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19 Interpolation and splines

How are smooth surfaces drawn (when polygonal approximation fails)?

Aim: understand principles of interpolation and extrapolation.

Reading:

• Foley Sections 9.2 Parametric bubic curves, 9.2.1 Basic characteristics, 9.2.3

Bézier curves, 9.3 Parametric bicubic surfaces, 9.3.1 Hermite surfaces, 9.3.2

Bézier surfaces and 9.3.4 Normals to surfaces, 9.4 Quadric surfaces.

Further reading:

• Heath’s lecture 7 on interpolation, (see

http://www.cse.uiuc.edu/heath/scicomp/notes/) from Scientific Computing: An

Introductory Survey, Second Edition by Michael T. Heath, McGraw-Hill 2002;

ISBN 0-07-239910-4.
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Introduction to interpolation

Say know value of a function f(x) at a set of points x1, x2, . . . , xn

(x1 < x2 < . . . < xn) but f(x) not known in analytic form.

i.e. don’t know equation for f(x).

e.g. may get f(xi) values from a physical measurement in an experiment, or from

a long, complicated calculation.
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How do we estimate f(x) for arbitrary x?

If desired x within range of xi then use interpolation

If desired x outside range of xi then use extrapolation
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Most common functional form used are polynomials.

Also use

• rational functions (quotients of polynomials) and

• trigonometric functions (sines, cosines etc.)

• as well as others, e.g. ax2+bx+c
dx+c

281



19– INTERPOLATION AND SPLINES�

�

�

�

12 0 1

1

2

x(t)
x(t)

t

t

y(t) y(t)

1

Two joined 2D parametric curve segments (Foley Figure 9.7).
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Parametric curve

x(t) = axt
3 + bxt

2 + cxt+ dx

y(t) = ayt
3 + byt

2 + cyt+ dy

z(t) = azt
3 + bzt

2 + cxt+ dz

where 0 ≤ t ≤ 1

C =

⎡
⎣ax bx cx dx

ay by cy dy

az bz cz dz

⎤
⎦

Can rewrite parametric curve as

Q(t) =
[
x(t) y(t) z(t)

]T = C · T
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Tangent vectors

The derivative of Q(t) is the parametric tangent vector of the curve.

x(t) = axt
3 + bxt

2 + cxt+ dx

y(t) = ayt
3 + byt

2 + cyt+ dy

z(t) = azt
3 + bzt

2 + cxt+ dz

where 0 ≤ t ≤ 1

d
dtQ(t) = Q′(t) =

[
d
dtx(t)

d
dty(t)

d
dtz(t)

]T

= d
dtC · T = C · [3t2 2t 1 0

]T

=
[
3axt

2 + 2bxt+ cx 3ayt
2 + 2byt+ cy 3azt

2 + 2bzt+ cz
]T
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Parametric continuity

If the direction and magnitutde of the

dn

dtn

[
Q(t)

]
through the nth derivative are equal at the join point, the curve is called cn continuous.
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Left: Curve segment S joined to segments C0, C1 and C2.

Right: Curve segmentsQ1, Q2 andQ3 join at the point P2 and are identical

except for their tangent vectors at P2 (Foley Figures 9.8 and 9.9).
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Bézier curves

Bézier curves are defined by the starting and ending vectors of a curve,

P1P2 and P3P4

and are therefore determined by four control points.
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19.1 Bézier curves
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Two Bézier curves and their control points (Foley Figure 9.15).
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19.2 B-Splines

The term spline relates to strips of metal used by draftsmen to lay out surfaces in

aeroplanes, cars and ships. These metal splines had second-order continuity.

The mathematical equivalent of these are C0, C1, and C2 continuous cubic

polynomial that interpolates (passes through) the control points.

Splines have one more degree of continuity that Bézier forms, thus splines are

smoother.
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19.3 Uniform nonrational B-splines
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(Foley Figure 9.18)
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Moving control point P4 to different positions (Foley Figure 9.19).
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19.4 Parametric bicubic surfaces
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Sixteen control points of a Bézier bicubic surface (Foley Figure 9.24).
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19.5 Parametric bicubic surfaces
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(Foley Figure 9.25).
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19.6 Computing parametric curves and surfaces

Despite the computational complexity involved in rendering Parametric curves and

surfaces (see Foley Section 9.3.5 Displaying bicubic surfaces) they clearly have

benefits, including

• the production of very high resolution, photo-realistic images for visualising

designs (in the automotive industry bicubic splines have been extensively used

for visualising new body shapes).

• the production of high-tolerance surfaces with very few errors or artifacts (useful

for the design of industrial components such as engine parts).

Although many of these applications are presently limited either expensive hardware

accelerators and/or batch processing before the final results are ready to visualise.
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19.7 Parametric in real-time graphics?

What kinds of real-time rendering and shading applications can you think of that

might benefit from parametric surfaces?

What kinds of parametric surfaces do you think might be good candidates for

real-time computer graphics why?

What advantages might a parametric approach have over a polygonal approach to

modelling surfaces in animation?
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