
Immediate-Access Indexing Using
Space-Efficient Extensible Arrays

Alistair Moffat
The University of Melbourne

Melbourne, Australia
ammoffat@unimelb.edu.au

Joel Mackenzie
The University of Queensland

Brisbane, Australia
joel.mackenzie@uq.edu.au

ABSTRACT
The array is a fundamental data object in most programs. Its key
functionality – storage of and access to a set of same-type elements
in𝑂 (1) time per operation – is also widely employed in other more
sophisticated data structures. In an extensible array the number of
elements in the set is unknown at the time the program is initiated,
and the array might continue to grow right through the program’s
execution. In this paper we explore the use of extensible arrays
in connection with the task of inverted index construction. We
develop and test a space-efficient extensible array arrangement that
has been previously described but not to our knowledge employed
in practice, and show that it adds considerable flexibility to the
index construction process while incurring only modest run-time
overheads as a result of access indirections.

CCS CONCEPTS
• Theory of computation→ Data structures design and anal-
ysis; • Information systems→ Search engine architectures
and scalability; Retrieval efficiency.

KEYWORDS
Extensible arrays; dynamic arrays; text indexing; text querying
ACM Reference Format:
Alistair Moffat and Joel Mackenzie. 2022. Immediate-Access Indexing Using
Space-Efficient Extensible Arrays. In Australasian Document Computing
Symposium (ADCS ’22), December 15-16, 2022, Adelaide, SA, Australia. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3572960.3572984

1 INTRODUCTION
The array is a fundamental data structure used in programming, and
provides support for two elemental operations: store(𝑣, 𝑥) associates
the object 𝑥 with the positive integer index 𝑣 ; and access(𝑣) that
returns the object currently associated with index 𝑣 . In a static
array, the indices 𝑣 are integers in the range 0 ≤ 𝑣 < 𝑛 for some
predefined limiting value 𝑛 that is known at the time the program
is initiated. In an extensible array (also sometimes referred to as a
dynamic array, or a resizeable array) 𝑛 is a non-decreasing value
that is initially zero, and at any given time the range of valid indices
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ADCS ’22, December 15-16, 2022, Adelaide, SA, Australia
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0021-7/22/12. . . $15.00
https://doi.org/10.1145/3572960.3572984

for access() operations is 0 ≤ 𝑣 < 𝑛, and the range of permitted
indices for store() operations is 0 ≤ 𝑣 ≤ 𝑛. The array grows by one
element if a store(𝑛, 𝑥) operation takes place, and the new array
size is then 𝑛′ = 𝑛 + 1.

One well-known implementation of extensible arrays makes use
of a sequence of exponentially-growing array segments that are
allocated dynamically during program execution, with all previous
elements copied to the new larger array segment each time the
previous array becomes full. At any given time the capacity of the
currently allocated array is some value 𝑠 . This array can accom-
modate up to 𝑠 elements, but not 𝑠 + 1. Should 𝑛 increase to the
point at which store(𝑠, 𝑥) occurs, processing of store() and access()
operations is temporarily suspended, and a new array segment of
length 𝑠′ = ⌈𝑠 · 𝑘⌉ for some growth parameter 𝑘 > 1 is created.
The current 𝑛 values are then copied from the old array to the
new, the old array is returned to the pool of available memory, and
the program’s handle variable (typically a pointer) is updated to
indicate the new array. The extensible array can now hold up to 𝑠′
elements, and 𝑛 can resume its climb.

Provided that the sequence of array sizes grows geometrically
(that is, 𝑘 is some fixed value strictly greater than one) the per-
element amortized cost of the required copying is given by 𝑘/(𝑘−1),
which (for fixed 𝑘 > 1) is𝑂 (1); that is, the stall required during the
copying process can be charged as a fixed and constant overhead
to the store() operations that preceded it. Typical values of 𝑘 used
in this scheme include 1.5, 1.62 (the golden ratio associated with
the Fibonacci numbers) and 2.

The drawback of this geometric growth approach is that follow-
ing each growth operation a non-trivial fraction of the allocated
space is unused, and this can be a significant issue if it is anticipated
that the array – or more generally, the set of such arrays required as
the program is running – will eventually grow close to the memory
capacity of the underlying hardware. In particular, immediately
following each expansion the overhead space cost – the number of
allocated elements minus 𝑛, the number of used elements – is given
by 𝑠′ − (𝑠 + 1) ≈ (𝑘 − 1)𝑛, and since 𝑘 > 1, is Θ(𝑛). At the other
end of the growth cycle, immediately prior to an expansion, the
situation is much better, with only the space occupied by the handle
pointer being excess to the data that is currently stored. But in an
amortized sense, taking an aggregate through each whole growth
cycle, the overhead space ratio isΘ(𝑛). Other ways of implementing
extensible arrays are also possible, and are described in Section 2.
But those options share the same costs – while store() and access()
can be carried out in 𝑂 (1) (amortized) time, the overhead space
ratio is Θ(𝑛).

Of course, if it is known that (say) 20 GiB is available for data
storage and that the array may not grow beyond that limit, then a

https://doi.org/10.1145/3572960.3572984
https://doi.org/10.1145/3572960.3572984

fixed array of that size can be created, and the program allowed to
execute until the array size is reached. In this case a single static
array suffices. Or, if the programmust manage two arrays within the
same fixed amount, then one can grow forwards from the beginning
of the segment, and one can grow backwards from the end of
the segment, and the memory has been exhausted when the two
insertion points meet. This approach will again result in efficient
use of the available memory. These strategies cannot, however,
address situations in which three or more extensible arrays are to
co-exist and the goal is to process as much data as is possible within
a fixed amount of memory.

Our exploration in this paper employs a way of implementing
extensible arrays that resolves these problems. The ideal𝑂 (1) worst-
case time store() and access() functionality is maintained, albeit
with slightly higher constant factors in terms of measured operation
speed. Importantly, the peak overhead space cost becomes Θ(

√
𝑛)

in the worst case, that is, asymptotically smaller than the standard
geometric array implementation. Originally due to Brodnik et al. [1],
this approach makes use of a dope vector and a set of strategically
growing array segments. Section 3 describes that structure and
shows how the space and speed bounds are achieved. We have also
implemented and explored this mechanism in the context of an
implementation of a new approach to immediate-access indexing
[8], to quantify the extent to which improved space-efficiency can
be achieved at the cost of increased execution time. Section 4 reports
on those findings, via a sequence of experiments that explore the
trade-off balance between overhead space (where the segmented
array excels) and program running time (where the monolithic and
geometric array approaches excel). Section 5 then completes our
presentation.

2 BACKGROUND
The Geometric implementation for extensible arrays has already
been summarized in Section 1, and is a standard technique described
in many textbooks and implemented in programming language
libraries. A pointer handle is used to store the location of the current
memory segment in use as the array, along with associated meta-
data that includes the current segment size 𝑠 , and the current array
size 𝑛. Once 𝑛 reaches 𝑠 an expansion step is required, to increase
the available capacity to 𝑠′ = ⌈𝑠 · 𝑘⌉ entries. If we are lucky, the
start of the new segment will be coincident with the start of the old
segment, and the pointer need not move, and simply now represents
the same beginning of a larger segment of allocated memory. This
is what might sometimes be expected to occur if a single extensible
array is in operation in a mono-threaded execution environment
and the memory management library (in particular, it’s equivalent
of C’s realloc() function) only shifts to a new base address when
forced to.

More generally, the old and new segments must be assumed to be
disjoint, and at the critical transition moment both must be assumed
to be present simultaneously. That is, the momentary overhead
space cost is 𝑘𝑛 elements, which is a substantial imposition, and
might mean that memory utilization is restricted to less than 50%
of available capacity. Note that this accounting in regard to the
Geometric approach also relies onmemory segments being reusable
after they have been released back into thememory pool. That is not

handle dope vector

0
1
2
3
4
5
6
7

segments of length k

Figure 1: The Sliced implementation of extensible arrays.
Each allocated array segment is 𝑘 elements long, with 𝑘 = 8
used in this example. As shown the array contains 𝑛 = 43
elements and has a current capacity of 𝑠 = 48 items.

in any way guaranteed, and in the absence of a defragmentation
operation it might be that a Geometric extensible array leaves
behind a trail of empty-but-unusable space, further worsening the
effective space overhead ratio.

Another obvious approach to extensible arrays is to employ
a fixed-width two-dimensional structure, itself indexed via what
is known as a dope vector , in an arrangement denoted here as
the Sliced mechanism for extensible arrays. Figure 1 shows an
example in which each segment contains 𝑘 = 8 array elements.
The program’s handle into the structure is again a pointer, which
now provides the address of a vector of pointers – the dope vector.
Each pointer in the dope vector then stores either the address
of an allocated segment of 𝑘 array elements, or is null. Further
segments of 𝑘 elements are added as needed as 𝑛 grows; that means
that the dope vector must itself be an extensible array, perhaps
implemented via the Geometric strategy. To identify the location of
the 𝑖 th item in the one-dimensional array, double indexing is used:
if 𝐴 is the one-dimensional array being stored and 𝐷 the pointer
handle variable that contains the address of the dope vector, and if C-
style pointer/array indexing is assumed, then𝐴[𝑣] ≡ 𝐷 [𝑣/𝑘] [𝑣%𝑘],
where “/” is integer (truncated) division, and “%” gives the integer
remainder after division. When 𝑘 is a power of two, the “/” and “%”
operations can be implemented by shift-right and mask instructions
respectively, and are likely to execute faster than when 𝑘 is not a
power of two and integer division is required.

Making the simplifying assumption that each element in the
array 𝐴[] is the same size as each element in the dope vector 𝐷 [],
the minimum size for the dope vector is thus ⌈𝑛/𝑘⌉, and hence
the overhead space cost is again Ω(𝑛), even in the best case. In
the worst case, the last segment might have 𝑘 − 1 empty elements,
adding Ω(𝑘) to the peak space overhead. In addition, if the dope
vector is implemented via the Geometric strategy (by doubling
when required, for example), further overhead must be allowed for,
and the peak space overhead might be as large as 2𝑛/𝑘 +𝑘 − 1. That
is, the Sliced approach also has an average and peak overhead space
requirement that is linear in 𝑛, but with a greater ability to get close
to the available memory limit if an absolute upper cap must be
respected. The drawback of the Sliced approach is that each array
access requires two pointer dereferencing operations compared to
one for theGeometric approach, and hencemight require more time

dope vector

0
1
2
3
4
5

segments of variable length

…

23

6
7
8
9

10
11

10 more segments of 16 elements
22

12 segments of 32 elements

4 in total

16 in total

64 in total

256 in total
1024 in total

Figure 2: Overall structure of the space-efficient extensible
array structure. The program’s handle variable contains the
address of a dope vector; that dope vector then stores the
locations of a set of increasingly larger array segments. For
example, the first 11 segments have a total capacity of 64
array elements.

for each store(𝑖, 𝑥) and access(𝑖) operation, slowing down whatever
application task is making use of the array.

Other options exist between these two. For example, one possible
hybrid is tomake use of a dope vector and a growing set of segments,
with the 𝑖 th segment of length ⌈𝑘𝑖 ⌉ where 𝑘 > 1 is again a growth
parameter. The total capacity of a structure of𝑚 segments is thus
approximately 𝑘0 + 𝑘1 + · · · + 𝑘𝑚 = (𝑘𝑚+1 − 1)/(𝑘 − 1), and that
𝑚 th segment is required as soon as 𝑛 = (𝑘𝑚 − 1)/(𝑘 − 1) + 1
is reached. That is, the overhead space can again be as large as
(𝑘−1)𝑛, but in this arrangement there is no risk of released segments
creating fragmentation (because no segments are released); there
is no requirement for momentary additional over-allocation at the
segment transitions; and nor is there any copying of elements at
the end of each growth cycle. The latter means that if each new
segment can be created in𝑂 (1) time (which is assumed throughout,
and typical of memory management software) then the 𝑂 (1) per-
element cost of store(𝑛, 𝑥) operations is worst case (rather than
amortized). To access the element at index 𝑣 the position of the
leading “1” bit of 𝑣 is identified to provide the segment number;
and then all of the trailing bits after that first bit are used as an
offset; that is, the dope vector grows in size as 𝑂 (log𝑛). This is the
arrangement that Katajainen [6] refers to as a “pile of arrays”.

The next section describes a more sophisticated hybrid in which
the dope vector grows somewhat faster, an additional cost that is
then recouped via segment lengths that grow at a slower rate than
in the pile of arrays, and thus incur less overhead space.

3 SPACE-EFFICIENT EXTENSIBLE ARRAYS
Figure 2 shows that alternative arrangement of segments, again
indexed by a dope vector and a handle variable (the latter not
shown in the figure). Each segment is a power of two long, with
two segments of length 2, three of length 4, six of length 8, twelve
of length 16, and so on. In general, for integer ℓ ≥ 2 there are
3 · 2ℓ−2 segments of length 2ℓ , and hence the total volume 𝑉 (ℓ) of

Algorithm 1 Computing the mapping from a one-dimensional
array index to a two-dimensional segment number and offset pair.

function mapping(𝑣)
2: if 𝑣 = 0 then

set 𝑏 ← 1
4: else

set 𝑏 ← (33 − clz(𝑣)) ≫ 1
6: set segnum← (𝑣 ≫ 𝑏) + (1 ≪ (𝑏 − 1)) − 1

set offset ← 𝑣 & ((1 ≪ 𝑏) − 1)
8: return ⟨segnum, offset⟩

all segments of length less than or equal to 2ℓ is given by

𝑉 (ℓ) =
{

4 if ℓ = 1
3 · 2ℓ−2 · 2ℓ +𝑉 (ℓ − 1) if ℓ > 1 . (1)

This recurrence has the closed form𝑉 (ℓ) = 22ℓ , a relationship easily
demonstrated by induction: the base case is established by the first
option in Equation 1, for which ℓ = 1; and after substitution, the
second option in Equation 1 yields:

𝑉 (ℓ) =

(
3 · 2ℓ−2 · 2ℓ

)
+
(
22(ℓ−1)

)
= 3 · 22ℓ−2 + 22ℓ−2

= 22 · 22ℓ−2

= 22ℓ ,

as is required to complete the induction.
Now suppose that an extensible array using this structure has

𝑛 elements and maximum segment length 2ℓ , that is, 𝑉 (ℓ − 1) <
𝑛 ≤ 𝑉 (ℓ). The first of those two inequalities yields 22(ℓ−1) < 𝑛;
which means that 2(ℓ − 1) < log2 𝑛; and hence ℓ < 1 + (log2 𝑛)/2.
The longest segments in this extensible array of 𝑛 items must thus
contain

2ℓ < 21+(log2 𝑛)/2 = 2 · 2(log2 𝑛)/2 = 2
√
𝑛 (2)

elements. Now consider a second function, 𝐿(ℓ), defined as the
largest segment number for which the segment length is 2ℓ . For
example (referring to Figure 2) 𝐿(1) = 1, 𝐿(2) = 4, and 𝐿(3) = 10.
This function is also defined by a recurrence:

𝐿(ℓ) =
{

1 if ℓ = 1
3 · 2ℓ−2 + 𝐿(ℓ − 1) if ℓ > 1 , (3)

and is easily shown to have the closed form 𝐿(ℓ) = 3 · 2ℓ−1 − 2.
From Equation 2 we have 2ℓ−1 <

√
𝑛, and hence

𝐿(ℓ) < 3
√
𝑛 − 2 . (4)

Between them, Equations 2 and 4 provide a very useful outcome.
Equation 2 asserts that the most recently added segment in this ex-
tensible array structure can never have more than 2

√
𝑛 empty array

elements in it, with empty elements in the last segment being one
way in which space overhead might accrue. Similarly, Equation 4
bounds the space required by the dope vector component, also
proportional to

√
𝑛 (even when the dope vector is implemented via

a Geometric extensible array), with the dope vector being the other
way in which space overheads arise. In combination, with both
forms of additional space bounded, the space overhead associated
with this structure is 𝑂 (

√
𝑛).

decimal, v =

00000000 00000000 00010001 11010111binary, v =

clz(v) = 19 bits
33 – clz(v) = 14 bits

0100011 1010111split into two b = 7-bit parts

0111111add 2 – 1 to the first part b–1

1100010binary, segnum =

98decimal, ⟨segnum, offset⟩ = 87

4,567

Figure 3: Example of the mapping from element number 𝑣 to
segment number and offset within that segment. The array
index 𝑣 = 4,567 is mapped to segment number 98 and offset
87 via the process described in Algorithm 1.

Access to an element𝐴[𝑣] in order to carry out𝐴.store(𝑣, 𝑥) and
𝐴.access(𝑣) operations in this more complex arrangement is again
based on computing a segment number and an offset within that
segment. Algorithm 1 shows how that is done. Taking the index
𝑣 as a 32-bit unsigned binary number, an even number of leading-
zero bits are identified and then ignored in the remainder of the
computation. The number of leading zeros is computed using the
clz() (count leading zeros) hardware instruction applied as a built-
in operator (step 5), with the subtraction from 33 and right-shift by
one (division by two) resulting in identification of the smallest 𝑏
such that 2𝑏 covers all of the non-zero bits in 𝑣 . Note that clz() is
not defined for an argument of zero,1 and that even if it was (and
yielded 32), the special case at step 3 would still be required.

The 2𝑏-bit value that results is the minimum even-length value
that includes all of the required bits of 𝑣 . It is then regarded as being
two 𝑏-bit integers. The high-order 𝑏 bits are transformed into a
segment number via the addition of 2𝑏−1−1 (step 6); that is the only
adjustment needed in order to handle the fact that the segments
are of variable length. The low-order 𝑏 bits (step 7) are then the
position of element 𝑣 within a segment of length 2𝑏 .

For example, in Figure 2, segment 5 contains the array elements
at index positions 16 ≤ 𝑣 ≤ 23; that is, the binary range 010 000 ≤
𝑣 ≤ 010 111, with 6 bits of precision required to capture each of
those values, and hence 𝑏 = 3 the corresponding bit-width of each
of the two halves. The left 𝑏 bits are then converted by the addition
of 2𝑏−1 − 1 = 3 = 011 to become 101 = 5, as is required for segnum;
and the right 𝑏 bits form the offset within that segment of eight
elements. That is, after the application of Algorithm 1, we have
𝐴[𝑣] ≡ 𝐷 [segnum] [offset] accessible in𝑂 (1) time. Figure 3 gives a
second example in which each of the two address components is
𝑏 = 7 bits long.

The mechanism presented here is very similar to one that was
first described more than twenty years ago by Brodnik et al. [1], and

1https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html, accessed 27 August 2022.

rediscovered2 by us as we considered extensible arrays in connec-
tion with immediate-access indexing (described in the next section).
Brodnik et al. also demonstrated that the overhead space associated
with any dope vector-based scheme must be at least Θ(

√
𝑛). That

argument can be summarized as follows: if none of the segments
are of length at least

√
𝑛, then the dope vector must contain more

than
√
𝑛 entries in it, and all of the dope vector contributes to space

overhead. On the other hand, if the dope vector is of length less
than
√
𝑛, then at least one of the segments must have more than

√
𝑛

elements in it. Moreover, if any segment has more than
√
𝑛 elements

in it, then at the time that segment was first allocated (required by
the first reference to some index 𝑛′ < 𝑛), the space overhead due
to that segment must have also been at least

√
𝑛 >
√
𝑛′ elements.

Either way, the overhead storage must be Ω(
√
𝑛).

Katajainen [6] also included this structure in their survey, calling
it a “pile of hashed array trees”. We prefer to call it an SQarray, an
array that “resets” and increases the segment sizes at boundaries
determined by the squares of powers of two. Sitarski [9] describes
a related structure in which all segments are the same length at
any given moment of time, and which is periodically completely
rebuilt each time 𝑛 goes past a square of an integer power of two.

Finally, we note that in very recent work Tarjan and Zwick [10]
have developed new techniques for storing extensible arrays that
reduce the overhead space required while the array is stable at
some given size and serving access operations, at the expense of
increased insertion times, and increased peak transitional memory
required during any reorganizations that take place.

4 IMMEDIATE-ACCESS INDEXING
In an online application the goal is to receive and process a stream
of requests, carrying them out sequentially. The task we are inter-
ested in here is that of immediate-access indexing, with two request
types to be supported: insertions, which provide a new document
that must be ingested and added to a collection of previously in-
serted documents; and queries, which must return either the set of
documents that match a Boolean query, or must return the top-𝑘
documents as specified by a similarity computation (such as BM25,
see Zobel and Moffat [11] for a description of this and similar mech-
anisms); and must be able to retrieve every document that has been
ingested through until this moment.

For example, documents might be received via an active news-
feed, in the expectation that they will be indexed and immediately
available to online users via interactive queries. Key requirements
in such a scenario are that the ingestion process for each document
should be as fast as possible; the constructed index should be as
compact as possible; any stalls – periods during which request
processing must be paused while internal index reorganizations
are carried out – should be as brief as possible; and stalls should be
as infrequent as possible.

If the document collection already requires more storage than
is available in main memory then processing of queries involves
merging two groups of results, one set generated from a collection
of fully-indexed documents via an index held on secondary storage

2We trust that the reader will share the sense of delight we felt when we invented this
solution for ourselves, and also the sense of chagrin that followed a few days later
when we identified the earlier work of Brodnik et al. [1].

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

evolving corpus

dynamic
shard

…

static
shard

static
shard

index

query stream

query results

Figure 4: Components of a large-scale retrieval system. The
componentwe are interested in is the “dynamic shard” shown
at the top of the figure, and the operations it must support.
(Diagram taken from Moffat and Mackenzie [8].)

(again, see Zobel and Moffat [11] for details), and a second set de-
rived from recent additions via an immediate-access index that is
fully in-memory. The index on secondary storage is an amalgam of
document batches. Each time the current in-memory index reaches
capacity it is flushed to secondary storage and merged with one
or more previous index batches. The collection process then com-
mences a new batch with an empty in-memory index component.
Heinz and Zobel [5], Büttcher and Clarke [2], Lester et al. [7], and
Hawking and Billerbeck [4] all describe index construction mech-
anisms that have this overall structure; and Eades et al. [3] have
explored a restricted variant in which a fixed-sized set of postings
is maintained, and documents are “forgotten” when their postings
leave the window of interest.

Figure 4 shows how an immediate-access index fits within a
large retrieval system. In the schematic some of the shards are
static (and perhaps the result of previous batch mergings) and
are associated with highly optimized index structures (and hence
similarly optimized search protocols); but at least one shard must
be dynamic, and capable of both receiving a stream of documents
to be inserted, and at the same time, handling the queries that are
posed to the system as a whole.

Here we focus solely on that in-memory dynamic component,
which must arbitrarily interleave document insertions and queries.
To meet that objective, our immediate-access index [8] manipulates
a collection of 𝐵-byte blocks, with 𝐵 a fixed value typically in the
range 40 to 80. The blocks are threaded into linked lists of same-
term postings groups using block numbers stored as 32-bit words,
and hence can represent indexes of up to 232𝐵 bytes. The exact
details of this scheme are not important for our purposes here,
and the reader is asked to accept that the primary data structure
required is a “big dumb array” of 𝐵-byte blocks, where “big dumb”
means, “growing to become as large as possible please”; and where
the internals of each 𝐵-byte block will be interpreted according to
the context in which that block is accessed.

If a single immediate-access index is being constructed, then an
upper limit of the memory that will be available using the hard-
ware that will be employed can be precomputed, and then an array
of that maximum size deployed. This Monolithic approach means
that standard array techniques can be employed, with no need for
extensible arrays. However, suppose that each arriving document
is first categorized in some way and must be added to an index

that corresponds to that category. For example, incoming docu-
ments might be classified into English, Spanish, Italian, Japanese,
and so on, with one immediate-access index component required
for each language. That set of immediate-access indexes must be
able to share the total memory pool effectively, and hence must
be implemented via extensible arrays, meaning that controlling
fragmentation and maximizing the total fraction of memory that
is productively used are both important parts of making stalls as
infrequent as possible.

To explore the space of options we have constructed implemen-
tations of our immediate-access indexing scheme using several
different array technologies:
• Monolithic, which can be regarded as a baseline for both space
and speed, provided it is a viable option in the context of the
particular indexing task;
• Geometric, taking as a typical value for the associated growth
parameter 𝑘 = (1 +

√
5)/2 ≈ 1.62, the golden ratio associated

with the Fibonacci numbers;
• Sliced, taking as a typical value for the associated segment size
parameter 𝑘 = 16; and
• SQarray, the “square sliced array” described in Section 3.

The questions to be considered experimentally are then:
• relative to Monolithic, what space overhead do the other three
approaches incur in the context of immediate-access indexing;
• relative to the direct indexing approach that is supported by
bothMonolithic andGeometric, what time overhead is incurred
by Sliced because of the need to consult the dope vector at every
array access; and
• relative to Sliced, what further time overhead (if any) is re-
quired by the SQarray to carry out the processing described by
Algorithm 1 in connection with every array access.

Note that Katajainen [6] has carried out similar experiments for
application tasks such as array reversal and sorting. We compare
our finding to those outcomes in Section 5.

Dataset. We made use of a dump of the English Wikipedia corpus
from April 2, 2022. Documents were extracted using the WikiEx-
tractor3 tool. The corpus was then converted to a simple docstream
format, representing each document as a single line of text contain-
ing the document identifier and then the terms within the document
in their natural order. As part of this process long terms were split
after each consecutive group of 20 alphabetic characters; sequences
of non-alphabetic characters were replaced by single spaces; and
uppercase characters were folded to lowercase. This process re-
sulted in approximately 14 GiB of raw text being derived from
approximately 6.5 million documents, and (when considered as a
single batch using our immediate-access index mechanism [8]) a
1.96GiB index. Finally, we expanded the raw data by duplicating the
docstream 8 times and shuffling it randomly, leading to 52 million
documents, 108 GiB of raw text, and an index of 13.82 GiB.

Hardware and Software. Experiments were conducted on a Linux
machine with two 3.50 GHz Intel Xeon Gold 6144 CPUs and 512
GiB of RAM in a NUMA configuration. The raw document stream
is hosted on a 894 GiB SATA SSD with a 5.6 GiB/s read throughput.

3https://github.com/attardi/wikiextractor

https://github.com/attardi/wikiextractor

256 1024 4096 16384 65536

number of elements, words

1

4

16

64

256

1024

4096

16384

65536

s
p

a
c
e

 o
v
e

rh
e

a
d

,
w

o
rd

s

Geometric, k=1.62

Sliced, k=16

SQarray

Figure 5: Space overhead plotted as a function of 𝑛, the num-
ber of elements stored, for three extensible array arrange-
ments, with each array element and each pointer assumed
to require one word.

Our indexing software was implemented in C++ and compiled with
gcc 7.5.0 using -O3 optimization. The extensible array structures
make use of the C++ STL std::vector container to represent the
dope vector, with all index memory allocation done using calls to
malloc(). Essentially, the outer vector stores pointers to the start-
ing addresses of each internal vector, which themselves are con-
tiguous segments of memory. All index building occurs in-memory
using a single processing core, streaming the raw data from the
SSD.

Space. Figure 5 illustrates the asymptotic superiority of the SQar-
ray approach in regard to overhead space required. For simplicity,
this graph assumes that stored array elements and pointers require
one word each, and plots the changing overhead space cost as a
function of 𝑛, the current number of data elements stored. Results
for immediate-access indexing are presented shortly.

In the Geometric approach (shown with 𝑘 ≈ 1.62) there is a
spike in the requirement at each transition point, when two array
segments must exist concurrently during the copying operation.
Changing to a smaller Geometric parameter – for example, 𝑘 =

1.5 or 𝑘 = 1.2 – lowers the Geometric line, but it remains less
efficient than the other two approaches. In the Sliced and SQarray
approaches the dope vector is assumed to be an extensible array
implemented using the Geometric approach, doubling the dope
vector capacity each time it becomes full. The regular steps in those
two curves are a consequence of dope vector growth cycles, and
there is again a small spike in consumption at the transition points.
The secondary saw-tooth patterns arise as the sequence of segments
of each given size are then one by one allocated and filled. No
allowance is made in the graph for memorymanagement overheads,
typically something like four words per segment, depending on
the implementation used and system factors. These would have
the greatest effect on the Sliced curve, further lifting it away from
the SQarray line. That difference could be ameliorated for large 𝑛
– but not eliminated – by increasing 𝑘 , which for Sliced is 𝑘 = 16
in these measurements. But increasing 𝑘 lifts the Sliced curve for
lower values of 𝑛.

Worth noting is that for the SQarraymechanism the dope vector
is proportional in size to the current segment, so in an amortized
sense the dope vector could instead be grown in “+1” increments

Table 1: Maximumnumber of 𝐵 = 64-byte array elements that
can be accommodated in bounded memory, assuming that
dope vector pointers require 8 bytes each. For the Geometric
scheme, parameter 𝑘 = 1.62 was used; for the Slicedmethod,
segments of 𝑘 = 16 elements were used (that is, segments
of 64 × 16 = 1024 bytes). The last row provides “percentages
of maximum” relative to the “1011 bytes” row immediately
above it, to show the fraction of the available 93.132 GiB of
memory that is used for array elements.

Bytes Method
Geometric Sliced SQarray Monolithic

106 6,765 15,488 15,488 15,625
107 75,025 154,192 155,648 156,250
108 832,040 1,546,112 1,560,576 1,562,500
109 9,227,465 15,493,920 15,622,144 15,625,000
1010 63,245,986 154,152,832 156,237,824 156,250,000
1011 701,408,733 1,545,722,768 1,562,443,776 1,562,500,000

44.890% 98.926% 99.996% 100.000%

(rather than via “ × 2” multiplications) without affecting the amor-
tized 𝑂 (1) insertion cost. This approach of “right-sizing” the dope
vector smooths the overall curve, and reduces – but cannot elimi-
nate – the small spikes caused by dope vector doubling. The same
idea cannot be applied to the Sliced approach if 𝑂 (1) worst-case
time insertion is to be maintained, because all segments are the
same length.

Even without that improvement the SQarray approach incurs
less than 20% of the overhead space of the other two methods by
the time an array of 216 ≈ 65,000 elements is being manipulated.
Moreover, the lower gradient of the blue SQarray lines makes clear
that its asymptotic superiority will further widen that margin as
the arrays become even bigger.

Table 1 shows how effective the extensible array options are for
our application, in which arrays of 64-byte payloads are maintained.
In this analysis each dope vector pointer is assumed to require 8
bytes, and the extensible arrays are grown up to a range of fixed
memory limits expressed as powers of ten and measured in bytes,
with the number of array elements able to be allocated within
each of those limits the quantity of interest. Memory management
overheads, and (for Geometric) fragmentation effects are again
ignored.

As can be seen, theGeometric strategy performs very poorly, and
the transient spikes shown in Figure 5 mean that it can choke with
less than half of the available memory actually being used for the
array data. On the other hand, the Sliced and SQarray approaches
achieve percentage memory utilization in the high nineties, shown
in the last row for the case of 100 billion bytes of memory being
available. The asymptotic superiority (in terms of wasted space) of
the SQarray approach means that it is only fractionally inferior to
the ideal established by theMonolithic approach.

Speed. Given that a Monolithic index does not suit our “multiple
co-existing arrays, extending until the assigned peak memory is

Table 2: Indexing capacity (millions of documents within
given memory limit) and indexing throughput (documents
per second) for two memory limits and three array schemes.

Approach Documents Throughput
1 GiB 10 GiB 1 GiB 10 GiB

Monolithic 3.19 37.31 11,951 12,327
Sliced 3.17 36.83 8,603 8,705
SQarray 3.19 37.30 11,558 11,180

reached” application scenario, and given that the Geometric ap-
proach can chokewith half of thememory still empty, the implemen-
tation choice is thus between the Sliced and SQarray techniques,
withMonolithic setting a reference point for speed.

In the Sliced approach, 𝑘 should always be chosen as a power
of two, so that the necessary mod/div operations required prior to
every array access can be done as mask/shifts. The implementation
that we now measure continues with 𝑘 = 16, and hence for large 𝑛
achieves space utilization in excess of 98.4%, calculated as two 8-
byte dope vector pointers (one used and one as yet unused) per 16×
64-byte segment. The extensible dope vector required by the Sliced
and SQarray mechanisms is implemented using the Geometric
scheme with 𝑘 = 2.

Table 2 compares the three array schemes, using two memory
bounds, one and ten gibibytes. Input processing is terminated as
soon as a memory request that would take the allocated total be-
yond the specified limit is detected. The two “Documents” columns
confirm the earlier finding that all of the three schemes have very
high space utilization, and even though the SQarray has asymptoti-
cally less wasted space than the Sliced approach, in practical terms
the difference between them is small. Note that the vocabulary
of the collection is included as a measured part of the immediate-
access index [8] and grows sublinearly in collection size; that is why
a disproportionately greater number of documents can be indexed
in 10 GiB than can be indexed in 1 GiB.

The second pair of columns measures indexing throughput,
counted in units of documents per second. As expected, the Mono-
lithic approach is faster than the Sliced method – the indirection
via the dope vector that is associated with each block access has a
definite impact on throughput. What was not anticipated was that
the SQarray would faster than the Sliced mechanism, and would
approach the throughput of theMonolithic approach. On reflection,
the reason is clear: because the Sliced dope vector is a linear frac-
tion of the allocated memory space, each access to it likely incurs a
cache miss, meaning that each access to the underlying array likely
results in two cache misses. On the other hand, even though the
SQarray structure also involves a dope vector, its size is sub-linear
in the overall space used, and hence is far less likely to give rise
to that first cache miss. Profiling the indexing runs confirmed this
behavior. In the balance, avoiding that dope vector-generated cache
miss far outweighs the more complex address mapping process
described by Algorithm 1.

Memory Layout. Figure 6 is provided for interest. It shows the
mapped memory addresses (vertical axis) for the first 50,000 logical

elements (horizontal axis) in the array of data blocks used in one of
the runs of the immediate-access index, with the mapped memory
addresses taken as being relative to the address associated with the
first array element. The single allocation of theMonolithic approach
means that there is a direct linear relationship between logical
element number and the memory address it is stored at. In the other
two structures the segments also tend to be allocated following a
pattern that fills memory sequentially, but the allocations are by
no means monotonic, even though there is only a single extensible
array in operation, and even though there are no free() operations
taking place at all except in conjunction with the cycles of growth
associated with the dope vector. These non-monotonic patterns
highlight the overarching benefit that can be achieved by slicing
the array, and illustrate the way in which multiple extensible arrays
can co-exist within a single overall limit on physical memory.

5 DISCUSSION
The SQarray structure that was first described by Brodnik et al.
[1] and reinvented by us as part of our development of immediate-
access indexing mechanisms is surprisingly effective. It achieves
space utilization only a whisker short of what a single dedicated
array would attain; moreover – and despite the fact that every array
access involves a translation via a dope vector from logical element
number to a segment number and offset pair – it operates only
slightly slower than does theMonolithic approach.

Katajainen [6] has also explored a range of extensible array struc-
tures, and carried out experiments comparing them. In that work
the tasks considered were what might be termed “access-intensive”
ones, including two different sorting techniques (one that is cache-
friendly, and heapsort, which is not) applied to arrays of up to 225
integers (approximately 128 MiB of memory). Katajainen found
that the Sliced approach was substantially faster than the SQarray,
and that both were notably slower than theMonolithic array. Our
findings here reflect a different type of application, with each ele-
ment in our array a block of 64 bytes, and once a block is accessed,
with non-trivial processing needing to be carried out on the data
stored in it. In Katajainen’s sorting experiments, on the other hand,
each element is an integer and thus requires very little processing
(a comparison and a possible swap) at each access. Katajainen also
includes experiments in which elements are removed from the tail
of extensible arrays and shrinking must also be catered for, a re-
quirement not present in our application. Our experiments are also
at a memory scale not considered by Katajainen, and make use of
arrays of up to 10 GiB.

In summary, the particular nature of our immediate-access in-
dexing task is a key factor that contributes to the usefulness of
the SQarray as an important implementation technique, adding
considerable flexibility while retaining very high efficiency.

Software. Public software that implements our method is available
from https://github.com/JMMackenzie/immediate-access.

ACKNOWLEDGMENTS
This work was in part supported by the Australian Research Council
(project DP200103136).

https://github.com/JMMackenzie/immediate-access

Figure 6: Allocated memory mappings for 50,000 array elements, each of which is an immediate-access index block of 64 bytes
containing vocabulary and/or index postings data. Each point on the horizontal axis represents the (relative) memory address of
the index block logically addressed by the array index on the vertical axis. The Monolithic approach allocates just one segment
of memory; Sliced (in the part of the graph that is plotted) allocates 3,126 segments; and the SQarray allocates 323 segments.

REFERENCES
[1] A. Brodnik, S. Carlsson, E. D. Demaine, J. I. Munro, and R. Sedgewick. 1999.

Resizable Arrays in Optimal Time and Space. In Proc. Wrksp. Algs. Data Struct.
37–48.

[2] S. Büttcher and C. L. A. Clarke. 2005. Memory management strategies for single-
pass index construction in text retrieval systems. Technical Report CS-2005-32.
University of Waterloo. http://www.stefan.buettcher.org/papers/wumpus-tr-
2005-02.pdf

[3] P. Eades, A. Wirth, and J. Zobel. 2022. Immediate text search on streams using
apoptosic indexes. In Proc. ECIR. 157–169.

[4] D. Hawking and B. Billerbeck. 2017. Efficient in-memory, list-based text inversion.
In Proc. Aust. Doc. Comp. Symp. 5:1–5:8.

[5] S. Heinz and J. Zobel. 2003. Efficient single-pass index construction for text
databases. J. Am. Soc. Inf. Sc. Tech. 54, 8 (2003), 713–729.

[6] J. Katajainen. 2016. Worst-case-efficient dynamic arrays in practice. In Proc. Symp.
Experim. Algs. 167–183.

[7] N. Lester, A. Moffat, and J. Zobel. 2008. Efficient on-Line index construction for
text databases. ACM Trans. Data. Sys. 33, 3 (2008), 19.1–19.33.

[8] A. Moffat and J. Mackenzie. 2022. Efficient Immediate-Access Indexing.
arXiv:2211.06030.

[9] E. Sitarski. 1996. Algorithm alley: HATs: Hashed array trees: Fast variable-length
arrays. Dr. Dobb’s J. 21, 11 (1996). http://www.drdobbs.com/database/algorithm-
alley/184409965

[10] R. E. Tarjan and U. Zwick. 2022. Optimal resizable arrays. arXiv:2211.11009.
[11] J. Zobel and A. Moffat. 2006. Inverted files for text search engines. ACM Comp.

Surv. 38, 2 (2006), 6:1–6:56.

http://www.stefan.buettcher.org/papers/wumpus-tr-2005-02.pdf
http://www.stefan.buettcher.org/papers/wumpus-tr-2005-02.pdf
http://www.drdobbs.com/database/algorithm-alley/184409965
http://www.drdobbs.com/database/algorithm-alley/184409965

	Abstract
	1 Introduction
	2 Background
	3 Space-Efficient Extensible Arrays
	4 Immediate-Access Indexing
	5 Discussion
	Acknowledgments
	References

