
Transforming Situation Calculus Action Theories for Optimised Reasoning

Christopher Ewin
National ICT Australia and

Computing & Information Systems
The University of Melbourne

chris.ewin@nicta.com.au

Adrian R. Pearce
National ICT Australia and

Computing & Information Systems
The University of Melbourne

adrianrp@unimelb.edu.au

Stavros Vassos
DIAG

Sapienza University of Rome
Rome, Italy

vassos@dis.uniroma1.it

Abstract
Among the most frequent reasoning tasks in the situation cal-
culus are projection queries that query the truth of conditions
in a future state of affairs. However, in long running action se-
quences solving the projection problem is complex. The main
contribution of this work is a new technique which allows the
length of the action sequences to be reduced by reordering
independent actions and removing dominated actions; main-
taining semantic equivalence with respect to the original ac-
tion theory. This transformation allows for the removal of ac-
tions that are problematic with respect to progression, allow-
ing for periodical update of the action theory to reflect the
current state of affairs. We provide the logical framework for
the general case and give specific methods for two impor-
tant classes of action theories. The work provides the basis
for handling more expressive cases, such as the reordering
of sensing actions in order to delay progression, and forms
an important step towards facilitating ongoing planning and
reasoning by long-running agents. It provides a mechanism
for minimising the need for keeping the action history while
appealing to both regression and progression.

Introduction
In this paper we are concerned with reasoning about action
and change in the general case where information about the
environment is represented as a first-order logical theory. In
practical settings two of the most typical reasoning tasks re-
quired are: performing projection queries that query the truth
of conditions in a future state of affairs; and updating or pro-
gressing the world representation to reflect the current state
of affairs after a sequence of actions has been performed.

To illustrate optimised reasoning for these tasks we focus
on the logical language of the situation calculus (McCarthy
and Hayes 1969; Reiter 2001), where the environment is for-
malized as an action theory including a set of first-order sen-
tences for specifying the initial state of the environment and
a set of first-order axioms for specifying the effects of named
actions with respect to the changing properties of the envi-
ronment. The first task amounts to the question of whether
a first-order sentence corresponding to the projection query
is entailed by the action theory, while the second involves
finding a new updated first-order representation of the world
which is typically referred to as progression.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

These two tasks are very much connected as a proper so-
lution for progression ensures that the truth value of all pos-
sible projection queries is preserved in the updated represen-
tation of the environment. However, solving the progression
problem in the general case is quite tricky, in fact requir-
ing the use of second-order axioms (Lin and Reiter 1997;
Vassos and Levesque 2008; 2013) for the updated represen-
tation. The identified problematic cases that require second-
order logic are mathematically involved and are rarely en-
countered, occurring infrequently in practice.

Consequently, syntactically restricted forms of action the-
ories have been investigated in order to ensure that a first-
order progression exists and can be effectively computed.
Examples for first-order progressable action theories include
those with local-effect actions (Liu and Levesque 2005;
Vassos, Lakemeyer, and Levesque 2008) which restrict ac-
tions to affect only ground atoms that are composed exclu-
sively by using arguments of the action. A type of first-order
‘surgery’ can be performed to the initial theory, removing
the truth values of (finitely many) ground atoms—i.e., by
forgetting in the sense of (Lin and Reiter 1994)—and setting
their new values accordingly. A map of progressable action
theory classes can be found in (Vassos and Patrizi 2013),
however, they are quite limited and a wide range of cases do
not fit in the identified classes—for which we have no means
of performing a (logically correct) first-order update.

In practice this means that if the desired action theory in-
cludes even a single action that does not fit into the identified
progressable cases, then updating of the action theory cannot
be guaranteed: from the time that a problematic action α1

is executed no more updating can be performed. Of course,
projection queries can still be decided by the original ac-
tion theory by forming appropriate entailment queries of the
form: ‘Will φ be true after actions 〈α1, . . . , αn, β1, . . . , βm〉
are performed in the initial state of the environment?’, where
α1, . . . , αn are the actions that have been already executed
(for which the action theory unfortunately cannot be updated
due to α1) and β1, . . . , βm are the ones with respect to which
we want to project in the future.

Although regression can be used to answer history-based
queries, for many practical cases where the action theory is
used by long-living agents in order to reason about their ac-
tions, such approaches become infeasible as the history of
actions constantly increases.

An important observation is that similar to action α1, that
makes further updates impossible, there can be another ac-
tion, αk, that brings the environment to a state of affairs
that is easier to represent and reason about. For example, αk
could be a reseting action that brings the environment to the
initial state of affairs, or one that essentially subsumes the ef-
fects of α1 in a way that the new representation is first-order
progressable—via setting all problematic atoms to a fixed or
sensed truth value. Current approaches do not consider this
type of reasoning with respect to the action history, leaving
out a wide range of practical cases that can be handled by
such a hybrid approach to progression.

We therefore investigate sufficient and necessary condi-
tions for transforming and simplifying the history of actions
in a logically correct way by combining two basic types of
operations: swapping independent actions in the action his-
tory; and eliminating dominated actions by removing them
entirely from the action history. This transformation will of-
ten allow to remove actions that are problematic with respect
to progression, thus allowing to periodically update the ac-
tion theory to reflect the current state of affairs.

We provide a mechanism for minimising the need for
keeping the action history 〈α1, . . . , αn〉 of the actions that
have already been executed, and having a representation of
the environment that is as much up-to-date as possible. In
case reasoning over the past history of events is also required
then a separate mechanism that keeps track of the true ac-
tion history and the original action theory can be employed.
Importantly, our proposed mechanism can also be used to
reason about and plan for the actions needed in order for a
progression to become feasible when the length of the his-
tory of actions reaches a certain limit.

Finally, our approach can be also useful in cases where
all actions fall in the first-order progressable classes—for
the purpose of obtaining computational benefits. Since the
updating of the action theory is typically a much more com-
putationally demanding procedure than that of projection, it
can be beneficial to keep a history of executed actions up
to some fixed (past horizon) length anticipating that a future
action may greatly simplify the history. Depending on the
characteristics of the domain and the projection queries that
are needed, such an approach has the potential to save a lot of
computational resources. For instance, in cases where there
is a large degree of uncertainty in the form of incomplete or
disjunctive information which would, under normal circum-
stances, lead to an exponential growth of the progressed the-
ory with respect to the number of actions executed, a later
sensing action that settles uncertainty would lead to larger
computational savings, as compared to those consumed in
order to perform projection queries using the longer history
of executed actions.

Our contribution is a framework for specifying trans-
formations in a logically correct way in the general case.
A promising new class of global-effect actions is intro-
duced, termed resetting actions, which facilitate transforma-
tion based on dominance principles. We specify practical
procedures for realizing the proposed transformations, al-
lowing for swapping and elimination of actions for handling
non-progressable instances; or the interleaving of regression

and progression as required. We illustrate how such theories
correspond to common agent planning tasks, using a slightly
modified Sokoban domain.

Formal preliminaries
The logical language of situation calculus
The language L of the situation calculus as presented in (Re-
iter 2001) is a three-sorted first-order logic language with
equality and some limited second-order features. The sorts
are: action, situation, and a catch-all sort object for every-
thing else depending on the domain of application.

Similar to a normal one-sorted first-order language, L in-
cludes function and predicate symbols. In this case since
there are three sorts, each of the symbols has a type that
specifies the sorts for the arguments it takes. The situa-
tion calculus includes symbols only of certain types each
of which has a special role in the representation of the world
and its dynamics.

An action term or simply an action represents an atomic
action that may be performed in the world. For example con-
sider the action move(l1, l2) that may be used to represent
that a robot moves from location l1 to location l2. A situa-
tion term or simply a situation represents a world history as
a sequence of actions. The constant S0 is used to denote the
initial situation where no actions have occurred. Sequences
of actions are built using the function symbol do, such that
do(α, σ) represents the successor situation resulting from
performing action α in situation σ.

A relational fluent is a predicate whose last argument is a
situation, and thus whose truth value can change from situa-
tion to situation. For example, RobotAt(l, σ) may be used to
represent that the robot lies at location l in situation σ. In or-
der to simplify the analysis we have restricted the language
L so that there are no functional fluent symbols in L, that is,
functions whose last argument is a situation. This is not a re-
striction on the expressiveness of L as functional fluents can
be represented by relational fluents with a few extra axioms.

Actions need not be executable in all situations, and the
predicate atom Poss(α, σ) states that action α is executable
in situation σ. For example, Poss(move(l1, l2), σ) is in-
tended to represent that the action move(l1, l2) can be ex-
ecuted in situation σ. The language L also includes the bi-
nary predicate symbol @ which provides an ordering on sit-
uations. The atom s@ s′ means that the action sequence s′
can be obtained from the sequence s by performing one or
more actions in s. We will typically use the notation σvσ′
as a macro for σ@σ′ ∨ σ=σ′.

In this paper, we shall restrict our attention to a language
L with a finite number of relational fluent symbols that only
take arguments of sort object (apart their last situation argu-
ment), an infinite number of constant symbols of sort object
C = {c1, c2, . . .}, and a finite number of function symbols of
sort action that take arguments of sort object. We adopt the
following notation with subscripts and superscripts: α and
a for terms and variables of sort action; σ and s for terms
and variables of sort situation; t and x, y, z, w for terms and
variables of sort object. Also, we use A for action function
symbols, F,G for fluent symbols, and b, c, d, e for constants

of sort object. Finally, we will typically write φ(~x) to state
that the free variables of the formula are among ~x.

The well-formed first-order formulas of L are defined in-
ductively similarly to a normal one-sorted language but also
respecting that each parameter has a unique sort. As far as
the second-order formulas of L are concerned, only quan-
tification over relations is allowed and the well-formed for-
mulas are defined inductively similarly to a normal second-
order language.

Often we will focus on sentences that refer to a particu-
lar situation. For this purpose, for any situation term σ, we
define the set of uniform formulas in σ to be all those (first-
order or second-order) formulas in L that do not mention
any other situation terms except for σ, do not mention Poss,
and where σ is not used by any quantifier (Lin and Reiter
1997). Finally, we use δ to denote a sequence of actions of
the form 〈α1, . . . , αn〉, and do(δ, S0) as a shorthand for the
situation term do(αn, · · · do(α1, S0)).

Basic action theories
Within the language L, one can formulate action theories
that describe how the world changes as the result of the
available actions. We focus on a variant of the basic action
theories (BATs) (Reiter 2001) of the following form:1

D = Dap ∪ Dss ∪ Duna ∪ D0 ∪ Dfnd,

where:
1. Dap is the set of action precondition axioms (PAs), one per

action symbol A, of the form Poss(A(~y), s) ≡ ΠA(~y, s),
where ΠA(~y, s) is first-order and uniform in s. PAs char-
acterize the conditions under which actions are physically
possible.

2. Dss is the set of successor state axioms (SSAs), one
per fluent symbol F , of the form F (~x, do(a, s)) ≡
ΦF (~x, a, s), where ΦF (~x, a, s) is first-order and uniform
in s. SSAs describe how fluents change between situations
as the result of actions.

3. Duna is the set of unique-names axioms for actions.
4. D0, the initial knowledge base (KB), is a set of first-order

sentences uniform in S0 describing the initial situation S0.
5. Dfnd is the set of domain independent axioms of the sit-

uation calculus, formally defining the legal situations. A
second-order induction axiom is included in Dfnd.
Probably the most interesting component of a basic action

theory is the set successor state axioms, which together en-
code the dynamics of the domain being represented. Techni-
cally, SSAs are meant to capture the effects and non-effects
of actions. To achieve that in a parsimonious way, one typi-
cally follows the well-known solution to the frame problem
by means of successor state axioms of the following form
(Reiter 2001):
F (~x, do(a, s)) ≡ γ+F (~x, a, s) ∨ F (~x, s) ∧ ¬γ−F (~x, a, s),

where both γ+F (~x, a, s) and γ−F (~x, a, s) are first-order for-
mulas uniform in s encoding the positive and negative ef-
fects, respectively, of action a on fluent F at situation s.

1For legibility, we typically omit leading universal quantifiers.

Transforming situation calculus histories
In this section we provide the logical foundations for two
basic operations that will allow to transform an action his-
tory in a way that is logically correct with respect to a basic
action theory D.

Swapping consecutive actions
We start with the logical specification of the notion of con-
secutive actions being swappable in an action history of the
form do(δ, S0), where δ is a sequence of ground actions. We
will introduce two versions of the notion, just-in-time swap-
pable and always swappable. For the following definitions
letD be a basic action theory of the type we introduced in the
previous section, and let δ be 〈α1, . . . , αk, αk+1, . . . , αn〉,
where k is in {1, . . . , n − 1}, and each of the elements of δ
is a ground action term.

Definition 1. We say that actions αk and αk+1 are just-in-
time swappable in δ wrt D iff for all fluents F (~x, s) in L the
following holds:

D |= ∀~x. F (~x, do(〈α1, . . . , αk, αk+1〉, S0)) ≡
F (~x, do(〈α1, . . . , αk+1, αk〉, S0)).

So, we can swap actions αk and αk+1 in δ as long as in
all models ofD it happens that the interpretation of all fluent
atoms is preserved in the two versions of the action history.
The just-in-time terminology is used to stress that it may be
due to the axioms in this particular instance of D0 and the
action sequence δ that ensure that this condition holds, while
in fact actions αk and αk+1 would not necessarily be swap-
pable if another D0 and δ were assumed.

Example 1. Consider the case of fluent F (s) that is only
affected by actions setF and unsetF such that setF has a
conditional effect that makes F (s) true when G(s) holds,
and unsetF has the conditional effect that makes F (s) false
when G(s) holds. The SSA for F (s) is then as follows:

F (do(a, s)) ≡ (a = setF ∧G(s)) ∨
F (s) ∧ ¬(a = unsetF ∧G(s)).

Consider now an action sequence δ as above in which ac-
tion αk is setF and αk+1 is unsetF , assuming there are also
other fluents and actions in the language. By looking at the
SSA for F (s) we can conclude that these actions may have
“conflicting” effects and therefore they should not be con-
sidered swappable in general, as the order of applying these
two actions may result to a different truth value for F (s).

Nonetheless, if we also take into account D0 and the par-
ticular course of action that takes us to the situation where
αk and αk+1 are performed, we may conclude that we can
actually swap the actions. For instance, consider a D0 that
includes the fact ¬G(S0), and the following SSA for G(s):

G(do(a, s)) ≡ a = setG ∨ G(s) ∧ ¬(a = unsetG).

In the case that none of the actions α1, . . . , αk−1 is setG
then condition G(s) is in fact not satisfied in the situation
when αk is performed, and also in the resulting situation in
which αk+1 is performed. As a result, actions αk and αk+1

have no effect in the truth value of F (s), and actually no
effects whatsoever in δ in every model of D. For the same
reason, reversing the order of these two actions also results
in no effects in the truth value of any fluent atom, and we can
conclude that they can be safely swapped, or more precisely
that αk and αk+1 are just-in-time swappable in δ wrt D.2

Note then that if none of the actions α1, . . . , αk−1 is
unsetG and exactly one is setG then condition G(s) is sat-
isfied in the situation when αk is performed, and also in
the resulting situation in which αk+1 is performed. As a re-
sult, actions αk and αk+1 have conflicting effects and are
not just-in-time swappable in δ wrt D.

Definition 1 is a precise characterization of when two con-
secutive actions may be swapped in a particular action se-
quence without affecting the interpretations of fluents. In or-
der to check this in general one needs to look into the prop-
erties of the situation where the actions are performed and
verify that no conflict arises. As we saw in Example 1 the
same actions for the same D may be just-in-time swappable
in one sequence of actions and not in another.

There can be also cases of actions that the actual situa-
tion in which they are performed does not play any role as
for example actions that may only affect different fluents.
We can capture this notion which we call always swappable
with a similar definition that removes the dependency on the
particular D0 the action sequence δ as follows.

Definition 2. We say that actions α and α′ are always swap-
pable wrt D iff for all fluents F (~x, s) in L the following
holds:

D −D0 |= ∀~x. F (~x, do(〈α, α′〉, S0)) ≡
F (~x, do(〈α′, α〉, S0)).

Essentially, Definition 2 requires that starting from any
possible extension for all fluents, applying the two actions
in question will have the same effect regardless of the order
the actions are applied.

Example 2. Actions setF and unsetF are not always swap-
pable wrt D, and also the same holds for all α, α′ such
that α ∈ {setF , unsetF } and α′ ∈ {setG, unsetG}. On the
other hand, if we assume that D also includes the follow-
ing successor state axiom for H , H(do(a, s)) ≡ a =
setH ∨ H(s) ∧ ¬(a = unsetH), then for all α, α′ such that
α ∈ {setF , unsetF , setG, unsetG} and α′ ∈ {setH , unsetH},
α, α′ are always swappable wrt D.

As we will see later, this distinction will become impor-
tant when we specify algorithmic ways to decide whether
consecutive actions are swappable. Next, we show some
straightforward results about projection that follow from
these definitions. The simple projection problem is deciding
whether a condition about a particular situation in the future
holds (Reiter 2001), and the next theorem shows that swap-
ping actions according to our definitions preserves the result
for any extension of the action sequence in the question.

Theorem 1. Let δ be 〈α1, . . . , αk, αk+1, . . . , αn〉, where k
is in {1, . . . , n−1}, and each of the elements of δ is a ground

2In fact they could also be eliminated as we will see later.

action term. Let φ(s) be a (first-order or second-order) for-
mula in L that is uniform in s. If actions αk and αk+1 are
always swappable wrt D or just-in-time swappable in δ wrt
D then the following holds:

D |= φ(do(〈α1, . . . , αk, αk+1, . . . , αn〉 · ζ, S0)) ≡
φ(do(〈α1, . . . , αk+1, αk, . . . , αn〉 · ζ, S0)),

where ζ is any sequence of ground action terms.

Proof. For the case of just-in-time swappable we
work as follows. Let M be an arbitrary model of
D. We show by induction on the situation terms
σ such that do(〈α1, . . . , αk−1〉, S0) v σ, that for
all fluents F and all sequences of action terms
ζ, M |= F (~x, do(〈α1, . . . , αk, αk+1〉 · ζ, S0) iff
M |= F (~x, do(〈α1, . . . , αk+1, αk〉 · ζ, S0). For the
base case we use Definition 1 and the induction step is
straightforward. The theorem then follows by induction on
the construction of the formulas φ that are uniform in s.

For the case of always swappable let M be an arbitrary
model ofD. SinceD−D0 admits all possible extensions for
the fluents in S0 it follows that there is a modelM ′ ofD−D0

with the same domain for all sorts as M such that for all µ
and for all fluents F ,M,µ |= F (~x, do(〈α1, . . . , αk−1〉, S0))
iff M ′, µ |= F (~x, S0). By Definition 2 then it follows
that M |= F (~x, do(〈α1, . . . , αk, αk+1〉, S0) iff M |=
F (~x, do(〈α1, . . . , αk+1, αk〉, S0), from which point we pro-
ceed as in the case of just-in-time swappable actions.

Theorem 1 shows that swapping actions that are just-in-
time or always swappable in δ preserves the entailment of
any projection query that refers to some particular situa-
tion that comes after do(δ, S0). This generalizes to more
expressive sentences that refer to situations that come after
do(δ, S0), not necessary being uniform in one situation.

For example, we can show that swapping actions pre-
serves sentences that may also quantify over future situa-
tions such as in the set LFσ defined in (Vassos and Levesque
2013), which is a form of the so-called generalized projec-
tion task. For σ being do(α, S0), an example of a sentence
in LFσ is the following: ∀s(do(α, S0) v s ⊃ ψ(s)), which
states that after executing action α in S0 then ψ(s) remains
true always for all the future situations s from that point on.

Theorem 2. Let LFσ be the set of first-order formulas that
refer to the future of σ as defined in (Vassos and Levesque
2013) that allows limited quantification over situations, and
φ(σ) be a sentence in LFσ for σ being do(δ, S0). If actions
αk and αk+1 are always or just-in-time swappable in δ wrt
D then the following holds:

D |= φ(do(〈α1, . . . , αk, αk+1, . . . , αn〉 · ζ, S0)) ≡
φ(do(〈α1, . . . , αk+1, αk, . . . , αn〉 · ζ, S0)),

where ζ is any sequence of ground action terms.

Proof. Similar to the proof of Theorem 1 except that we do
induction on the construction of the formulas φ in LFσ .

Also it is easy to show that always swappable implies just-
in-time swappable but not the opposite.

Corollary 1. If actions αk and αk+1 are always swappable
wrt D then for any sequence of actions δ in which they ap-
pear consecutively they are just-in-time swappable in δ wrt
D, but the opposite is not true.

We now turn our attention to how swappable actions may
be detected in practice. Definitions 1 and 2 provide a se-
mantical account of the requirement that characterizes when
two actions can be safely swapped in an action sequence.
In particular, as we noted earlier, for just-in-time swappable
actions we need to be able to project on the situation where
the actions are applied and check the effects of actions con-
ditioned on the action history. On the other hand, the notion
of actions being always swappable is decoupled from the
action history, allowing us to check for a simpler condition.
The following theorem shows an equivalent characterization
of always swappable actions in terms of the effects of the
actions and their successor state axioms.
Theorem 3. Actions α and α′ are always swappable wrt D
iff for all fluents F (~x, s) in L the following holds:

D −D0 |= ∀~x{(γ+F (~x, α, S0) ∨ γ+F (~x, α′, do(α, S0))

≡γ+F (~x, α′, S0) ∨ γ+F (~x, α, do(α′, S0)))

∧ (γ−F (~x, α, S0) ∨ γ−F (~x, α′, do(α, S0))

≡γ−F (~x, α′, S0) ∨ γ−F (~x, α, do(α′, S0)))}
∧¬∃~x{γ+F (~x, α, S0) ∧ γ−F (~x, α′, S0)

∨ γ+F (~x, α′, S0) ∧ γ−F (~x, α, S0)}.
Proof (sketch). Observe that two actions are not always

swappable only if in some model the application of one ac-
tion in S0 changes the truth value of the effect formulas of
the other action or if they have conflicting effects. The first
condition is covered by the universally quantified formula
that covers all the cases, and the second condition is covered
by the negated existentially quantified formula.

In the case of context-free actions such that γ+F and γ−F do
not depend on s, this is simplified as follows.
Corollary 2. Let D be a basic action theory such that all
successor state axioms are context-free in the sense that
they have the following form: F (~x, do(a, s)) ≡ γ+F (~x, a) ∨
F (~x, s) ∧ ¬γ−F (~x, a). Actions α and α′ are always swap-
pable wrt D iff for all fluents F (~x, s) in L the following
holds:

D −D0 |= ¬∃~x{γ+F (~x, α, S0) ∧ γ−F (~x, α′, S0)

∨ γ+F (~x, α′, S0) ∧ γ−F (~x, α, S0)}.
These results allow us to reduce the semantic notion ex-

pressed in Definition 2 into a more concrete one about the
effects of actions as expressed in the positive and negative
effect formulas γ+ and γ− in the successor state axioms of
the fluents in L. Even though this condition is still an en-
tailment question about the effects of actions, as we will see
later for special cases of successor state axioms we will be
able to further reduce it to simpler tests that we can easily
evaluate.

Next we proceed to a similar analysis for actions that can
be considered redundant and can be safely omitted.

Eliminating actions
Now we turn our attention to simplifying the action history
by eliminating an action αk that is dominated by actions
αk+1, . . . , αn in a sequence of ground action terms δ of the
form 〈α1, . . . , αk, αk+1, . . . , αn〉. As in the case of swap-
pable actions, we identify two versions for this notion.
Definition 3. We say that action αk is just-in-time domi-
nated by αk+1 in δ wrt D iff for all fluents F (~x, s) in L the
following holds:

D |= ∀~x. F (~x, do(〈α1, . . . , αk−1, αk, αk+1〉, S0)) ≡
F (~x, do(〈α1, . . . , αk−1, αk+1〉, S0)).

Example 3. Consider the fluent F (x, s) with the following
successor state axiom:
F (x, do(a, s)) ≡ a = setF (x) ∨ a = resetTrueF ∧G(s) ∨

F (s) ∧ ¬(a = unsetF (x) ∨ a = resetFalseF).

Action setF (c) sets the truth value of atom F (c, s) to true,
unsetF (x) sets it to false, and there are two resetting ac-
tions that set all atoms to true and false. Action resetTrueF
is conditional and only has this global effect when G(s)
holds, while resetFalseF is unconditional. Assume thatG(s)
has the same successor state axiom as in Example 1. Con-
sider the action δ: 〈unsetG, unsetF (c), setF (c), resetTrueF 〉.
Then, unsetF (c) is just-in-time dominated by setF (c) in
δ wrt to D, but setF (c) is not just-in-time dominated by
resetTrueF in δ wrt to D.

Similarly to always swappable actions we introduce the
notion of always dominated actions that removes the depen-
dency on the particular D0 and the action sequence δ as fol-
lows.
Definition 4. We say that action α is always dominated by
α′ wrt D iff for all fluents F (~x, s) in L the following holds:

D −D0 |= ∀~x. F (~x, do(〈α, α′〉, S0) ≡ F (~x, do(α′, S0)).

Example 4. Consider the action sequence δ′:
〈setG, unsetF (c), setF (c), resetFalseF 〉. Then setF (c)
is always dominated by resetFalseF in δ wrt to D.

Similar to the analysis of swappable actions, the notions
of just-in-time and always dominated actions preserve the
entailment of first-order (and second-order) sentences that
refer to situations after δ. The next theorem shows this for
sentences of the simple projection problem like Theorem 1,
and a similar theorem can be obtained for more expressive
sentences for the generalized progression problem such as
the one addressed in Theorem 2.
Theorem 4. Let δ be 〈α1, . . . , αk, αk+1, . . . , αn〉, where k
is in {1, . . . , n−1}, and each of the elements of δ is a ground
action term. Let φ(s) be a (first-order or second-order) for-
mula in L that is uniform in s. If action αk is always domi-
nated by αk+1 wrt D or just-in-time dominated by αk+1 in
δ wrt D then the following holds:

D |= φ(do(〈α1, . . . , αk−1, αk, αk+1, . . . , αn〉 · ζ, S0)) ≡
φ(do(〈α1, . . . , αk−1, αk+1, . . . , αn〉 · ζ, S0)),

where ζ is any vector of ground action terms.

Also it is easy to show that always domination implies
just-in-time domination but not the opposite.
Corollary 3. If action αk is always dominated by αk+1 wrt
D then for any vector of actions δ in which they appear con-
secutively and αk+1 is after αk, αk is just-in-time dominated
by αk+1 in δ wrt D, but the opposite is not true.

The following theorem shows an equivalent characteriza-
tion of always domination of actions in terms of the effects
of the actions and their successor state axioms.
Theorem 5. Action α is always dominated by α′ wrt D iff
for all fluents F (~x, s) in L the following holds:

D −D0 |= ∀~x{γ+F (~x, α′, S0) ≡ γ+F (~x, α′, do(α, S0))

∧ γ−F (~x, α′, S0) ≡ γ−F (~x, α′, do(α, S0))}
∧∀~x{(γ+F (~x, α, S0) ∨ γ−F (~x, α, S0))

⊃(γ+F (~x, α′, S0) ∨ γ−F (~x, α′, S0))}.

Proof (sketch). Observe that α is not always dominated by
α′ only if in some model the application of α in S0 changes
the truth value of the effect formulas of α′ or if some of the
effects of α is not reset by α′.

In the case of context-free actions such that γ+F and γ−F do
not depend on s, this is simplified as follows.
Corollary 4. Let D be a basic action theory such that all
successor state axioms are context-free in the sense that
they have the following form: F (~x, do(a, s)) ≡ γ+F (~x, a) ∨
F (~x, s) ∧ ¬γ−F (~x, a). Action α is always dominated by α′
wrt D iff for all fluents F (~x, s) in L the following holds:

D −D0 |= ∀~x{(γ+F (~x, α, S0) ∨ γ−F (~x, α, S0))

⊃(γ+F (~x, α′, S0) ∨ γ−F (~x, α′, S0))}.

These notions provide the logical specification for trans-
forming and simplifying action histories in a way that pre-
serves the entailment of first-order projection queries. What
becomes interesting then is identifying efficient procedures
that can identify when sets of actions can be swapped and
when an action can be eliminated for certain classes of ac-
tion theories D.

Action theories with single-value fluents and
resetting actions

We now turn our attention to basic action theories with re-
lational fluents that have a function-like behavior in the fol-
lowing sense. For each fluent F (~y, s), we distinguish the last
argument of sort object as the output of the fluent and the rest
of the arguments of sort object as the input. In order to make
this explicit we will write F (~x, v, s) where v is the the out-
put and ~x is input. We will also require that in every model
of the action theory for every input ~x there is exactly one
object for v (up to equality) such that F (~x, v, s) holds. We
call fluents of this type single-value fluents.
Definition 5. Single-value fluents are fluents for which the
following holds:

D |= ∀~x, v{F (~x, v, s) ⊃ ¬∃v′(F (~x, v′, s) ∧ v′ 6= v)}.

This is a very common case in many practical domains,
such as those involving mobile agents (i.e. a mobile agent
can be in only one position in any given situation).3 The next
definition introduces the single-value successor state axioms
which preserve this property.
Definition 6. The successor state axiom for F (~x, v, s) has
resetting-actions iff γ+F (~x, v, a, s) is a disjunction of formu-
las of the form:

∃~z(a = A(~y) ∧ v = yi ∧ φ(~y, s)),

and γ−F (~x, v, a, s) is a disjunction of formulas of the form:

∃~z(a = A(~y) ∧ ¬v = yi ∧ φ(~y, s)),

where A is an action symbol, ~y contains ~x, ~z corresponds to
the remaining variables of ~y, yi is a variable in ~y, and φ(~y, s)
(called a context formula) is a first-order formula uniform in
s, and γ+F ,γ−F come in pairs in the sense that for each disjunct
in γ+F there is one in γ−F that is identical except for the atom
v = yi and vice versa. As in the case of functional fluents
in (Reiter 2001), we also require the following sentence be
entailed by D:

D |= γ+F (~x, v, α, s) ⊃ ¬∃v′(v′ 6= v ∧ γ−F (~x, v′, α, s)).

A basic action theory D is one of resetting-actions if every
SSAs in Dss is a resetting SSA.

Note that the positive effects of a resetting SSA are in
fact local-effect as they have exactly the same form, requir-
ing that any affected atom is built using arguments of action
A(~y), while the negative effects are a special form of global
effects. Similarly to (Liu and Levesque 2005), the instanti-
ation of a local-effect SSA on a ground action term can be
simplified using the unique names axioms for actions as fol-
lows.
Lemma 1. Let α be the ground action term A(~e), where
~e is a vector of constants and suppose that the SSA for F
is resetting. Then γ+F (~x, v, α, s) is logically equivalent to a
formula of the following form:

(~x = ~c1∧v = d1∧φ1(s))∨· · ·∨(~x = ~cm∧v = dm∧φm(s)),

where each of the ~c1, . . . ,~cm is a vector of constants con-
tained in ~e, and φ1(s), . . . , φm(s) are first-order and uni-
form in s. Each combination of ~ci, ~di must be distinct, and
for any ~x = ~ci, at most one φi(s) can hold for any model of
s. Similarly, γ−F(~x, α, s) is logically equivalent to a formula
of the following form:

(~x = ~c1 ∧ ¬v = d1 ∧ φ1(s)) ∨ · · ·
∨ (~x = ~cm ∧ ¬v = dm ∧ φm(s)).

An example follows.
Example 5. Consider a modified instance of the Sokoban
problem such that the surface of any cell can be either clean
or oily. Consider three actions: move(x), which moves the

3We note that a “regular” relational fluent could still be ex-
pressed by means of special constants true and false and with some
extra syntactical machinery.

player to position x, push(b, x, y), which pushes block b
from position x to position y and clean(x, t), which sets
the truth value of x being oily to t. We use three fluents:
PlAt(x, s), which says the player is in position x in situa-
tion s, BlAt(b, x, s), which says that block b is in position
x in situation s and Oily(x, t, s), which says the surface of
x contains oil where t is a variable that will take an object
representing True or False. There are also appropriate Poss
axioms for walls, connectivity, and other necessary restric-
tions. The successor state axioms for this problem are as fol-
lows:

PlAt(v, do(a, s)) ≡ ∃x(a = move(x) ∧ v = x)

∨∃b, x, y(a = push(b, x, y) ∧ v = x)

∨PlAt(v, s) ∧ ¬(∃x(a = move(x) ∧ ¬v = x)

∨∃b, x, y(a = push(b, x, y) ∧ ¬v = x))

BlAt(b, v, do(a, s)) ≡ ∃x, y(a = push(b, x, y) ∧ v = y)

∨BlAt(b, v, s) ∧ ¬∃x, y(a = push(b, x, y) ∧ ¬v = y)

Oily(x, v, do(a, s)) ≡ ∃t(a = clean(x, t) ∧ v = t))

∨Oily(x, v, s) ∧ ¬∃t(a = clean(x, t) ∧ ¬v = t))

We begin by introducing the notion of the effect set of an
action. The idea is to represent a set of situation-suppressed
ground fluent atoms that will be affected by an action, as
well as the conditions under which the fluent atom will be
affected. This is formalised as follows:

Definition 7. Let αk be a ground resetting action. The effect
set of αk is the following set:

Φk = {φ ⊃F (~c, d)|
~x = ~c ∧ φ ∧ v = d appears in γ+F (~x, v, α, s)}.

Without loss of generality, we assume that the ground ver-
sions of the γ+ and γ− formulas are simplified according to
Lemma 1. The effect sets can then be obtained directly. We
observe the following fundamental property of the effect set:

Lemma 2. Let F (~x, v, s) be a single-value fluent with
positive and negative successor state axioms γ+F (~x, v, α, s)

and γ−F (~x, v, α, s) respectively. Let M be any model of D.
Let αk be a ground resetting action with effect set Φk. Then
for all ~x = ~c, v = d: M |= γ+F (~x, v, αk, s) iff there exists a
φ ⊃ F (~c, d) in Φk such that M |= φ.
M |= γ−F (~x, v, αk, s) iff there exists a φ ⊃ F (~c, e) in Φk
such that d 6= e and M |= φ.

Proof. From the construction of the effect set and the form
of the successor state axioms.

Resetting actions without contexts
We begin by considering a subset of resetting actions where
each φi is true. This allows us to reorder or eliminate ac-
tions without needing to consider the effects that one action
can have on the contexts of the other. We introduce a pro-
cedure for determining whether two context-free actions are
swappable by directly inspecting their effect sets:

Theorem 6. Let actions α1 and α2 be consecutive resetting
actions without contexts with effect sets Φ1 and Φ2 respec-
tively. Then α1 and α2 are always swappable iff for all ele-
ments of Φ1 of the form true ⊃ F (~c, d1) there is no element
of Φ2 of the form true ⊃ F (~c, d2) such that d1 6= d2.

Proof. From Corollary 2 and Lemma 2.

While this is a restricted class of actions, it is nonetheless
sufficient to cover a number of interesting cases, such as the
Sokoban example.

Example 6. Consider the SSAs used in Example 5 and a
sample action sequence 〈move(pos1), clean(pos1, F)〉. We
first calculate the effect sets for each action: Φ1 = {true ⊃
PlAt(pos1)}, Φ2 = {true ⊃ Oily(pos1, F)}. From Theo-
rem 6 we can observe that move(pos1) and clean(pos1, F)
are always swappable.

We now introduce a procedure for determining whether
one resetting action without a context always dominates an-
other by directly inspecting their effect sets.

Theorem 7. Let actions α1 and α2 be consecutive resetting
actions without contexts with effect sets Φ1 and Φ2 respec-
tively. Then α2 always dominates α1 iff for all elements of
Φ1 of the form true ⊃ F (~c, d1) there exists an element of
Φ2 of the form true ⊃ F (~c, d2).

Proof. From Corollary 4 and Lemma 2

Note that determining whether actions can be just-in-time
eliminated purely by inspection of the successor state ax-
ioms is not possible. This is because of the possibility that
some or all of those fluent atoms already held the same value
before the action was taken. In the extreme case, for exam-
ple, that an action occurred twice and identically set all flu-
ent atoms, the second occurrence of that action could be said
to be dominated by any subsequent action.

Below is an example demonstrating the idea of always-
dominating for resetting actions without contexts.

Example 7. Consider the SSAs used in
Example 5 and a sample action sequence
〈move(pos1), push(b1, pos2, pos3)〉. We first calculate
the effect sets for each action: Φ1 = {true ⊃ PlAt(pos1)},
Φ2 = {true ⊃ PlAt(pos2), true ⊃ BlAt(b1, pos2)}.
From Theorem 7 we can observe that push(b1, pos2, pos3)
dominates move(pos1) and thus the action sequence can be
simplified to 〈push(b1, pos2, pos3)〉.

Resetting actions with conjunctive queries as
contexts
We now consider a larger class of resetting actions where the
context formulas φi consist of a quantifier-free conjunction
of ground fluent atoms. We require that each context for-
mula φi is satisfiable in the sense that if an element F (~c, d)
is mentioned then neither ¬F (~c, d) nor F (~c, e) is mentioned
for some e 6= d. Reasoning about the properties of these ac-
tions is not so straightforward, as determining the value of a
context formula for an action requires detailed inspection of
the knowledge base. Moreover, the application of one action

can affect the contexts of another. We introduce the follow-
ing sound but incomplete method for determining whether a
pair of conjunctive resetting actions are always swappable:
Theorem 8. Let actions α1 and α2 be consecutive conjunc-
tive resetting actions with effect sets Φ1 and Φ2 respectively.
Then α1 and α2 are always swappable if:
• For all elements of Φ1 of the form φ1 ⊃ F1(~c1, d1),

there does not exist an element of Φ2 of the form φ2 ⊃
F2(~c2, d2) such that F1 = F2, ~c1 = ~c2, d1 6= d2, φ1 ∧ φ2
is satisfiable.

• For all elements of Φ1 of the form φ1 ⊃ F1(~c1, d1),
there does not exist an element of Φ2 of the form φ2 ⊃
F2(~c2, d2) such that φ2 mentions F1(~c1, e) for some e.

• For all elements of Φ2 of the form φ2 ⊃ F2(~c2, d2),
there does not exist an element of Φ1 of the form φ1 ⊃
F1(~c1, d1) such that φ1 mentions F2(~c2, e) for some e.
Proof (sketch). The first point above corresponds

with the second condition of Theorem 3 and follows
from Lemma 2. For the second condition of The-
orem 3, we consider a slightly stronger requirement
such that γ+F (~x, v, α1, S0) ≡ γ+F (~x, α1, do(α2, S0)) and
γ+F (~x, v, α2, S0) ≡ γ+F (~x, α2, do(α1, S0)) for all ~c, v and
similarly for negative SSAs. From Lemma 2, any F (~c, d) for
which there is no φ ⊃ F (~c, e) in Φ1 for some e cannot affect
γ+F (~x, v, α2, S0) ≡ γ+F (~x, α2, do(α1, S0)), and similarly for
the other conditions.

This result is incomplete due to the possibility that for all
models, a pair of context formulas in Φ1 and Φ2 referring to
the same fluent may be unsatisfiable, or that one may imply
the other. We expect such cases to be uncommon in practice,
however, as in the majority of cases we expect to reorder
actions that do not affect the same fluents. We now consider
the complexity of always-swapping for conjunctive queries:
Theorem 9. The complexity of determining whether two
conjunctive resetting actions are always swappable is
O(nm) where n is the number of elements in the effect set
and m is the number of elements in the context formula φ.
For resetting actions without contexts, this reduces to O(n).

Proof. The first item in Theorem 8 requires that for each of
the n elements of the effect set, the satisfiability of φ1 ∧ φ2
for any corresponding element in the other set is determined.
Since φ1 ∧ φ2 is a conjunctive query, this can be done in
O(nm) time. The second and third points require each of
the n×m members of an effect set to be checked for mem-
bership in the other effect set, with a complexity of O(nm).
For resetting actions without contexts, the second and third
points are not required, and the first part does not require a
satisfiability check. This reduces to O(n), as the problem is
essential checking set membership.

We also note that the satisfiability check can be omit-
ted while still retaining a sound result. To demonstrate, we
consider a version of the Sokoban example used previously,
modified to include conjunctive contexts. Imagine now that
pushing a box over an oily surface will cause it to move one
additional unit further than expected. We modify the formal-
ism as follows:

Example 8. Let the push action now take five arguments,
push(b, x, y, z, t) where t is a variable that will take an ob-
ject representing a truth value. This action will push block b
from position x to position y. If the surface of y is oily, the
block will be moved to z instead. The successor state axiom
for BlAt is now as follows:

BlAt(b, v, do(a, s)) ≡
∃x, y, z(a = push(b, x, y, z, t) ∧ v = y ∧ ¬Oily(y, t, s))

∨∃x, y, z(a = push(b, x, y, z, t) ∧ v = z ∧ Oily(y, t, s))

∨BlAt(b, v, s) ∧ ¬{
∃x, y, z(a = push(b, x, y, z, t) ∧ ¬v = y) ∧ ¬Oily(y, t, s)

∨∃x, y, z(a = push(b, x, y, z, t) ∧ ¬v = z ∧ Oily(y, t, s))}

Consider now an action sequence
〈clean(pos1, F), push(b1, pos2, pos3, pos4, T)〉. We firstly
calculate the effect sets of the two actions: Φ1 = {true ⊃
Oily(pos1, F)} Φ2 = {¬Oily(pos3, T) ⊃ BlAt(b1, pos3),
Oily(pos3, T) ⊃ BlAt(b1, pos4), true ⊃ PlAt(pos2)}. Now
using Theorem 8, we can observe that clean(pos1, F) and
push(b1, pos2, pos3, pos4, T) are always swappable.

We now propose a method for identifying when one reset-
ting action is always dominated by a subsequent action, and
can thus be removed.

Theorem 10. Let α1 and α2 be consecutive conjunctive re-
setting actions with effect sets Φ1 and Φ2 respectively. Let
φ1[F (~c)] refer to the disjunction of all φ1 for which φ1 ⊃
F (~c, d) is in Φ1 for any d and φ2[F (~c)] refer to the disjunc-
tion of all φ2 for which φ2 ⊃ F (~c, d) is in Φ2 for any d. Then
α2 always dominates α1 iff for all ~c, φ1[F (~c)] ⊃ φ2[F (~c)] is
valid and for all elements of Φ1 of the form φ1 ⊃ F1(~c1, d1),
there is no element of Φ2 of the form φ2 ⊃ F2(~c2, d2) such
that φ2 mentions F1(~c1, e) for some e and φ1 ∧ φ2 is satisfi-
able.

Proof (sketch). Focus firstly on the second part of Theo-
rem 5. From Lemma 2, γ−F (~x, v, α1, S0) ∨ γ+F (~x, v, α1, S0)
iff there exists a φ1 ⊃ F (~x, v′) in Φ1 such that
φ1 is true (similarly for α2). Now (γ−F (~x, v, α1, S0) ∨
γ+F (~x, v, α1, S0)) ⊃ (γ−F (~x, v, α2, S0) ∨ γ+F (~x, v, α2, S0))
is valid iff φ1[F (~c)] ⊃ φ2[F (~c)] is valid for all models.
For the first part of Theorem 5, for each φ2 ⊃ F2(~c2, d2)
in Φ2, consider a model, M such that every F (~x, y) men-
tioned in φ2 holds with the exception of some F (~c, d) for
which φ1 ⊃ F (~c, d) appears in Φ1. Then γ+F (~x, v, α2, S0) 6≡
γ+F (~x, v, α2, do(α1, S0)) for x = c2, v = d2 iff φ1 is also
satisfiableM . The approach is similar for the case of F (~c, e)
in φ1 as well as for the negative effects.

We now consider the complexity of always-dominating
for conjunctive queries:

Theorem 11. The complexity of determining whether one
conjunctive-resetting action dominates another isO(n.2mk)
where n is the number of elements in the effect set, k is the
number of times a φ ⊃ F (~c, d) appears in the effect set
for fixed ~c but varying d and m is the number of elements in
the context formula φ. For resetting actions without contexts,
this reduces to O(n).

Proof. The first condition in Theorem 10 requires that for
each of the n elements of the effect set, the validity of
φ1[F (~c)] ⊃ φ2[F (~c)] is determined. Each φ[F (~c)] contains
m× k terms, the complexity of determining the validity for
each formula of this type is thus O(2mk). For the second
part, each of the n×m elements of the contexts in Φ2 must
be checked for membership in Φ1. If found, the satisfiability
of φ1 ∧ φ2 must be determined. Since φ1 ∧ φ2 is a con-
junctive query, the satisfiability check can be done in O(m)
time. The total complexity is thusO(n.2mk)+O(nm2). For
resetting actions without contexts, the second part is not re-
quired, and the first part does not require a validity check.
This reduces to O(n), as the problem is essential checking
set membership.

We expect such a method to be feasible in practice, as it
is exponential only in the size of the context formulas and
the number of times a particular F (~c) appears in the effect
set. We now show an example of dominating conjunctive
resetting actions.
Example 9. Using the successor state axioms devel-
oped in Example 8, consider now an action sequence
〈push(b1, pos1, pos2, pos3, T),
push(b1, pos2, pos3, pos4, T)〉. We firstly calculate the ef-
fect sets of the two actions: Φ1 = {¬Oily(pos2, T) ⊃
BlAt(b1, pos2), Oily(pos2, T) ⊃ BlAt(b1, pos3), true ⊃
PlAt(pos1)} Φ2 = {¬Oily(pos3, T) ⊃ BlAt(b1, pos3),
Oily(pos3, T) ⊃ BlAt(b1, pos4), true ⊃ PlAt(pos2)}.
Now using Theorem 10, push(b1, pos2, pos3, pos4, T) al-
ways dominates push(b1, pos1, pos2, pos3, T).

Discussion and Related Work
To the best of our knowledge this is the first approach
that looks into formalizing operations over an action his-
tory that preserves truth of (simple and generalized) projec-
tion queries in the final situation. It helps us handle cases
which cannot be easily progressed, or actions which can re-
sult in a non-progressible theory, by swapping and elimi-
nating actions—achieving transformed theories which can
be later progressed. Note that the work does not extend the
known classes of progressable theories (Vassos and Patrizi
2013), in contrast the work contributes to a setting where re-
gression and progression can be invoked and interleaved in
sensible ways. It is potentially applicable to a wide range of
queries, for different action languages.

A similar approach in spirit is nonetheless employed in
the implementations of reasoning systems that rely on con-
straints solvers. In particular, for reasoning about action
the Flux system for implementing fluent calculus theories
(Thielscher 2004) uses (among other things) constraints to
represent the effects implied to fluents with arithmetic argu-
ments. These constraints specify how the old value of fluents
relates to the new one, and are appended to the constraint
store as the action history grows. Periodically, Flux’s con-
straint store invokes heuristic techniques for simplifying the
history by eliminating redundant constraints.

There are, nonetheless, parallels to work being done in
classical planning. In particular (Chrpa, McCluskey, and Os-
borne 2012) identifies pairs of actions as being either inde-

pendent, shared, nested or interleaved, and goes on to define
conditions under which these different types of actions can
be removed from a sequence. Working in the classical plan-
ning domain, however, allows Chrpa to consider a clear and
finite set of effects for each action, which is not the case in
the Situation Calculus. Also, in order to realise the modified
plan, Chrpa is required to consider the preconditions of each
action, whereas by focusing on the projection problem one is
able to bypass these, allowing more actions to be dominated.
Finally, Chrpa does not consider the possibility of reordering
actions.

Symmetry breaking, and the related issue of planning
landmarks, have also been shown to be promising for achiev-
ing efficiency in planning domains (Domshlak, Katz, and
Shleyfman 2013). Interestingly, dominance relations are
known to entail the special case of symmetry in constraint
programming (Chu, Garcia del la Banda, and Stuckey 2012).
Dominance relations might therefore form a basis of a range
of constraint optimisation techniques for action languages.
This paper follows these insights by realising re-ordering for
action histories for a wide range of rich theories.

There are a number of settings where transformation
could be effectively used, including sensing actions and rea-
soning about the domination of sets of actions. Sensing ac-
tions provide new information about the value of fluents and
could dominate earlier actions. It may therefore be possi-
ble to delay progression, in the event that progression is not
possible in one situation due to missing information about
certain fluents, until later when sensing actions can learn
fluent values which dominate the effects of earlier actions.
If we can delay progression until after sensing actions are
performed, this could facilitate the progression of the ac-
tion theory at a later time. The dominance of sets of ac-
tions over one another could significantly extend the num-
ber of cases under which dominance was possible and facil-
itate new ways of reordering and elimination on set theoretic
grounds.

The generality of our approach has the potential to be
utilised for wider classes of action theory. For example, the
approach could be extended beyond conjunctive queries to-
wards arbitrary context formulas. The extension of the ap-
proach to an even wider class of global effect actions, would
also be very useful, as global effect theories are known to be
particularly problematic with respect to progression.

Conclusions
This work takes the important step of formalizing the trans-
formation of theories of action in order to optimise fre-
quently executed reasoning tasks. The transformation allows
action sequences to be shortened, via the swapping and re-
ordering of independent actions and elimination of dominat-
ing actions. This can facilitate easier, more optimised, forms
of reasoning. Our technique is potentially applicable to a
wide range of rich first order theories.

We have identified a new class of action theory which al-
lows for a restricted form of global effects–resetting actions–
which falls outside of any known progressable theory of
action. It overcomes problems with progression commonly
encountered in the agent reasoning tasks illustrated. Our

technique facilitates a new approach for tackling situations
falling outside the known classes of progressable theories,
and can also be used for optimising the progression of theo-
ries known to be progressable. It also enables more efficient
entailment queries to be answered by progressing where
possible, only performing regressing where necessary.

Acknowledgements
NICTA is funded by the Australian Government through
the Department of Communications and the Australian Re-
search Council through the ICT Centre of Excellence Pro-
gram. The authors acknowledge support of EU Project FP7-
ICT 318338 (OPTIQUE) and Sapienza Award 2013 “Spir-
itlets” project.

References
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012. De-
termining redundant actions in sequential plans. In ICTAI,
484–491.
Chu, G.; Garcia del la Banda, M.; and Stuckey, P. J. 2012.
Exploiting subprogem dominance in constraint program-
ming. Constraints 1:1–38.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2013. Sym-
metry breaking: Satisficing planning and landmark heuris-
tics. In International Conference on Automated Planning
and Scheduling (ICAPS).
Lin, F., and Reiter, R. 1994. Forget it! In Greiner, R., and
Subramanian, D., eds., Working Notes, AAAI Fall Sympo-
sium on Relevance, 154–159. American Association for Ar-
tificial Intelligence.
Lin, F., and Reiter, R. 1997. How to progress a database.
Artificial Intelligence 92(1-2):131–167.
Liu, Y., and Levesque, H. J. 2005. Tractable reasoning
with incomplete first-order knowledge in dynamic systems
with context-dependent actions. In Proceedings of the 19th
international joint conference on Artificial intelligence, IJ-
CAI’05, 522–527. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc.
McCarthy, J., and Hayes, P. J. 1969. Some philosophical
problems from the standpoint of artificial intelligence. Ma-
chine Intelligence 4:463–502.
Reiter, R. 2001. Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems.
Thielscher, M. 2004. FLUX: A logic programming method
for reasoning agents. Theory and Practice of Logic Pro-
graming 5(4-5):533–565.
Vassos, S., and Levesque, H. 2008. On the progression of
situation calculus basic action theories: Resolving a 10-year-
old conjecture. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, AAAI’08, 1004–1009.
Chicago, Illinois, USA: AAAI Press.
Vassos, S., and Levesque, H. J. 2013. How to progress a
database III. Artificial Intelligence 195:203–221.
Vassos, S., and Patrizi, F. 2013. A classification of first-
order progressable action theories in situation calculus. In

Proceedings of the 23rd international joint conference on
Artificial intelligence, IJCAI’13, 1132–1138.
Vassos, S.; Lakemeyer, G.; and Levesque, H. 2008. First-
order strong progression for local-effect basic action theo-
ries. In Proceedings of the Eleventh International Confer-
ence on Principles of Knowledge Representation and Rea-
soning, KR’08, 662–272. AAAI Press.

