COMP30019
Graphics & Interaction

Lecture 3

Graphics Programming

» Game engines, and other graphics programs,
generally use either Direct3D (Windows) or
OpenGL (most other platforms)

» Modern PC graphics cards will support some
version of both APIs

» Game engines (like Unity) build upon these
APls to make development easier

Pipelining

» Both OpenGL and Direct3D operate a pipeline,
consisting of several different stages

» This allows the programmer to perform a
number of different operations on the input
data, and provides greater efficiency

» There are some differences between the
OpenGL and Direct3D pipelines

» Will focus mainly on Direct3D pipeline

Direct3D 11 Pipeline

Render Objects

D3D11_INPUT_ELEMENT_DESC

Shader

D3D11_SAMPLER_DESC

D3D11_PRIMITIVE_TOPOLOGY

Shader

D3D11_SAMPLER_DESC

D3D11_RASTERIZER_DESC

D3D11_VIEWPORT

Shader

D3D11_SAMPLER_DESC

D3D11_DEPTH_STENCIL_DESC
D3D11_DEPTH_STENCILOP_DESC

D3D11_BLEND_DESC

D3D11_SHADER_RESOURCE_VIEW_DESC

D3D11_BUFFER_DESC

D3D11_BUFFER_DESC
D3D11_BIND_STREAM_OUTPUT
SOSetTargets()

D3D11_UNORDERED_ACCESS_VIEW_DESC

D3D11_RENDER_TARGET_VIEW_DESC

D3D11_RENDER_TARGET_BLEND_DESC

DXGI_SWAP_CHAIN_DESC

Resources Pipeline Stages |
VertexBuffer® " Input Assembler | ‘_l_—{
1 Input Streaming
JpstanceRuITES vertex data, instance data [
Constant buffers — VertexShader < (
textures*
ByteAddressBuffert
StructuredBuffer processedvertex data
Input Assembler ||
primitive setup
Index Buffer —J
Ppatch control points or primitve data
Constant bufferst 3
textures* Hull Shs
ByteAddressBuffert ulShader
StructuredBuffer ’
patch constant data
transformed I
patchcontrol points, | Tessellator
tesselation factor .
ww, topology
= Domai
. S [
ByteAddressBuffert 4
StructuredBuffer Pprimitive data
W {
L
> v -—
primitive strip data _[
Rasterizer
face culling —
Constant buffers depth bias adjustment
textures* depthclip
ByteAddressBuffert scissor (
StructuredBuffer clipping L
homogenous division
viewport transformation (
skl R {
A B
QunuEbuTer pixels with interpolated data
> Pixel Shader e —
pixel colorand depth
- - Output Merger o
Constane buffers Jeuress stencil test (runs before pixel shader) 4
ByteAddressBuffert prizidy (
StructuredBuffer tiesding
RWTexture** *
Render Targets <«
BackBuffer <
Depth-Stencil RT

Source:

D3D11_DEPTH_STENCIL_VIEW_DESC

Unity

http://forum.unity3d.com/attachments/dx11_pipeline-jpg.120446/?temp_hash=4ba49d27358f28c07a9d443cc896d833

Direct3D 11 Pipeline

o] ‘12)ng)

921n0saYy Alows |y

(J2Ng JURISUO) ‘DINYX
s

Source: 3dgep.com

Representing Objects

» For efficiency, the graphics card will render
objects as triangles

» Any polyhedron can be represented by
triangles

» Other 3D shapes can be approximated by
triangles

A Dolphin

Source: Wikipedia

Input Assembler

» Reads data from our
buffers into a primitive
format that can be
used by the other
stages of the pipeline

» We mainly use Triangle
Lists

—
| W]

Point List E -
1

Line List
AV AV

Line List 0 1 2 3 4 5 6 7

W!Adjacency...‘.,..v_...”,... [IEIEEET v_. ,,,,,,)
Line Strip U_W.

Line Strip 0 1 2 3 4 5

w/Adjacency v—v—v—a -------

Triangle Llst
w/Adjacency g

Triangle Strip

L
Triangle Strip ™.
w/Adjacency

D3D11 Primitive Types
Source: Microsoft

Vertex Shader

» Performs operations on individual vertices
received from the Input Assembler stage

» This will typically include transformations
» May also include per-vertex lighting

Vertex Shader Transformations

Model Spaces (xi,Vi,zZi)

Objects are typically created in their local spaces.
We need to bring them into the common world
space, via a series of affine transforms (translation,
rotation and scaling).

World Space (x,vy,z)

Source: ntu.edu.sg

Vertex Shader Transformations

z. Camera Space (Xc,Yc,Zc)

A UP (e, uy,uz)

EYE (ex,ey,e:z)

World Space (x,y,z)
Y

Xc

AT (ax,ay,az)

Camera is defined via view parameters EYE, AT and UP,
measured in world space. It is located at EYE, pointing at
AT, with upward-orientation of roughly UP.

In the Camera space, camera is located at origin, pointing at
-Z¢, with upward-orientation of ye.
7 is opposite of AT, yc is roughly UP.

Source: ntu.edu.sg

Vertex Shader Transformations

aspect =width/height
width

View Frustum

Camera Space height
AT (-z)
UP (y) +«—zFar
Y +—zNear

Z EYE or COP (Center of Projection)

Perspective Projection: The camera’s view frustum is specified via
4 view parameters: fovy, aspect, zNear and zFar.

Source: ntu.edu.sg

Tessellation Stages

» Optional Stages, added with Direct3D 11

» These stages allow us to generate additional
vertices within the GPU

» Can take a lower detail model and render in
higher detail

» Can perform level of detail scaling

1
|
1
i \ f
\ |
|
¥ I,
'\'\.__\--H- --_d_-"
. -
-
-H"-\._u_.ﬂ'
—

Source: Microsoft

Geometry Shader

» Optional Stage, added with Direct3D 10
» Operates on an entire primitive (e.g. triangle)

» Can perform a number of algorithms, e.q.
dynamically calculating normals, particle
systems, shadow volume generation

AV2

AV L1

Adjacen
Line

LVO_~Tne AV

Adjacent
Line

AVO

Source: Microsoft

Stream Output Stage

» Allows us to receive data (vertices or
primitives) from the geometry shader or
vertex shader and feed back into pipeline for
processing by another set of shaders

» Useful e.g. for particle systems

Rasterizer Stage

» Interpolates data between vertices to produce
per-pixel data

» Clips primitives into view frustum
» Performs culling

f [
R Rasterizer P
N /@@ 3D
J + 3D ' L 1 .\

K : 20000
®-.__ . ‘090000
"‘*-—-_:. e T ¥

A primitive is formed by A fragment is aligned to the
one or more vertices. pixel-grid with a depth

Vertices are not aligned
to the pixel-grid

Source: ntu.edu.sg

Culling

» In order to avoid rendering vertices

that will not be displayed in the final
image, DirectX performs ‘culling’

» Triangles facing away from the
camera will be culled and not
rendered

» By default, DirectX performs
‘Counter-Clockwise culling’

Triangle Clockwise Vertices

2

» Triangles with vertices in a counter-
clockwise order are not rendered

» The order of vertices is therefore
Important

» Left hand rule

Pixel (Fragment) Shader

» Produces colour values for each interpolated
nixel fragment

» Per-pixel lighting can be performed

» Can also produce depth values for depth-
buffering

Output-Merger Stage

» Combines pixel shader
output values to
produce final image

» May also perform
depth buffering

Depth

The depth value
iz stared in the
depth-hutfer,

Depth-hutfer (zame dimensions as the rendering surface)

Source: Microsoft

Double Buffering

» Don’t want to draw objects directly to the
screen

» The screen could update before a new frame
has been completely drawn

» Instead, draw next frame to a buffer and
swap buffers when complete.

Double Buffering

1. Draw
graphics 4—me~ éﬂ
Image Screen
Back Buffar Frimans Suface
2. Blt
AN e -
Image Screen
Baclk Bufffar FPrimahs Sitface

Source: Oracle

A Very Simple Unity Shader

Shader "UnityShaderTutorial/Tutorial1 AmbientLight" {
Properties {
_AmbientLightColor ("Ambient Light Color", Color) = (1,1,1,1)
_AmbientLighintensity("Ambient Light Intensity", Range(0.0, 1.0)) = 1.0
1
SubShader

{

Pass

{
CGPROGRAM

#pragma target 2.0
#pragma vertex vertexShader
#pragma fragment fragmentShader

fixed4 _AmbientLightColor;
float _AmbientLighintensity;

float4 vertexShader(float4 v:POSITION) : SV_POSITION

{
return mul(UNITY_MATRIX_MVP, v);
}
fixed4 fragmentShader() : SV_Target
{
return _AmbientLightColor * _AmbientLighintensity;
}
ENDCG

Source: digitalerrOr.wordpress.com

The Structure

» Shader "UnityShaderTutorial/Tutorial1 AmbientLight - The name we can use to
identify it
» Properties {
_AmbientLightColor ("Ambient Light Color", Color) = (1,1,1,1)
_AmbientLighintensity("Ambient Light Intensity", Range(0.0, 1.0)) = 1.0
} — These can be set in the GUI and accessed in the shader
» SubShader — We can have more than one SubShader to operate on different
hardware
» Pass: A subshader can be split into multiple passes, rendering the geometry more
than once
» CGPROGRAM: This is the ‘meat’ of the shader — where we specify code to act at
differnet levels of the pipeline. Here we specify a vertex shader and a pixel (fragment)
shader. We need at least these two to render the geometry.
» #Hpragma target 2.0: This specifies the hardware required for the shader to run. 2.0 is
the minimal setting, correspond to Shader Model 2.0 (DX9). See the Unity Shader
Compilation Target Levels documentation

The Structure

» #pragma vertex vertexShader

#pragma fragment fragmentShader
These specify the names of the functions that will be used as the vertex and fragment
shaders respectively

» float4 vertexShader(float4 v:POSITION) : SV_POSITION

{
return mul(UNITY_MATRIX_MVP, v);

}
Converts input vertex from object coordinates to camera coordinates. The
SV_POSITION semantic indicates to the rasterizer stage that the output should be
interpreted as a position value for the vertex
» fixed4 fragmentShader() : SV_Target

{
return _AmbientLightColor * _AmbientLighlntensity;

}

Simply sets the colour of a particular pixel to a specific value. The SV_Target semantic
instructs the Output Merger stage interpret this as a color value

What's permitted in CG/HLSL

» The CG/HLSL syntax is quite similar to C,
although more restricted. There are a
number of permitted datatypes (N.B. Not
exhaustive):

Examples of datatypes in HSLS

bool true or false
int 32-bit integer
halt 16bit integer
float 3obit float
double 64bit double

Source: digitalerrOr.wordpress.com

What’s permitted in CG/HLSL

Examples of vectors in HSLS

float3 vectorTest floatx 3

float vectorTest[3] floatx 3

vector vectorTest floatx 3

float2 vectorTest floatx 2

bool3 vectorTest boolx 3
Matrices in HSLS

float3x3 a 3x3 matrix, type float
floatox2 a 2x2 matrix, type float

Source: digitalerrOr.wordpress.com

What’s permitted in CG/HLSL

» And a lot of functions

Some functions in HLSL

cos(x) Returns cosine of x

sin(x) Returns sinus of x

cross(a,b) Returns the cross
product of two vectors a
and b

dot(a,b) Returns the dot product
of two vectors a and b

normalize(v) Returns a normalized

vectorv(v/ |v])

Source: digitalerrOr.wordpress.com

N

What’s permitted in CG/HLSL

» Consult the MSDN documentation for a more
exhaustive list:

» Functions: https://msdn.microsoft.com/en-
us/library/ff471376.aspXx

» Data Types: https://msdn.microsoft.com/en-

us/library/bb509587(v=vs.85).aspx

p—

https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/ff471376.aspx
https://msdn.microsoft.com/en-us/library/bb509587(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb509587(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb509587(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb509587(v=vs.85).aspx

