
Introduction Forward kinematics Inverse kinematics

COMP30019 Graphics and Interaction
Kinematics

Adrian Pearce

Department of Computing and Information Systems
University of Melbourne

The University of Melbourne

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Lecture outline

Introduction

Forward kinematics

Inverse kinematics

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Kinematics
‘I am robot (am I?)’

I Forward kinematics for me is:
I Apply a behaviour to my robot arm—e.g. rotate one of my

arms by pre-determined angles for each joint (degree of
freedom)

I Apply a steering behaviour to my robot body—e.g. translate
myself by a pre-determined vector on the 2D surface (using
my wheels)

I Inverse kinematics for me is:
I How do I configure my robot arm to reach it?—determine

all of the previously unknown angles for my joints.
I Can my robot arm reach that object?
I Is the object reachable from where I am?—do I need a

forward kinematics translation by moving adjacent to it?

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Forward kinematics

Forward kinematics can be posed as applying homogeneous
transformations relative to the coordinate system.

x ′

y ′

z ′

1

 =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1




x
y
z
1


In forward kinematics we know the aggregated rotation and
scale factors, rij , and translation factors, ti , of the transformation
matrix.
Therefore, given point x , y , z we can computer point x ′, y ′, z ′.

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Inverse kinematics

The inverse kinematic problem is one of the most difficult to
solve, as a set of simultaneous equations must be solved.

x ′

y ′

z ′

1

 =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1




x
y
z
1


In inverse kinematics we know points x , y , z and x ′, y ′, z ′.
We must therefore induce the aggregated rotation and scale
factors, rij , and translation factors, ti , for the required
transformation matrix.

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Degrees of freedom in human animation

In the human skeleton, each joint angle is typically specified by
three angles and therefore have three degrees of freedom
(DOF).

I With increased degrees of freedom (more joints) get more
possible solutions (or redundancy of movement).

I After including, legs, hands, feet, head and a spine will
have well over 100 degrees of freedom, possibly without
even including fingers and toes!

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

(~) ~ Computer Graphics, Volume 21, Number 4, July 1987 

3 . 2  L i n k s ,  J o i n t s  and Forces 

Each link has size, shape and mass and, thus, a 
center of gravity (COG) and a moment of inertia. 
The linkage for each figure forms a tree structure. 
Each link possesses one joint at which it is 
attached to its parent link and may possess one or 
more joints at which child links are attached. 
Links move relative to each other via one to six 
translational or rotational degrees of freedom, 
(DOF), associated with each joint. (figures 2,3) 

I DOF  2 DOF 3 D O F  

P in  Joint 

S l i d t  n ~; Joint 

4. DOF 

Cy l i nc i@r  on  o P IQn~  

Umlve rBa l  J o t n t  

Cyllnd rlcdal Joint 

5 DOF 

B011 on¢~ Socket J o i n t  

@ 
P[onQr T r o  n l l o % i o n  
wlth One R o t o t l o n  

6 DOF 

F l y i ng  O t p j e C t  

F i g u r e  2: Types Of Joints 

DO\F 3 DOF 

I DO~ r \', ~ / 1  

I / ~ , \v,,' 

°Do. .-. _//>" . a  

~ .  Upp/er_Body Right_Leg ~ Lef t_Leg 
\ I I 

Head Left Arm RightArm L ower_L eg  Lover_Leg 

Lower Arm Lower_Arm Left_Foot Right_Foot 
I I 

Left_Hand Right_Hand 

Figure 3 
The Human Figure As A Linkage 

Each joint may have associated springs and/or 
dampers which act to exert internal forces or 
torques within that joint. Joints may also have 
associated limits which act to keep the DOFs from 
moving beyond some point, e.g., the lower arm can 
bend only within a defined arc about the elbow. 
(figure 4) 

/ /  

TRANSLATIONAL LIMIT ROTATIONAL LIMIT 

Figure 4: Joint Limits 

In addition, the linkage responds to externally 
applied forces . External forces can be specified 
as applied torques, point vector forces, or force 
fields. Most animate figures are actually driven 
by tensile forces caused by contraction of a muscle 
attached to the skeletal frame. Muscles can be 
modeled as physical entities attached to the links 
(figure 5). Muscle contractions apply equal but 
opposite tensile forces between adjacent attachment 
points. All forces are resolved into force/torque 
pairs acting at the link center of gravity. 

O r l g l n a l  M u g c l e  E q u i v a l e n t  F o r c e |  F o r c e / T o r q u e  Pal'rs 

Figure 5: Representation Of A Muscle 

The links, joints, forces, and position and 
velocity of the DOFs form a complete description of 
the state of the dynamic system at any given time. 

3 . 3  D y n a m i c  S i m u l a t i o n  

The dynamic simulation for each time increment can 
be broken down into four phases. These are: ]) 
execution of the behaviors, 2) calculation of joint 
forces 3) formation of the equations of motion, and 
4) matrix solution and evaluation of results. 

3 . 3 1  E x e c u t i o n  o f  B e h a v i o r  F u n c t i o n s  

Behavior functions determine, at each moment, 
forces acting on a linkage and/or specific motion 
which is to occur. The forces or specified motion 
can be determined through any algorithm of the 
user's choosing, based on any currently available 
information about the state of the system (e.g. 
time, geometry, etc.) Examples of useful input and 
associated output for behaviors are illustrated in 
figure 6. 

A behavior function's output can specify a single 
force or a force field such as gravity. Gravity's 
simple behavior function always exerts a downward 
force equal to the mass times the acceleration of 
gravity with its point of action at the center of 
gravity of each link. Contributions from a]] 
external forces are summed for each link into an 
aggregate force and torque vector expressed in the 
global or "inertial" spatial frame. 

Motion may also be output from a behavior function 
using time or other input parameters. The 
specified motion can be defined by keyframed paths 
which depend only on time, or by procedural means 
which may depend on other criteria. 

The user-designed behavior algorithms can make 
decisions in virtually any way, ranging from "begin 

217  

For the human figure shown in the figure there are 38 degrees of freedom—Controlling dynamic simulation with

kinematic constraints, behaviour functions and inverse dynamics, by Paul M. Isaccs and Micael F. Cohen, Cornell,

SIGRAPH 1987

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Solving Inverse Kinematics

Problems can arise in solving simultaneous equations for
inverse kinematics, including

I the existence of multiple solutions (or joint configurations),
I the possible non-existence of any solution (unreachable),

or
I singularities of matrix equations (we will see later).

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Solution techniques
We can solve simultaneous equations using iterative or
algebraic algorithms.
Algebraic algorithms

Algebraic techniques for solving linear
simultaneous equations are known from the field
of numerical methods.

Iterative algorithms

I Iterative algorithms work by calculating an
approximate solution which converges to the
exact solution,

I typically be used for solving non-linear
simultaneous equations or when numerical
stability if paramount important.

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Algebraic approach

If Ax = b and we want to solve for x, then x = A−1b.
A−1 is termed the inverse matrix of A.
A−1 can be constructed whenever A is non-singular.
The following conditions are true and equivalent if a matrix has
an inverse, or at least one or more non-singularities (solutions)
e.g. if lines or planes intersect in geometrical terms

1. no one equation in the system can be expressed as a
linear combination of the others

2. the determinant of A is non-zero ie. | A | 6= 0
3. the columns (rows) of the coefficient matrix are linearly

independent

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Therefore, to solve Ax = b directly, we must compute

x = A−1b

where
A−1 =

1
det(A)

adj(A)

and before doing so we must also check if | A | 6= 0 to make
sure inverse exists, otherwise A is singular (and therefore
doesn’t have a solution).

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

I Note that checking if the determinant is zero requires the
concept of "zero" in floating point, which requires the use
of a small non-zero constant that is just larger than the
maximum expected error as a result of numerical precision.

I This will depend on the machine you implement on.

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Algebraic example
Initially, one of the simpler inverse problems is explored which
can be solved algebraically — it takes three points to define an
affine transformation in two dimensions (2D). For example, an
affine transformation matrix can be derived in homogeneous
form, that defines the transformation where point (1,1) goes to
(4,4), point (1,−1) goes to (4 +

√
2,4−

√
2) and point (−1,1)

goes to (4−
√

2,4−
√

2).

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Looking at this visually suggests (i) a rotation 45 degrees
anticlockwise about origin followed by (ii) a translation by 4 in x
direction and 4−

√
2 in the y direction.

I However we want to automate this!

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

The (unknown) transformation matrix must therefore satisfy
each of the following transformations for each point (since it is
an affine transformation)axx axy bx

ayx ayy by
0 0 1

1
1
1

 =

4
4
1


axx axy bx

ayx ayy by
0 0 1

 1
−1
1

 =

4 +
√

2
4−
√

2
1


axx axy bx

ayx ayy by
0 0 1

−1
1
1

 =

4−
√

2
4−
√

2
1



Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Which gives rise to the following set of six simultaneous
equations (for each unknown coefficient of the unknown
transformation)
axx +axy +bx = 4

+ayx +ayy +by = 4
axx −axy +bx = 4 +

√
2

+ayx −ayy +by = 4−
√

2
−axx +axy +by = 4−

√
2

−ayx +ayy +by = 4−
√

2

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

So to get the required transformation matrix, we must solve
equation Ax = b to derive coefficients in terms of solution
vector x where

A =



1 1 0 0 1 0
0 0 1 1 0 1
1 −1 0 0 1 0
0 0 1 −1 0 1
−1 1 0 0 0 1
0 0 −1 1 0 1

 , b =



4
4

4 +
√

2
4−
√

2
4−
√

2
4−
√

2


and

x =



axx
axy
ayx
ayy
bx
by


Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Notice that the problem of deriving a suitable transformation
appeared to rely on two factors

(i) The calculation of determinants of matrices (necessary for
direct calculation of inverse matrices), and

(ii) Consideration of numerical precision in the notion of zero
when checking to see if a solution exists (that determinant
is not zero).

Question: what is the computational complexity of calculating
determinants? What does it mean in practice for computer
graphics?

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

The complexity of matrix algebra

If A =
[
aik
]

(m × n) and B =
[
bkj
]

(n × s) then under
multiplication
C = AB

=


a11 · · · a1n

...
...

ai1 · · · ain
...

...
am1 · · · amn


b11 · · · bij · · · a1j

...
...

...
bn1 · · · bnj · · · amn

 =
[
cij
]

Each element cij must be found by taking the dot product of the
i th row vector of A and the j th column vector of B.

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Matrix multiplication therefore involves a lot of arithmetic
operations, particularly for large matrices.

ie. cij =
[
ai1 · · · ain

] b1j
...

bnj

 = Σn
k=1aikbkj

For a n × n matrix, there are

n×n×(n×multiplications+n×additions) = n3×(multiplcations+additions)

therefore worst case complexity is O(n3).
The complexity of matrix multiplication stems from the
complexity of computing dot products of vectors.

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Recall that the determinant of a two-dimensional matrix is
denoted as | A | , or det(A).

For example, the determinant of matrix A =

[
a11 a12
a21 a22

]
is

| A |=
∣∣∣∣a11a12
a21a22

∣∣∣∣ = a11a22 − a12a21

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

More generally, a determinant for a matrix A is determined by

|A| =
k∑

i=1

aijCij

where Cij is the cofactor of aij defined by

Cij ≡ (−1)i+jMij

and Mij is the minor of matrix A formed by eliminating row i and
column j from A.

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

∣∣∣∣∣∣∣∣∣
a11 a12 a13 . . . a1k
a21 a22 a23 . . . a2k

...
...

...
. . .

...
ak1 ak2 ak3 . . . akk

∣∣∣∣∣∣∣∣∣ = a11

∣∣∣∣∣∣∣
a22 a23 . . . a2k

...
...

. . .
...

ak2 ak3 . . . akk

∣∣∣∣∣∣∣

−a12

∣∣∣∣∣∣∣
a21 a23 . . . a2k

...
...

. . .
...

ak1 ak3 . . . akk

∣∣∣∣∣∣∣+ . . .± a1k

∣∣∣∣∣∣∣
a21 a22 . . . a2(k−1)

...
...

. . .
...

ak1 ak2 . . . ak(k−1)

∣∣∣∣∣∣∣
Calculating determinants directly (eg. using cofactors) therefore
has complexity O(n!), growing factorially with the size of the
matrix!
This won’t work for 100 Degrees of Freedom Human model.

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Calculating a determinant directly has very bad worst-case
computational complexity, O(N!).

I This is way beyond the complexity of algorithms we like to
invoke even less often than at the screen refresh rates
experienced in graphics. For example hashing is O(n) and
retrieval from balanced trees is typically O(nlogn).

This means that direct methods of calculating determinants are
not computationally tractable in large matrices, except for small
n.

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

The challenge of Inverse Kinematics

Since solutions to simultaneous equations is central to
geometric transformations and inverse kinematics

I can’t efficiently calculate inverse matrices directly for
solving simultaneous equations fast enough for real time,
and

I can’t efficiently check for singularities necessary to
guarantee numerical stability or meaningful solutions.

In practice iterative algorithms are used that reduce the
complexity of the arithmetic.

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics



Introduction Forward kinematics Inverse kinematics

Cyclic Coordinate Descent Algorithm

https://sites.google.com/site/auraliusproject/
ccd-algorithm

Final IK - CCD script from Unity Assest Store:
https://www.youtube.com/watch?v=-z_l7Jdz8Bo

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics

https://sites.google.com/site/auraliusproject/ccd-algorithm
https://sites.google.com/site/auraliusproject/ccd-algorithm
https://www.youtube.com/watch?v=-z_l7Jdz8Bo


Introduction Forward kinematics Inverse kinematics

Unity IK resources

Unity Documentation: https://docs.unity3d.com/
Manual/InverseKinematics.html Unity 5 IK Tutorial

(YouTube):
https://www.youtube.com/watch?v=EggUxC5_lGE

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics

https://docs.unity3d.com/Manual/InverseKinematics.html
https://docs.unity3d.com/Manual/InverseKinematics.html
https://www.youtube.com/watch?v=EggUxC5_lGE


Introduction Forward kinematics Inverse kinematics

Kinematics Summary

I Forward kinematics equations are relatively easy to solve
(provided required transformations are known ahead of
time) since solution simply involves matrix multiplication.

I Solution to inverse kinematics problems involves the
solution of simultaneous equations.

I If sufficiently many points are defined,
I then inverse kinematics problems can be posed in terms of

solutions to sets linear simultaneous equations,
I otherwise iterative (or incremental) inverse kinematic

solution techniques must be used (covered later).

Adrian Pearce University of Melbourne

COMP30019 Graphics and Interaction Kinematics


	Introduction
	Forward kinematics
	Inverse kinematics

