent evaluation.

5 Validation Experiments

Experimental Setup
In order to validate the use of MED to establish a correlation between filtering effec-
tiveness and end-to-end effectiveness, a detailed evaluation using judged topics has
been undertaken, reinforcing the similar experiments carried out by Tan and Clarke
[25]. All of the experiments described in this section and the next section use Part B of
the ClueWeb 2009 collection (CW09B); in this section (only), the 2010 and 2012 Ad-
Hoc queries from the TREC Web Track are also used (50 queries per year), together
with the relevance judgments associated with them. We refer to these collections of
topics as AH2010 and AH2012 respectively.

To ensure our effectiveness results are consistent with commonly used search en-
gines, we use version 5.6 of Indri. For Indri Boolean runs, we use the #band operator;
for Language model runs we use the default parameters; and for Okapi BM25 runs
we use k1 = 0.9, b = 0.4, k3 = 0, since these values consistently give better results
than the default parameters [26]. All runs employ stemming using the Krovetz stem-
mer, and the default stopwords list is used when stopping is enabled. Runs without
stopping were also carried out.

Results
Table 1 summarizes the filter-stage combinations used for the validation and effi-
ciency experiments. For all of the filter stage runs, we investigated four different
types of indexes: Unstopped and Unpruned; Stopped and Unpruned; Unstopped and
Pruned; and, fourthly, Stopped and Pruned. The pruned indexes were restricted to
only include documents with spam scores greater than 70, using the Fusion scores
described by Cormack et al. [8]. Each of the listed filter-stage options was evaluated
to depths k of 20, 50, 100, 200, 500, 1,000, 2,000, 5,000, and 10,000.

Two different orderings by PageRank were also used. The first version used un-
normalized raw PageRank scoring; the second version used the binned log probability
values. Both versions used are freely available on the ClueWeb09 Wiki2.

2 http://boston.lti.cs.cmu.edu/clueweb09/wiki/tiki-index.php?page=PageRank
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Stage One Run Methods Runs

Bag-of-words, language model, Dirichlet smoothing (Indri), × stopped or not,
× spam-pruned or not

4

Bag-of-words, BM25, k1 = 0.9, b = 0.4 (Indri), × stopped or not, × spam-pruned or not 4

Bag-of-words, aggressive WAND, BM25, k1 = 0.9, b = 0.4, stopped, not spam-pruned,
θ ∈ {1.0, 1.02, 1.05, 1.1, 1.2, 1.5, 2.0}

7

Scored Boolean, WAND, BM25, k1 = 0.9, b = 0.4, only used in Section 6 0

Scored Boolean, Indri #band, × stopped or not, × spam-pruned or not 4

Boolean, static pagerank as raw scores, × stopped or not, × spam-pruned or not 4

Boolean, static pagerank as bucketed log probability prior, × stopped or not,
× spam-pruned or not

4

Boolean, static fusion spam score, × stopped or not, × spam-pruned or not 4

Table 1: Summary of filter stage mechanisms explored. A total of four different Indri indexes were con-
structed from CW09B for each filter type: an unstopped index, a stopped index, an unstopped index con-
taining documents with spam scores greater than 70 only, and a stopped index containing documents with
spam scores greater than 70 only. In the three static Boolean approaches, document length was used as a
secondary key. A total of 6× 4+ 7 = 31 filtering mechanisms were tested in the experiments reported in
this section.

Collection TREC Run Identifier Depth

MQ2009 uogTRMQdph40 1,000
AH2010 IvoryL2Rb 10,000
AH2012 DFalah121A Variable depth (d = 11 – 2,009)

Table 2: Second stage runs used as reference points.

For gold standard final ranking stage runs, we employed the top runs submitted
to TREC for the corresponding query sets. These are listed in Table 2. For AH2010
and AH2012, the selected runs achieved the best performance over Part B of the
ClueWeb 2009 collection under the primary measure used for reporting track results
(ERR@20).

The top plot of Figure 1 shows the correlation between measured MEDRBP0.95 and
measured AP. The bottom plot of Figure 1 shows the correlation between measured
MEDDCG20 and measured AP. These plots cover a suite of 31 different filter stages,
and nine different depths k for each first stage. For this experiment, the measures are
computed over the 50 queries of the AH2010 collection, with IvoryL2Rb forming the
gold standard final-stage ranked run, assumed to reorder the documents provided by
the filter phase according to the similarity score computed by the original TREC run.
The performance of the final stage with no early-stage filtering is shown by the line
at 0.1358. The diagonal lines demonstrate the clear inverse relationship between end-
to-end AP and, respectively, MEDRBP0.95 and MEDDCG20 In this figure the smooth
transition from good overall performance to bad overall performance suggests that
the good filter-phase options are well-matched to the final stage computation that is
being used.
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Fig. 1: Correlations between MEDRBP0.95 and MEDDCG20 and measured AP using the AH2010 collec-
tion, 50 queries, and IvoryL2Rb as the final ranking stage. Measured AP values are computed using
standard methods and software (trec eval and TREC 2010 adhoc relevance judgements). Kendall’s τ
correlation coefficients are−0.931 and−0.910 respectively. Each of the 279 points represents one of 31
distinct filter stages employed at one of nine filter-stage depths, ranging from k = 20 to k = 10,000. The
dashed line indicates the performance of the final stage with no early-stage filter. Circles indicate early-
stage filters that use query-dependent ranked retrieval; squares indicate early-stage filters that use Boolean
retrieval with static ranks.
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Fig. 2: Correlations between MEDRBP0.95 and MEDDCG20 and measured RBP0.95 using the AH2010
collection, 50 queries, and IvoryL2Rb as the final ranked stage. Measured RBP0.95 values are com-
puted using standard methods and software (rbp eval-0.5 and TREC 2010 adhoc relevance judgements).
Kendall’s τ correlation coefficients are −0.875 and −0.882 respectively. Each of the 279 points repre-
sents one of 31 distinct filter stages employed at one of nine filter-stage depths, ranging from k = 20 to
k = 10,000. The dashed line indicates the performance of the final stage with no early-stage filter. Circles
indicate early-stage filters that use query-dependent ranked retrieval; squares indicate early-stage filters
that use Boolean retrieval with static ranks.
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Fig. 3: Correlations between MEDRBP0.95 and MEDDCG20 and measured NDCG@20 using the AH2010
collection, 50 queries, and IvoryL2Rb as the final ranked stage. Kendall’s τ correlation coefficients are
−0.837 and −0.854 respectively. Measured NDCG@20 values are computed using standard methods
and software (gdeval.pl and TREC 2010 adhoc relevance judgements, with four relevance grades).
Kendall’s τ correlation coefficients are −0.837 and −0.854 respectively. Each of the 279 points rep-
resents one of 31 distinct filter stages employed at one of nine filter-stage depths, ranging from k = 20
to k = 10,000. The dashed line indicates the performance of the final stage with no early-stage filter.
Circles indicate early-stage filters that use query-dependent ranked retrieval; squares indicate early-stage
filters that use Boolean retrieval with static ranks.
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Fig. 4: Correlations between MEDRBP0.95 and MEDDCG20 and measured ERR using the AH2010 col-
lection, 50 queries, and IvoryL2Rb as the final ranked stage. Measured ERR values are computed using
standard methods and software (gdeval.pl and TREC 2010 adhoc relevance judgements, with four rel-
evance grades). Kendall’s τ correlation coefficients are −0.835 and −0.836 respectively. Each of the
279 points represents one of 31 distinct filter stages employed at one of nine filter-stage depths, ranging
from k = 20 to k = 10,000. The dashed line indicates the performance of the final stage with no early-
stage filter. Circles indicate early-stage filters that use query-dependent ranked retrieval; squares indicate
early-stage filters that use Boolean retrieval with static ranks.
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Fig. 5: Correlation between MEDRBP0.95 and measured AP using the AH2012 collection, 50 queries, and
DFalah121A as the final ranked stage. Measured AP values are computed using standard methods and
software (trec eval and TREC 2010 adhoc relevance judgements). Kendall’s τ correlation coefficient is
−0.804. Each of the 279 points represents one of 31 distinct filter stages employed at one of nine filter-
stage depths, ranging from k = 20 to k = 10,000. The dashed line indicates the performance of the
final stage with no early-stage filter. Circles indicate early-stage filters that use query-dependent ranked
retrieval; squares indicate early-stage filters that use Boolean retrieval with static ranks.

Early-stage filters with MEDRBP0.95 values under 0.15 (or MEDDCG20 values un-
der 0.75) have little impact on end-to-end effectiveness as measured by AP. These
early-stage filters are based on bag-of-words ranked retrieval methods (for example,
BM25) and large retrieval depths (for example, k = 10,000). Their low MED values
suggest that they are providing the final stage with an appropriate set of documents
for re-ranking, even though the reranking stage incorporates ranking methods and
features not found in these filter stages, including a learned ranker and term proxim-
ity [12]. With smaller values for k, the MED values of these filters increase as their
end-to-end performance decreases. Filter stages with MEDRBP0.95 values over 0.90
(or MEDDCG20 values over 4.5) use Boolean retrieval and smaller values of k.

While filter stages with low MED values provide essentially the same end-to-end
effectiveness, their low MED values serve to differentiate them, with lower values
suggesting a better fit with the final stage ranker. The AP values are not able to pro-
vide this differentiation, possibly due to the presence of unjudged documents, which
are assumed to be non-relevant. By treating the output of the final stage as a gold
standard and directly measuring the impact of filtering in an early stage, we avoid the
complexities introduced by these unjudged documents.
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Figure 2 shows equivalent plots for measured RBP, a shallower effectiveness met-
ric than AP; Figure 3 shows equivalent plots for measured NDCG@20, using graded
relevance assessments; Figure 4 shows equivalent plots for measured ERR, also using
graded relevance assessments. The flattening towards the left of these plots suggests
that these metrics are more sensitive than AP to distinctions between filtering stages,
although the same general trends are observed, particularly for higher values of MED.

While we do not show plots, similar correlations also arise when other collec-
tions and effectiveness measures. Effectiveness measures focused on precision at low
ranks, particularly ERR, are less sensitive to the choice of early-stage rankers, with
wide ranges of MED values corresponding to similar measured end-to-end effec-
tiveness. This relative tolerance is as expected – shallow end-to-end metrics can be
satisfied by rankings with more divergence than can deep end-to-end metrics, since
the second ranking stage can still find the documents it needs, even if further down
the first-phase’s output, and get them to the top of a ranking for the shallow metric
to benefit from. That is, if a deep-weighted MED evaluation is carried out as a pre-
dictor of a shallow end-to-end metric, higher MED scores can be regarded as being
acceptable.

Note that in each of Figures 2, 3, and 4 there are filtering combinations evident
that have higher effectiveness scores according to the target metric than the reference
run being used as a benchmark for measured performance. The MED score computed
for a particular pairing of runs provides a guarantee that one run cannot score more
than a certain amount lower than the other according to the given metric, but cannot
provide any guidance as to whether one of the runs outperforms the other. The lat-
ter relationship can only be established through the use of comprehensive relevance
judgments, in conjunction with a statistical test for significance. In any case, if filter-
ing improves the performance of the second-stage ranker, this highlights a protential
problem with that stage, which should be investigated from that perspective.

Figure 5 shows a more complex situation. For this experiment, the measures are
computed over the 50 queries of the AH2012 collection. The run DFalah121A forms
the final ranking stage, chosen for its excellent performance on the 50 queries of
AH2012 when measured by ERR [1]. This run took unusual approaches to indexing
and query processing, making substantial use of external resources.

There are a number of points to be noted. First, none of the early-stage filters
generates the documents that the final stage is wishing to see in the top-ranked po-
sitions, and the result is that MEDRBP0.95 is never less than about 0.2. Second, this
discrepancy does not greatly harm the measured AP score for the combined run. In-
deed, the best early-stage filters actually increase AP substantially above the score
of the ranking stage without filtering, as shown by the line at 0.1203. These filtering
stages are essentially forcing the ranking stage to improve under the recall-based AP
effectiveness measure, by restricting the set of the documents it can rank. Third, the
correlation between MEDRBP0.95 and measured AP is weaker than in Figure 1, again
suggesting that these early stage filters may be a poor fit with this final stage.

While the improvements to AP and the weaker correlation would not be visi-
ble without relevance judgments, the poor fit would be noticeable from the lack of
low MEDRBP0.95 values. This example emphasizes an important limitation of our ap-
proach. We assume that the final ranking stage provides an acceptable gold standard
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for comparing early-stage filters. Poor end-to-end performance cannot be detected by
the application of MED.

6 Judgment-Free Measurement of Effectiveness Tradeoffs

We now explore the relationship between filter-stage retrieval effectiveness and effi-
ciency using a large query log, and MEDRBP as a measure for filtering effectiveness.

Experimental Resources
For the efficiency experiments, 40,000 queries from the 2009 Million Query Track
were used with a stopped and unpruned CW09B index. We refer to this combination
as MQ2009. The uogTRMQdph40 system is used as the gold standard, as it repre-
sents the top-scoring system (when measured over the small subset of the queries
that were evaluated) that returned runs for all of the large set of 40,000 MQ2009
queries. Algorithms were implemented in C++ and compiled with gcc 4.8.1 using –O3
optimizations; and experiments were run on a 24 core Intel Xeon E5-2630 running
at 2.3 GHz using 256GB of RAM. All efficiency runs are reported as the median of
the per query execution times of a single execution of a complete stream containing
one instance of each query in MQ2009, executed entirely in-memory. Postings lists
are stored compressed using the FastPFOR library [15], with skipping enabled. As
discussed in the previous section, each of the listed filter-stage options was evaluated
to depths k of 20, 50, 100, 200, 500, 1,000, 2,000, 5,000, and 10,000.

Filter Stage Effectiveness
Figures 6 and 7 demonstrate typical outcomes. In each of the two plots, MEDRBP0.95

is used as the effectiveness assessment, and the depth k of the filter-phase output is
plotted on the horizontal axis. The reference run in both cases came from the Univer-
sity of Glasgow (run uogTRMQdph40).

In Figure 6, which makes use of an Okapi similarity computation for the filtering
phase, there is a clear inverse relationship between k and the upper bound on quality.
Passing as few as 1,000 documents to the final ranking phase is sufficient to obtain
a MEDRBP0.95 score of 0.2, which is suggestive of good quality final outcomes (Fig-
ure 1). Nonetheless, Figure 6 shows a wide variance of MEDRBP0.95 scores across the
set of queries. While the median (marked by the overlaid line) shows a clear trend,
there are upper outlier queries for which even deep filtering to depth 10,000 is still
inadequate. For example, “buying first home” (query #50066) has a MEDRBP0.95

value of one. Okapi scores for the top 10,000 documents fall into the narrow range
[3.75338, 3.86595], suggesting that the collection includes many documents contain-
ing these terms in similar proportions. None of these 10,000 documents are ranked
above 1,000 by the final ranking stage.

On the other hand, Figure 7 shows that filtering based on Boolean conjunction and
a static PageRank score is unlikely to give good effectiveness in a multi-stage retrieval
system, regardless of the number of documents identified by in the filtering stage.
That is, the presence of all of the query terms alone is of limited usefulness towards
identifying potentially relevant documents, even when coupled with PageRank as an
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Fig. 6: Okapi ranking as early stage filter to retrieve k documents, then using uogTRMQdph40 as the final
ranking stage to order them using the stopped unpruned CW09B collection. Boxplots show MEDRBP0.95

values over the 40,000 MQ2009 queries, with boxes extending from the first to the third quartile and with
whiskers extending to the 10 th and 90 th percentiles. Median values are connected by lines.

ordering criteria. Again, however, there are outlier queries that are at odds with this
overall trend. The query “basscat boats” (#36318) provides one example. Only
102 documents contain both terms, so that even at depth 100 the MEDRBP0.95 score
falls close to zero.

Across the set of filter-stage methods explored, there was a consistent separation –
they either gave plots that corresponded to Figure 6, or they gave plots similar to Fig-
ure 7. The differentiating criteria was very simple. Methods based on Boolean con-
junction, even when combined with a static pre-ordering criteria such as PageRank,
gave uniformly poor results, whereas methods that involved an element of ranking
performed as shown in Figure 6, with a gradated trade-off between k and measured
effectiveness. Within the latter group there were small difference in MEDRBP0.95.
For example, aggressive WAND processing with θ = 2.0 was less effective (or
rather, gave higher MEDRBP0.95 values) than when smaller values of θ were used.
This outcome is consistent with our validation experiments in the previous section
(Figures 1, 2, and 5) where these Boolean filters (marked as squares in the plots)
exhibited poor performance.

Filtering Stage Evaluation Cost
Figure 8 shows the flip side of those effectiveness results, plotting filter-stage evalu-
ation time as a function of k. Strict conjunctive Boolean evaluation is extremely fast,
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Fig. 7: Boolean conjunction with the collection pre-ordered by PageRank as the filter stage to re-
trieve k documents, then using uogTRMQdph40 as the final ranked stage to order them. Boxplots show
MEDRBP0.95 values over the 40,000 MQ2009 queries, with boxes extending from the first to the third
quartile and with whiskers extending to the 10 th and 90 th percentiles. Median values are connected by
lines.

partly because (using Algorithm 1) the processing required per answer document is
modest, and partly because filter-stage evaluation can be abandoned just as soon as k
matching documents have been identified (an option not shown in Algorithm 1, but
trivial to implement). The execution time trends shown for the WAND variants are
reflected in operation counts for document scoring, heap insertions, and so on, con-
firming the basis of the time savings. The fastest of the aggressive WAND strategies,
using θ = 2.0, is around an order of magnitude slower than pure Boolean filtering –
at least one of the postings lists for the terms must be fully scanned before any doc-
uments can be returned at all, and the per document processing cost is also higher.
That aggressive WAND variant is in turn is another one to two orders of magnitude
faster than the set-safe θ = 1.0 WAND version.

The scored Boolean WAND method provides a different computational profile
to the aggressive WAND implementations. Regardless of k, it performs roughly the
same amount of work in terms of scoring; and the reduced number of heap operations
when k is small is not enough to have a major influence on execution cost.

Filter-Stage Tradeoffs
Figure 9 depicts filter stage execution cost, now as a function of MEDRBP0.95, as k
is varied. The suite of alternative methods describes a trade-off frontier that defines
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k, the number of documents required, using 40,000 queries and the stopped unpruned CW09B collection.

a subset of techniques that are of possible interest. That subset is dominated by ag-
gressive WAND approaches, except when MED is required to be very small. The low
fidelity of the static-score conjunctive Boolean methods means that they do not con-
tribute to the frontier except when query processing must be very fast, in which case
high MED scores must be tolerated.

Combining the Two Stages
In a retrieval system the overall cost of generating a results page and returning it to
the user includes components other than the time spent computing the filtered short-
list of possible answers. Most notably, the cost of performing the final ranking stage
on the k1 documents supplied by the filtering stage must be allowed for, and the cost
of creating answer snippets for the top k2 documents identified by the final ranking
stage. If the existence of a “direct” file is assumed, from which a pre-generated set
of features for any specified document can be quickly retrieved, these costs are lin-
ear in k1 and k2 respectively; and with k1 � k2, the cost of the final ranking stage
is the critical one. Asadi and Lin [2] experimented with a variety of efficient index
representations and showed the average time per document to perform a feature ex-
traction in the ClueWeb09B collection was around 14–20 µs. The number of features
required and the respective cost to retrieve or calculate each largely depends on the
final ranking stage algorithms used, but a 20 µs per document penalty is a reasonable
lower bound for an efficient and effective final stage approach.

Figure 10 is derived from Figure 9, and is generated by adding an allowance for
the final stage computation on k documents to each query’s execution time, computed
at a (conservative) rate of 0.02 milliseconds per document. The Boolean conjunctive
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Fig. 9: Filter-stage effectiveness-efficiency trade-off curves, showing the median query execution time as a
function of mean MEDRBP0.95 measured for a set of depths k, taken across 40,000 queries on the stopped
unpruned CW09B collection.

mechanisms are unattractive when viewed in this light, and the aggressive WAND
methods define the frontier for best combinations of efficiency and effectiveness. A
very similar pattern of results was obtained with a final stage scoring cost of 0.04 mil-
liseconds per document, indicating that the overall relative costs are not particularly
sensitive to the actual value used.

Our work represents an extension and refinement of previous measurements by
Asadi and Lin [2, 3]. They also compared a range of filtering methods, including
Boolean conjunction and WAND-based disjunction. Building on their results, we
have used a faster Boolean computation that allows simple early exit once k doc-
uments have been identified, and have also considered aggressive WAND techniques.
Moreover, we base our fidelity estimates on MED computations over large numbers
of queries and do not require relevance judgments; theirs are based on NDCG scores
that, as they demonstrate, may be vulnerable to the uncertainties in measurement as-
sociated with unjudged documents, and require relevance judgments for all queries
used in the final evaluation.

Limitations
We reiterate that we are in no way asserting that the filters used in our experiments
represent the state of the art. For example, previous work by Brin and Page [4] and
Macdonald et al. [16] has shown that in web search applications structural elements
in documents such as anchortext, title, and headings are valuable in early-stage filters
in order to identify likely candidate documents. These, and other elements, can be
combined with ranked conjunctive queries to build filters that are more selective than
the range we have explored here. Richardson et al. [20] show that machine learning
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Fig. 10: Combined effectiveness-efficiency trade-off curves for multi-stage retrieval, showing the median
query execution time as a function of mean MEDRBP0.95 measured for a set of depths k, taken across
40,000 queries on the stopped unpruned CW09B collection, and with the final ranking stage computation
assumed to require 0.02 milliseconds per document.

is also a valuable early-stage tool for static ranking. Rather than define new filters,
or even measure the performance of previous ones, our goal has been to describe a
methodology whereby which any proposed change in a retrieval system – including
the introduction of a new filter – can be automatically checked for plausibility using
very large query pools, without incurring the expense of relevance judgments across
all of those queries.

7 Summary

We have described an approach that can be used for effectiveness measurement for
early stage static and query-based filtering, when the purpose is to select a useful
subset of a large collection to be ranked using a final-stage reordering mechanism.
Our approach does not require the final stage output to be a proper subset of the fil-
tering stage output being evaluated, allowing filters to be evaluated independently;
and has the significant benefit of not requiring relevance judgments. Using this tech-
nique, and a large collection of queries and documents, we have measured efficiency-
effectiveness trade-offs in multi-stage query systems.

In contrast to previous studies of efficiency-effectiveness trade-offs, which were
limited to smaller query sets, our methods are applicable to sets containing thousands
of queries. As illustrated by the examples and figures of Section 6, our approach
allows us to consider the variance in query performance across these thousands of
queries. Identifying queries that perform particularly poorly provides insights into the
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behavior of first-stage filters, potentially leading to further improvements. In particu-
lar, by training over large query sets, we may be able to select a early-stage filtering
strategy, or even combinations of filtering stages, for each query on an individual ba-
sis by considering features derived from the index (for example, the size of postings
lists) and from the query itself (for example, the number of query terms). Note also
that MED values can be monitored as queries are processed, meaning that it might
also be possible to develop a feedback loop that reacts to mismatches as they are
detected, and switches to other (or deeper) filters.

Our experiments have made it clear that Boolean conjunction over all query terms
is not suitable as a filtering stage, even when coupled with collection pre-ordering
based on a static score such as PageRank or document length. That is, while k-
prefixes of Boolean conjunctions can be computed very quickly, that alone is insuffi-
cient to provide an interesting multi-stage combination. We also explored a range of
WAND-based computations using Okapi document scoring, including an aggressive
WAND strategy and a scored Boolean WAND approach, both of which do provide
useful trade-offs. By including the cost of a detailed final stage ranker, we were also
able to catalog the end-to-end cost of various combinations of filtering stage and final
ranking stage. The results of this work demonstrate that the aggressive WAND mech-
anism offers clear benefits for early stage filtering, since it can be implemented to ex-
ecute quickly, and provides a range of combinations of θ and k that can be balanced as
required, even on a query-by-query basis. Combining those observations with other
filtering techniques of the sort mentioned earlier – document structural elements, and
learned factors – may well lead to techniques with better cost-effectiveness tradeoffs.
We leave that investigation for future work.

Acknowledgments
We thank the referees for their helpful feedback. This work was supported by the Na-
tional Research Council of Canada, by the Australian Research Council’s Discovery
Projects Scheme (DP140101587 and DP140103256), and by Google. Shane Culpep-
per is the recipient of an Australian Research Council DECRA Research Fellowship
(DE140100275).

References

1. F. H. Al-akashi and D. Inkpen. Query-structure based web page indexing. In
Proc. Text REtrieval Conf., 2011.

2. N. Asadi and J. Lin. Document vector representations for feature extraction in
multi-stage document ranking. Information Retrieval J., 16(6):747–768, 2013.

3. N. Asadi and J. Lin. Effectiveness/efficiency tradeoffs for candidate generation
in multi-stage retrieval architectures. In Proc. ACM-SIGIR Int. Conf. Research
and Development in Information Retrieval, pages 997–1000, 2013.

4. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. In Proc. Int. Conf. on the World Wide Web, pages 107–117, 1998.



Efficiency-Effectiveness Tradeoffs in Multi-Stage Retrieval 29

5. A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Y. Zien. Efficient
query evaluation using a two-level retrieval process. In Proc. Conf. Information
and Knowledge Management, pages 426–434, 2003.

6. S. Büttcher, C. L. A. Clarke, and G. V. Cormack. Information Retrieval: Imple-
menting and evaluating search engines. MIT Press, Cambridge, Massachusetts,
2010.

7. O. Chapelle, D. Metzler, Y. Zhang, and P. Grinspan. Expected reciprocal rank
for graded relevance. In Proc. Conf. Information and Knowledge Management,
pages 621–630, 2009.

8. G. V. Cormack, M. D. Smucker, and C. L. A. Clarke. Efficient and effective spam
filtering and re-ranking for large web datasets. Information Retrieval J., 14(5):
441–465, 2011.

9. J. S. Culpepper and A. Moffat. Compact set intersection for inverted indexing.
ACM Trans. Information Systems, 29(1):1:1–1:25, 2010.
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11. E. D. Demaine, A. López-Ortiz, and J. I. Munro. Experiments on adaptive set
intersections for text retrieval systems. In Proc. Wkshp. Algorithm Engineering
and Experiments, pages 91–104, 2001.

12. T. Eisayed, N. Asadi, L. Wang, J. Lin, and D. Metzler. UMD and USC/ISI: TREC
2010 Web Track experiments with Ivory. In Proc. Text REtrieval Conf., 2011.
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