
Lecture 3

 Game engines, and other graphics programs,
generally use either Direct3D (Windows) or
OpenGL (most other platforms)

 Modern PC graphics cards will support some
version of both APIs

 Game engines (like Unity) build upon these
APIs to make development easier

 Both OpenGL and Direct3D operate a pipeline,
consisting of several different stages

 This allows the programmer to perform a
number of different operations on the input
data, and provides greater efficiency

 There are some differences between the
OpenGL and Direct3D pipelines

 Will focus mainly on Direct3D pipeline

Source: Unity

http://forum.unity3d.com/attachments/dx11_pipeline-jpg.120446/?temp_hash=4ba49d27358f28c07a9d443cc896d833

Source: 3dgep.com

 For efficiency, the graphics card will render
objects as triangles

 Any polyhedron can be represented by
triangles

 Other 3D shapes can be approximated by
triangles

Source: Wikipedia

 Reads data from our
buffers into a primitive
format that can be
used by the other
stages of the pipeline

 We mainly use Triangle
Lists

D3D11 Primitive Types
Source: Microsoft

 Performs operations on individual vertices
received from the Input Assembler stage

 This will typically include transformations

 May also include per-vertex lighting

Source: ntu.edu.sg

Source: ntu.edu.sg

Source: ntu.edu.sg

 Optional Stages, added with Direct3D 11

 These stages allow us to generate additional
vertices within the GPU

 Can take a lower detail model and render in
higher detail

 Can perform level of detail scaling

Source: Microsoft

 Optional Stage, added with Direct3D 10

 Operates on an entire primitive (e.g. triangle)

 Can perform a number of algorithms, e.g.
dynamically calculating normals, particle
systems, shadow volume generation

Source: Microsoft

 Allows us to receive data (vertices or
primitives) from the geometry shader or
vertex shader and feed back into pipeline for
processing by another set of shaders

 Useful e.g. for particle systems

 Interpolates data between vertices to produce
per-pixel data

 Clips primitives into view frustum

 Performs culling

Source: ntu.edu.sg

 In order to avoid rendering vertices
that will not be displayed in the final
image, DirectX performs ‘culling’

 Triangles facing away from the
camera will be culled and not
rendered

 By default, DirectX performs
‘Counter-Clockwise culling’

 Triangles with vertices in a counter-
clockwise order are not rendered

 The order of vertices is therefore
important

 Left hand rule

 Produces colour values for each interpolated
pixel fragment

 Per-pixel lighting can be performed

 Can also produce depth values for depth-
buffering

 Combines pixel shader
output values to
produce final image

 May also perform
depth buffering

Source: Microsoft

 Don’t want to draw objects directly to the
screen

 The screen could update before a new frame
has been completely drawn

 Instead, draw next frame to a buffer and
swap buffers when complete.

Source: Oracle

Shader "UnityShaderTutorial/Tutorial1AmbientLight" {

 Properties {

 _AmbientLightColor ("Ambient Light Color", Color) = (1,1,1,1)

 _AmbientLighIntensity("Ambient Light Intensity", Range(0.0, 1.0)) = 1.0

 }

 SubShader

 {

 Pass

 {

 CGPROGRAM

 #pragma target 2.0

 #pragma vertex vertexShader

 #pragma fragment fragmentShader

 fixed4 _AmbientLightColor;

 float _AmbientLighIntensity;

 float4 vertexShader(float4 v:POSITION) : SV_POSITION

 {

 return mul(UNITY_MATRIX_MVP, v);

 }

 fixed4 fragmentShader() : SV_Target

 {

 return _AmbientLightColor * _AmbientLighIntensity;

 }

 ENDCG

 }

 }

}

Source: digitalerr0r.wordpress.com

 Shader "UnityShaderTutorial/Tutorial1AmbientLight - The name we can use to

identify it

 Properties {

 _AmbientLightColor ("Ambient Light Color", Color) = (1,1,1,1)

 _AmbientLighIntensity("Ambient Light Intensity", Range(0.0, 1.0)) = 1.0

 } – These can be set in the GUI and accessed in the shader

 SubShader – We can have more than one SubShader to operate on different

hardware

 Pass: A subshader can be split into multiple passes, rendering the geometry more

than once

 CGPROGRAM: This is the ‘meat’ of the shader – where we specify code to act at

differnet levels of the pipeline. Here we specify a vertex shader and a pixel (fragment)

shader. We need at least these two to render the geometry.

 #pragma target 2.0: This specifies the hardware required for the shader to run. 2.0 is
the minimal setting, correspond to Shader Model 2.0 (DX9). See the Unity Shader
Compilation Target Levels documentation

 #pragma vertex vertexShader

 #pragma fragment fragmentShader

These specify the names of the functions that will be used as the vertex and fragment

shaders respectively

 float4 vertexShader(float4 v:POSITION) : SV_POSITION

 {

 return mul(UNITY_MATRIX_MVP, v);

 }

Converts input vertex from object coordinates to camera coordinates. The

SV_POSITION semantic indicates to the rasterizer stage that the output should be

interpreted as a position value for the vertex

 fixed4 fragmentShader() : SV_Target

 {

 return _AmbientLightColor * _AmbientLighIntensity;

 }

Simply sets the colour of a particular pixel to a specific value. The SV_Target semantic

instructs the Output Merger stage interpret this as a color value

 The CG/HLSL syntax is quite similar to C,
although more restricted. There are a
number of permitted datatypes (N.B. Not
exhaustive):

Source: digitalerr0r.wordpress.com

Source: digitalerr0r.wordpress.com

 And a lot of functions

Source: digitalerr0r.wordpress.com

 Consult the MSDN documentation for a more
exhaustive list:

 Functions: https://msdn.microsoft.com/en-
us/library/ff471376.aspx

 Data Types: https://msdn.microsoft.com/en-
us/library/bb509587(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/bb509587(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb509587(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb509587(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb509587(v=vs.85).aspx

