
MELBOURNE UNIVERSITY 2008 SEMESTER 1

Implement Agent and Resource
Allocation Algorithm in MIndiGolog

Project 2

433682 Software Agents & Agent programming languages

249880

Xuqing Qi

5/2008

Abstract: This paper describes how to implement agent and role allocation algorithm in MIndiGolog. A
kitchen domain will be created and a dynamic location-based agent and resource allocation algorithm
will be implemented.

Implement Agent and Resource Allocation Algorithm in MIndiGolog Page 2

Introduction
MIndiGolog is a new approach to distributed problem solving based on high-level program execution [1].

MIndiGolog has follow features [4]:

 Operators of ConGolog[2] (Concurrency, Interrupts)

 Controlled Search of IndiGolog[3]

 Richer Theory of Action:

o Robust integration of true concurrency

o Explicit temporal component

o Seamless integration of natural actions

This paper will show how to implement agent and resource allocation algorithm in MindiGolog.

Aim and Purpose
A kitchen domain will be used in this paper, which is based on my project 1 “Kitchen Model” [5]. This

kitchen will be divided into 25 blocks and every kitchen hand, chef, utensil and kitchenware will be

located into one block. (Figure 1)

block00

sink4

block01

table1

block02 block03 block04

sink2

block10

kitchenhands,

chefs

block11 block12 block13 block14

block20

utensils

block21 block22 block23

oven1

block24

grill1

block30

raw material

block31 block32 block33 block34

block40

sink2

block41 block42 block43

table2

block44

sink1

Figure 1

Implement Agent and Resource Allocation Algorithm in MIndiGolog Page 3

Follow is the key constraints in this kitchen domain:

 The sink will be used to clean the raw material or utensil.

 The table will be used to perform “Cut” operation.

 Any raw material or utensil has to be cleaned before use.

 Agents can take utensil and raw material with them, but the table, sink, oven and grill is

fixed in environment.

 Agent can go from one block to another block. The task duration depends on the

origination and destination. For example:

o task_duration(kh01,goto(block00,block10))=1

o task_duration(kh01,goto(block00,block04))=4

The location-based agent and resource allocation algorithm is a very naïve algorithm. Only the nearest

agent and resource should be allocated to the task.

For example, kh01 holds a bowl1 in table1 (block01) and want to clean bowl1. Sink1 and sink2 is

available at that time. So when kitchen hand acquire sink, system should allocate sink2 to kitchen hand

because sink2 is nearer than sink1.

Trace Location
The key feature of this kitchen domain is that system is able to trace the location of agents and

resources. To implement this feature, we have to solve follow issue:

1. How to initial the location.

2. How to trace the agent location.

3. How to trace the resource location.

To initial the location, two procedures are introduced, initial_staff_location(Staff,B) and

initial_obj_location(Obj,B). Everything should be initialled when the system starts.

To trace the agent location, one task are introduced, goto(Orig,Dest), Orig is the original block and Dest

is the destine block. Then system can identify agent is in block or not by following logic:

Implement Agent and Resource Allocation Algorithm in MIndiGolog Page 4

Tracing resource location is more complicate than tracing agent location. First of all, kitchenware, tables

and sinks are different from utensils and raw material. One is fixed in environment and another one can

be taken from one block to another. Secondly, utensil and raw material doesn’t go from block to block

by itself. There has to be an agent taking utensil or raw material with it. System can trace utensil

location by following logic:

Identify which one is the nearest one
How to identify an agent or an object is the nearest one? That’s the most interesting part of the system.

Before solving that problem, a new logic has to be introduced to system:

is_near(A,B,Dist,do(_,_,_))

If block A and block B is nearer than integer Dist, it will return true. Otherwise, it will return false.

Implement Agent and Resource Allocation Algorithm in MIndiGolog Page 5

Then new function can be defined:

is_nearest_kh(Kh,Obj,do(C,T,S))=true

  Obj is the nearest object to Kh

 Not exist Obj1: the distance between Obj1 and Kh less than the distance between Obj and Kh

 Not exist Obj1, M: staff_is_in_block(Kh,B) and obj_is_in_block(Obj,B_Obj) and

obj_is_in_block(Obj1,B_Obj1) and not is_near(B,B_Obj,M) and is_near(B,B_Obj1,M)

Base on that logic, the is_nearest_kh(Kh,Obj,do(C,T,S)) in MIndiGolog is:

Similar function can be defined is_nearest_obj(Obj,Kh,do(C,T,S)), which means the Kh is the nearest

kitchen hand to Obj.

These two is_nearest functions can be used to control agent or resource allocation.

The original code is:

proc(doClean(Kh,Obj),

 pi(mySink, ?obj_is_type(mySink,sink)

 …………………………………………

Implement Agent and Resource Allocation Algorithm in MIndiGolog Page 6

The proposed code will be:

proc(doClean(Kh,Obj),

 pi(mySink, ?and(obj_is_type(mySink,sink),is_nearest_kh(Kh,mySink))

 ………………………………………….

Performance Comparison
Follow table is the execution time comparison of make three different dishes: Salad, Beefsteak and

Grilled Bacon.

 Salad Beefsteak Bacon

Original 150 75 122

Proposed 104 59 91

Table 1

The proposed program is more efficient than the original one.

Conclusion
What has been implemented in this paper is a possible solution to how to implement quality goal in

MIndiGolog. Quality goal is a very important part of agent oriented modelling. MIndiGolog can handle

quality goal with these constrains. In this paper, these constrains have been put at when system “PI”

agent and resource. These constrains can be put in poss() function too, to check the quality goal before

the task_begin or task_end.

Reference
[1]. Ryan F. Kelly and Adrian R. Pearce., Towards high level programming for distributed problem

solving. International Conference on Intelligent Agent Technology (IAT-06), Hong Kong, pages

490--497 (2006)

[2]. Giuseppe De Giacomo, Yves Lespérance, Hector J. Levesque, ConGolog, a concurrent

programming language based on the situation calculus, Sep. 1999, Elsevier

[3]. Yves Lespérance and Hector J. Levesque, IndiGolog: A Programming Language for Cognitive

Agent, http://www.ercim.org/publication/Ercim_News/enw53/lesperance.html

[4]. Ryan Kelly, MIndiGolog: Multi-Agent Golog,

http://www.cs.mu.oz.au/482/lectures/mindigolog.pdf

[5]. Xuqing Qi, Kitchen Model, Project 1 of 433682, Semester 1, 2008

