COMP30019 Graphics and Interaction Radiosity & Global Illumination

Adrian Pearce

Department of Computer Science and Software Engineering University of Melbourne

The University of Melbourne

University of Melbourne

Adrian Pearce

COMP30019 Graphics and InteractionRadiosity & Global Illumination

Lecture outline

Radiosity

Adrian Pearce

University of Melbourne

COMP30019 Graphics and InteractionRadiosity & Global Illumination

Adrian Pearce

What alternatives are there to the rendering pipeline approach?

Aim: understand the computational implications of ray tracing and the radiance illumination model. Reading:

- 13.4 Radiosity Methods (Foley)
- 11.5 Radiosioty (Angel)

University of Melbourne

COMP30019 Graphics and InteractionRadiosity & Global Illumination

Adrian Pearce

Recall—Phong illumination model & specular reflection

$$I_{\lambda} = I_{a\lambda}k_aO_{d\lambda} + f_{att}I_{p\lambda}[k_dO_{d\lambda}cos\theta + W(\theta)cos^n\alpha]$$

$$I_{\lambda} = I_{a\lambda}k_a O_{d\lambda} + f_{att}I_{p\lambda}[k_d O_{d\lambda}(\bar{N}.\bar{L}) + k_s(\bar{R}.\bar{V})^n]$$

where $I_{a\lambda}$ is the ambient light (as a function of wavelength), $I_{p\lambda}$ is the point light source, $O_{d\lambda}$ is objects diffuse colour, $W(\theta)$ is the fraction of specularly reflected light, k_d is the diffuse-reflection coefficient, k_s is the specular reflection coefficient, *n* is the specular-reflection exponent and f_{att} is the light source attenuation factor (a function of distance).

