
MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

COMP30019 Graphics and Interaction
Three-dimensional transformation geometry

and perspective

Adrian Pearce

Department of Computing and Information Systems
University of Melbourne

The University of Melbourne

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Lecture outline

Introduction

Rotation about artibrary axis

Homogeneous versions

Quaternion Rotations

Arbitrary camera orientation

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Three-dimensional transformations and perspective

How do three-dimensional transformations differ from
two-dimensional transformations?

Aim: understand how to transform arbitrary perspectives in
three-dimensions (3D).

Reading:
I Foley Sections 5.7 matrix representation of 3D

transformations and 5.8 composition of 3D transformations.

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Three-dimensional coordinate systems

3D (Cartesian) coordinates (X ,Y ,Z ) can be considered in
terms of left-handed and right-handed coordinate systems.
The “right-hand rule”:

thumb X axis
index finger Y axis

big finger Z axis

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Rotation about axis in the right-handed coordinate
system

z

y

(out of page)

x Axis of rotation Direction of positive rotation
x y to z
y z to x
z x to y

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Three-dimensional rotation
Need to specify axis of rotation, and by how much such as a 3D
unit vector, plus rotation angle.
Convention: rotation angle is clockwise looking along axis of
rotation
Note, this is consistent with ordinary 2D anti-clockwise
convention:
Really a rotation around a positive Z axis coming up out of the
page in a right-handed coordinate frame.

Y

X

Z

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Example: rotation of a simple object

z

x

y
P3

P2

(a) Initial position

z

x

y

P1

P3

P2

(b) Final position

P1

Example from Section 5.8 of Foley.

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

y

z

x

P ′3

P ′1

θ
D1

P ′2(x ′2, y ′2, z ′2)

(x ′2, 0, z ′2)

x

y

z

D2

φ
P 1

′′

z 2
′′

P 2
′′

y 2′′

Rotation about the y axis (left) by −(90− θ) followed by rotation
around the x axis (right) by φ (shown for P1P3 only).

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

x

y

z

y 3

P 3

P 1

P 2

D3

x 3

α

′′′

′′′

′′′ ′′′

′′′

Final rotation about the z axis is by α.
The composite matrix R for the overall transformation is
calculated by multiplying the individual rotation matrices and
translation matrix

Rz(α) · Rx(φ) · Ry (θ − 90) · T (−x1,−y1,−z1) = R · T

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Rotations about an arbitrary axis

Two rotations about coordinate axes to line up axis of rotation
with one of the coordinate axes.

One rotation around this last axis, two rotations to undo the first
two, and put the axis of rotation back where it was.

If axis doesn’t pass through the origin, you’ll need to wrap an
appropriate translation and its inverse around all this.

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Homogeneous versions
In 3D the point in homogeneous coordinates

(X ,Y ,Z ,W )

corresponds to the Cartesian point
(X/W ,Y/W ,Z/W ) for W 6= 0

Completely analogous to the 2D case, where W = 1.
Translation:


x ′

y ′

z ′

1

 =


1 0 0 xt
0 1 0 yt
0 0 1 zt
0 0 0 1




x
y
z
1


Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Scaling:


x ′

y ′

z ′

1

 =


xs 0 0 0
0 ys 0 0
0 0 zs 0
0 0 0 1




x
y
z
1


Rotation counterclockwise using right-handed coordinate
system about Z axis:


x ′

y ′

z ′

1

 =


cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1




x
y
z
1



Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Rotation around the y axis:


x ′

y ′

z ′

1

 =


cosθ 0 sinθ 0

0 1 0 0
−sinθ 0 cosθ 0

0 0 0 1




x
y
z
1


Rotation around the x axis:


x ′

y ′

z ′

1

 =


1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1




x
y
z
1


Note cyclic wrap-around of factors for each axis.

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Gimbal Lock

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Gimbal Lock
I If we combine rotation matrices as

R = Rx(φ) · Ry (θ) · Rz(α) we have[ cos(θ)cos(α) cos(θ)sin(γ) sin(θ) 0
sin(φ)sin(θ)cos(α) + cos(φ)sin(α) −sin(φ)sin(θ)sin(α) + cos(φ)cos(α) −sin(φ)cos(θ) 0
−cos(φ)sin(θ)cos(α) + sin(φ)sin(α) cos(φ)sin(θ)sin(α) + sin(φ)cos(α) cos(θ)cos(φ) 0

0 0 0 1

]
I Now consider θ = π

2 :

R =

[ 0 0 1 0
sin α cos γ + cos α sin γ − sin α sin γ + cos α cos γ 0 0

− cos α cos γ + sin α sin γ cos α sin γ + sin α cos γ 0 0
0 0 0 1

]
R =

[ 0 0 1 0
sin(α + γ) cos(α + γ) 0 0

− cos(α + γ) sin(α + γ) 0 0
0 0 0 1

]
I Lost a degree of freedom.
I Changing the rotation order affects the axis on which

gimbal lock occurs, but does not prevent it from occurring

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Quaternions

I One way to avoid this problem is by using Quaternions to
calculate rotations rather than Euler angles.

I Quaternions represent an extension on complex numbers
of the form q = s + v1iii + v2jjj + v3kkk where iii , jjj ,kkk are
imaginary orthogonal unit vectors. This is often written as
q = (s,vvv)

I Quaternion rules:
I iii2 = jjj2 = kkk2 = ijkijkijk = −1
I ij = k , ji = −kij = k , ji = −kij = k , ji = −k
I jk = i , kj = −ijk = i , kj = −ijk = i , kj = −i
I ki = j , ik = −jki = j , ik = −jki = j , ik = −j
I |q| =

√
s2 + vvv2

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Quaternion Operations
Quaternion multiplication works as follows:

q1q2 = (s1 + v11iii + v12jjj + v13kkk)(s2 + v21iii + v22jjj + v23kkk)

= s1s2 + s1v21iii + s2v22jjj + s3v23kkk + . . .+ v13v22kjkjkj + v13v23kkk2

When we collect terms and apply the rules from the previous
page, we get:

q1q2 = (s1s2 − v1v1v1 · v2v2v2, s1v2v2v2 + s2v1v1v1 + v1v1v1 × v2v2v2)

Quaternion multiplication is not commutative

The conjucate of a quaternion q = (s,vvv) is q∗ = (s,−vvv)
The inverse of q is q−1 = q∗

|q|2

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Quaternion Rotations

To rotate a point (x , y , z) by angle θ counterclockwise around
an arbitrary axis defined by unit vector u we compute:

P ′ = qPq−1

where P = (0, x , y , z) is a quaternion that represents the point
q = (cos( θ2), sin( θ2)uuu)
q−1 = (cos( θ2),−sin( θ2)uuu)

We can compute multiple rotations as
P ′ = qn . . . q2q1Pq1

−1q2
−1 . . . qn

−1

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Quaternions to matrices

We can represent the quaternion as a matrix:

R =

s2 + v1
2 − v2

2 − v3
2 2v1v2 − 2sv3 2sv2 + 2v1v3 0

2sv3 + 2v1v2 s2 − v1
2 + v2

2 − v3
2 2v2v3 − 2sv1 0

2v1v3 − 2sv2 2sv1 + 2v2v3 s2 − v1
2 − v2

2 + v3
2 0

0 0 0 1


(for unit quaternions)

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Activity

Use quaternions to rotate the point (-1, 2, 1) by 90 degrees
around the X axis.

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Why Quaternions?

Quaternions have a number of advantages over rotation
matrices

I Avoids gimbal lock
I More efficient to calculate
I Not dependant on axis rotation order
I Easy to interpolate rotations

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Arbitrary camera orientation

Suppose objects are in some world coordinate system,
consider the pose (position and orientation) of a camera in this
system.

An objects’ position must be transformed into camera-centred
coordinates before a projection can be done, requiring

I a translation (to put cameras optical centre at origin)
I a three-dimensional rotation to line up Z -axis with optical

axis (requires two coordinate axis rotations)
I another rotation around Z -axis to line up X and Y axes

(which way is up)

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Matrix form of perspective projection

Perspective projection can be expressed as a matrix operation
in homogeneous coordinates, where the 3D point (X ,Y ,Z ) is
represented by the homogeneous coordinates
(wX ,wY ,wZ ,w), where w 6= 0 and is typically 1.

Hint: think of perspective projection as a mapping from 3D to
2D, then it can be expressed as a multiplication by a 4× 3
matrix (that is, 3 rows, 4 columns).

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

We want the homogeneous point (X ,Y ,Z ,1) in 3D to “go to”
the homogeneous point (fX/Z , fY/Z ,1) in 2D—this comes
straight from the equations of perspective projection.

This latter point is the same as (X ,Y ,Z/f ), since multiplication
throughout by the constant Z/f gives the same point in
homogeneous coordinates, and

1 0 0 0
0 1 0 0
0 0 1/f 0




X
Y
Z
1

 =

 X
Y

Z/f

→
fX/Z

fY/Z
1



I Rightarrow is just homogenisation (dividing through to
make homogeneous coordinate equal to one (1)!

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Perspective projection can also be thought of as a mapping
from one 3D vector to another 3D vector, given by a 4× 4
transformation matrix using a monotonic function of depth,
called pseudo-depth.

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1/f 0




X
Y
Z
1

 =


X
Y
1

Z/f

→


fX/Z
fY/Z
f/Z
1


Pseudo-depth can make perspective projection into an
invertible affine transformation (as it stores unused Z
dimension in two-dimensions until you need it to go back to
three-dimensions again).

I Pseudo-depth can be used conveniently for ordering points
in hidden-surface elimination, and similar processes.

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective



MINSilvr

Introduction Rotation about artibrary axis Homogeneous versions Quaternion Rotations Arbitrary camera orientation

Summary

I In three-dimensional transformations the convention is to
rotate clockwise looking along axis of rotation, using the
right-hand rule for coordinates.

I Rotations about an arbitrary axis involves two rotations to
line up axis of rotation with a coordinate axis, a rotation
around this last axis then two rotations to undo the first two
(and some translations if rotation axis does not pass
through origin).

I Projections from three-dimensions to two-dimensions can
be conveniently represented as matrix transformations,
allowing for projection variants according to matrix factors.

Adrian Pearce University of Melbourne

COMP30019 Graphics and InteractionThree-dimensional transformation geometry and perspective


	Introduction
	Rotation about artibrary axis
	Homogeneous versions
	Quaternion Rotations
	Arbitrary camera orientation

