3 How Prolog Works

1. Resolution

2. Backtracking

3. Generate and Test

4. The Debugger
3.1 Resolution

Prolog’s execution mechanism is based on resolution.

Much more detail on resolution later; for now a very pragmatic view.

Actual execution strategy is more efficient than this presentation — more like the way conventional languages are implemented.

This description leaves off how unification works.

This is only a rough sketch.
3.1.1 The Basic Algorithm

1. Start with a query g_1, g_2, g_3, \ldots and empty stack

2. If the query is empty, terminate *succeeding*; otherwise, choose the first goal from query

3. If no program clause matches the chosen goal, then:

4. If the stack is empty, terminate *failing*; otherwise pop the query and clause from the stack and return to 3

5. Otherwise: choose first clause whose head matches the chosen goal; push query and next clause on a stack

6. Replace first goal with the body of the chosen clause at the front of the query and return to 2
3.1.2 Example (without backracking)

add(0, Y, Y).
add(s(X), Y, s(Z)) :-
 add(X, Y, Z).

Initial query: \texttt{add(s(s(0)), s(s(s(0))), A)}.
Clause 1 does not match; clause 2 matches with
\begin{align*}
X &= s(0), & Y &= s(s(s(0))), & A &= s(Z)
\end{align*}

New query: \texttt{add(s(0), s(s(s(0))), Z)}
Clause 1 does not match; clause 2 matches with
\begin{align*}
X_1 &= 0, & Y_1 &= s(s(s(0))), & Z &= s(Z_1)
\end{align*}
(variable names changed)

New query: \texttt{add(0, s(s(s(0))), Z_1)}
Clause 1 matches with \(Z_1 = Y_2 = s(s(s(0)))\)

New query is empty: success, leaving
\(A = s(Z) = s(s(Z_1)) = s(s(s(s(s(0))))))\)
3.2 Backtracking

Nondeterminism describes a computation that may have more than one result, for example
?- parent(diana, X).

Support for nondeterminism is an important feature of Prolog.

Prolog handles nondeterminism by **backtracking** — undoing all work done since a tentative choice was made so an alternative choice can be tried.

Backtracking is performed in steps 3 and 4, when multiple clauses matched a selected goal, and later a goal fails.

An entry pushed on the stack in the resolution algorithm is called a **choicepoint**.
3.2.1 Backtracking Example

member(X, [X|_]).
member(X, _[L]) :-
 member(X, L).

Initial query: member(Z, [a,b]), member(Z, [b,c])

Both clauses match first goal; choose first and push a choicepoint

 Z = X = a

New query: member(a, [b,c])

Clause 1 does not match; clause 2 matches with

 X1 = a, L1 = [c]
Backtracking Example (2)

New query: \texttt{member(a, [c])}

Clause 1 does not match; clause 2 matches with
\[X_2 = a, \quad L_2 = []\]

New query: \texttt{member(a, [])}

Neither clause matches: failure
Backtracking Example (3)

We are not done; we pop the choicepoint off the stack

This returns us to state at time the choicepoint was pushed, but now we go on to the next clause

New query: \texttt{member(Z, [a,b]), member(Z, [b,c])}

Now choose second clause, with

\[Z = X, \quad L = [b] \]

New query: \texttt{member(Z, [b]), member(Z, [b,c])}

Both clauses match first goal; choose first and \textbf{push a choicepoint}

\[Z = X = b \]
Backtracking Example (4)

New query: \texttt{member(b, [b,c])}

Both clauses match first goal; choose first and \textbf{push a choicepoint}

\[X_2 = b\]

New query is empty: success, leaving

\[Z = b\]

Prolog prints this result; if we hit ; asking for more solutions, this forces an artificial failure, causing Prolog to backtrack, looking for more solutions
Backtracking Example (5)

New query: \(\text{member}(b, [b,c]) \)

Clause 2 matches with \(X_2 = b, \quad L_2 = [c] \)

New query: \(\text{member}(b, [c]) \)

Clause 2 matches with \(X_3 = b, \quad L_3 = [] \)

New query: \(\text{member}(b, []) \)

Neither clause matches: pop last choicepoint

New query: \(\text{member}(Z, [b]), \text{member}(Z, [b,c]) \)

Second clause matches, leaving

\(X_3 = Z, \quad L_3 = [] \)

New query: \(\text{member}(Z, []), \text{member}(Z, [b,c]) \)

Neither clause matches: final failure
3.2.2 Example: Search Tree

```
member(Z, [a, b]), member(Z, [b, c])

member(a, [b, c])  member(Z, [b]), member(Z, [b, c])

fail

member(a, [c])  member(b, [b, c])  member(Z, []), member(Z, [b, c])

fail

true

fail

member(b, [c])

fail  fail

member(b, [])

fail  fail
```
Exercise: Motherhood Again

Draw a search tree for the following program and query

parent(charles, william). parent(charles, harry).
parent(diana, william). parent(diana, harry).
female(elizabeth). female(diana).
?- parent(X,Y), female(X).
3.3 Generate and Test

This example shows that the two calls to member behave very differently:

First call member(Z, [a,b]) successively generates elements of the list [a,b]

Second call member(Z, [b,c]) tests the solutions generated by the first call

This is because when first call is made, Z is unbound, but when second call is made, Z is bound

generate and test is a simple but powerful technique for solving compound constraints

The bound/unbound state of the arguments of a predicate invocation is called its **mode**
3.3.1 Reverse

A list can be reversed by appending its first element to the reverse of the remaining elements:

\[
\text{rev([], []).} \quad \% \text{the reverse of [] is []}
\]
\[
\text{rev([A|BC], R) :-} \quad \% \text{the reverse of a list [A] ++ BC}
\]
\[
\text{rev(BC, CB),} \quad \% \text{is the reverse of BC}
\]
\[
\text{append(CB, [A], R).} \quad \% \text{with A added on the end}
\]

Unfortunately, this definition is not as flexible as we would like:

\[
?- \text{rev([a,b,c], R).}
\]
\[
R = [c, b, a] ;
\]
\[
\text{No}
\]

\[
\text{?- rev(R, [a,b,c]).}
\]
\[
R = [c, b, a] ;
\]
\[
\text{Action (h for help) ? abort}
\]
\[
\% \text{Execution Aborted}
\]
3.3.2 Reverse Goes Wrong

In the “backwards” mode, $rev/2$ produces the correct answer, but when we look for more answers, get gets into an infinite loop

Hit control-C then a to abort a runaway computation

In the “backwards” mode, the recursive call to $rev/2$ generates, and call to $append/3$ tests

The problem: $rev/2$ generates infinitely many solutions, and $append/3$ only accepts one
3.3.3 Reverse Example

(continued on next slide)

NB: if this succeeds,
X=[A,A1]
Reverse Example (2)

![Diagram of Reverse Example (2)]
3.3.4 Reverse Body Reordered

Simple solution: reorder the body of the recursive clause

\[
\text{rev}([], []). \quad \% \text{the reverse of} \; [] \; \text{is} \; []
\]
\[
\text{rev}([A|BC], R) :- \quad \% \text{the reverse of a list} \; [A] \; ++ \; BC
\]
\[
\text{append}(CB, [A], R), \quad \% \text{is} \; CB \; \text{with} \; A \; \text{added on the end}
\]
\[
\text{rev}(BC, CB). \quad \% \text{where} \; CB \; \text{is the reverse of} \; BC
\]

This fixes that problem, but causes another:

?- \text{rev}(R, [a, b, c]).
R = [c, b, a] ;
No

?- \text{rev}([a, b, c], R).
R = [c, b, a] ;
Action (h for help) ? abort
% Execution Aborted
Reverse Body Reordered (2)

\[\text{rev}(X, [a,b]) \quad X = [A|BC] \]

\[\text{ap}(CB, [A], [a,b]), \quad \text{rev}(BC, CB) \]

\[CB = [a|K], KL = [b] \]

\[\text{ap}(K, [A], [b]), \quad \text{rev}(BC, [a|K]), \]

\[K = [], A = b \]

\[\text{rev}(BC, [a]) \quad BC = [A1|BC1] \]

\[\text{ap}(CB1, [A1], [a]), \quad \text{rev}(BC1, CB1) \]

\[CB1 = [], A1 = a \]

\[BC1 = [], KL = [] \]

\[\text{true} \]

\[X = [b,a] \]

\[\text{fail fail fail fail} \]
Solution: make sure both arguments are bound enough to prevent infinite generate and test

reverse(ABC, CBA) :-
 same_length(ABC, CBA), % ensure backbones bound
 rev(ABC, CBA). % use either old defn

same_length([], []). % empty lists are same length
same_length([_|As], [_|Bs]) :- % same length if
 same_length(As, Bs). % tails are same length
3.4 The Debugger

Understanding choicepoints and backtracking is essential to understanding Prolog code; debugger is a good way.

The Byrd box model can be visualized:

Call port initial entry to the goal
Exit port successful completion of the goal
Redo port backtracking into the goal
Fail port final failure of the goal

Debugger turned on by trace, and off with nodebug.
3.4.1 Member Example

?- trace, member(Z, [a,b]), member(Z, [b,c]).
Call: (7) member(_G402, [a, b]) ? creep
Exit: (7) member(a, [a, b]) ? creep
Call: (7) member(a, [b, c]) ? creep
Call: (8) member(a, [c]) ? creep
Call: (9) member(a, []) ? creep
Fail: (9) member(a, []) ? creep
Fail: (8) member(a, [c]) ? creep
Fail: (7) member(a, [b, c]) ? creep
Redo: (7) member(_G402, [a, b]) ? creep
Call: (8) member(_G402, [b]) ? creep
Exit: (8) member(b, [b]) ? creep
Exit: (7) member(b, [a, b]) ? creep
Call: (7) member(b, [b, c]) ? creep
Exit: (7) member(b, [b, c]) ? creep
3.4.2 Debugger Commands

Many powerful commands. The most useful are:

- **h** display debugger help
- **c** creep to the next port (enter does the same thing)
- **s** skip over execution; go straight to the exit or fail port
- **r** go back to the initial call port of this goal, undoing all bindings done since starting it; this one is very useful
- **a** abort this debugging session level prompt
- **+** set a spypoint (like a breakpoint) on this predicate
- **-** remove spypoint from this predicate
- **l** leap to the next spypoint
- **b** pause this debugging session and enter a break level, with new Prolog prompt; end of file (control-d) reenters debugger.
3.4.3 Debugger Predicates

Prolog also has a few built-in predicates for controlling the debugger.

spy(Predspec) Place a spypoint on Predspec, which can be a Name/Arity pair, or just a predicate name.

nospy(Predspec) Remove the spypoint from Predspec.

trace Turn on the debugger

d debug Turn on the debugger and leap to first spypoint
	nodebug Turn off the debugger