
Lecture 3

 Game engines, and other graphics programs,
generally use either Direct3D (Windows) or
OpenGL (most other platforms)

 Modern PC graphics cards will support some
version of both APIs

 Game engines (like Unity) build upon these
APIs to make development easier

 Both OpenGL and Direct3D operate a pipeline,
consisting of several different stages

 This allows the programmer to perform a
number of different operations on the input
data, and provides greater efficiency

 There are some differences between the
OpenGL and Direct3D pipelines

 Will focus mainly on Direct3D pipeline

Source: Unity

http://forum.unity3d.com/attachments/dx11_pipeline-jpg.120446/?temp_hash=4ba49d27358f28c07a9d443cc896d833

Source: 3dgep.com

 For efficiency, the graphics card will render
objects as triangles

 Any polyhedron can be represented by
triangles

 Other 3D shapes can be approximated by
triangles

Source: Wikipedia

 Reads data from our
buffers into a primitive
format that can be
used by the other
stages of the pipeline

 We mainly use Triangle
Lists

D3D11 Primitive Types
Source: Microsoft

 Performs operations on individual vertices
received from the Input Assembler stage

 This will typically include transformations

 May also include per-vertex lighting

Source: ntu.edu.sg

Source: ntu.edu.sg

Source: ntu.edu.sg

 Optional Stages, added with Direct3D 11

 These stages allow us to generate additional
vertices within the GPU

 Can take a lower detail model and render in
higher detail

 Can perform level of detail scaling

Source: Microsoft

 Optional Stage, added with Direct3D 10

 Operates on an entire primitive (e.g. triangle)

 Can perform a number of algorithms, e.g.
dynamically calculating normals, particle
systems, shadow volume generation

Source: Microsoft

 Allows us to receive data (vertices or
primitives) from the geometry shader or
vertex shader and feed back into pipeline for
processing by another set of shaders

 Useful e.g. for particle systems

 Interpolates data between vertices to produce
per-pixel data

 Clips primitives into view frustum

 Performs culling

Source: ntu.edu.sg

 In order to avoid rendering vertices
that will not be displayed in the final
image, DirectX performs ‘culling’

 Triangles facing away from the
camera will be culled and not
rendered

 By default, DirectX performs
‘Counter-Clockwise culling’

 Triangles with vertices in a counter-
clockwise order are not rendered

 The order of vertices is therefore
important

 Left hand rule

 Produces colour values for each interpolated
pixel fragment

 Per-pixel lighting can be performed

 Can also produce depth values for depth-
buffering

 Combines pixel shader
output values to
produce final image

 May also perform
depth buffering

Source: Microsoft

 Don’t want to draw objects directly to the
screen

 The screen could update before a new frame
has been completely drawn

 Instead, draw next frame to a buffer and
swap buffers when complete.

Source: Oracle

Shader "UnityShaderTutorial/Tutorial1AmbientLight" {

 Properties {

 _AmbientLightColor ("Ambient Light Color", Color) = (1,1,1,1)

 _AmbientLighIntensity("Ambient Light Intensity", Range(0.0, 1.0)) = 1.0

 }

 SubShader

 {

 Pass

 {

 CGPROGRAM

 #pragma target 2.0

 #pragma vertex vertexShader

 #pragma fragment fragmentShader

 fixed4 _AmbientLightColor;

 float _AmbientLighIntensity;

 float4 vertexShader(float4 v:POSITION) : SV_POSITION

 {

 return mul(UNITY_MATRIX_MVP, v);

 }

 fixed4 fragmentShader() : SV_Target

 {

 return _AmbientLightColor * _AmbientLighIntensity;

 }

 ENDCG

 }

 }

}

Source: digitalerr0r.wordpress.com

 Shader "UnityShaderTutorial/Tutorial1AmbientLight - The name we can use to

identify it

 Properties {

 _AmbientLightColor ("Ambient Light Color", Color) = (1,1,1,1)

 _AmbientLighIntensity("Ambient Light Intensity", Range(0.0, 1.0)) = 1.0

 } – These can be set in the GUI and accessed in the shader

 SubShader – We can have more than one SubShader to operate on different

hardware

 Pass: A subshader can be split into multiple passes, rendering the geometry more

than once

 CGPROGRAM: This is the ‘meat’ of the shader – where we specify code to act at

differnet levels of the pipeline. Here we specify a vertex shader and a pixel (fragment)

shader. We need at least these two to render the geometry.

 #pragma target 2.0: This specifies the hardware required for the shader to run. 2.0 is
the minimal setting, correspond to Shader Model 2.0 (DX9). See the Unity Shader
Compilation Target Levels documentation

 #pragma vertex vertexShader

 #pragma fragment fragmentShader

These specify the names of the functions that will be used as the vertex and fragment

shaders respectively

 float4 vertexShader(float4 v:POSITION) : SV_POSITION

 {

 return mul(UNITY_MATRIX_MVP, v);

 }

Converts input vertex from object coordinates to camera coordinates. The

SV_POSITION semantic indicates to the rasterizer stage that the output should be

interpreted as a position value for the vertex

 fixed4 fragmentShader() : SV_Target

 {

 return _AmbientLightColor * _AmbientLighIntensity;

 }

Simply sets the colour of a particular pixel to a specific value. The SV_Target semantic

instructs the Output Merger stage interpret this as a color value

 The CG/HLSL syntax is quite similar to C,
although more restricted. There are a
number of permitted datatypes (N.B. Not
exhaustive):

Source: digitalerr0r.wordpress.com

Source: digitalerr0r.wordpress.com

 And a lot of functions

Source: digitalerr0r.wordpress.com

 Consult the MSDN documentation for a more
exhaustive list:

 Functions: https://msdn.microsoft.com/en-
us/library/ff471376.aspx

 Data Types: https://msdn.microsoft.com/en-
us/library/bb509587(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/bb509587(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb509587(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb509587(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb509587(v=vs.85).aspx

