
COMP30019 Graphics and Computation

Sample exam question solutions

Department of Computing and Information Systems,
The University of Melbourne

1 Conversion of image coordinates

x = j

y = (R− 1)− i

Though this last one is sometimes seen as

y = R− (i+ 1)

I think the first form is preferable. Derivation and reverse conversion should be obvious.

2 Image offset

This works out the same as regular array-indexing address calculation, mapping a 2D array position into
linear addresses. The pixel at row i, column j has Ci pixels in front of it from previous rows, and j pixels
in front of it on the same row. So it’s Ci+ j pixels from the start of the pixel data, that’s k(Ci+ j) or
Cki+kj bytes. Counting the H bytes of the header, it’s therefore H+Cki+kj bytes from the beginning
of the file. This should be pretty straightforward—just make sure that you understand what’s involved.

1

3 Image rescale

For simplicity, assume that the source and destination images are stored respectively in explicit 2D arrays
a and b. Normally, these pixel arrays would be accessed through pointers.

We basically need to for-loop over all the pixels of b, rescale the coordinates back to where they would
have come from in a, and interpolate a value at this position to put into b.

int a[WIDTH][HEIGHT], b[WIDTH][HEIGHT]; int x2, y2; double x1, y1;

for(y2 = r2-1; y2 >= 0; y2--) {
for(x2 = c2-1; x2 >= 0; x2--) {

x1 = (double) x2 * c1 / c2; y1 = (double) y2 * r1 / r2;

b[x2][y2] = interpolate(a, x1, y1);

}
}

I’ve made the loops run backwards (just for fun, to make the point that for most operations the order
of visiting pixels is irrelevant—though remember on most machines a loop termination test against zero
is faster than a test against some other value). Also, the three statements inside the loop could all have
been combined into one, dispensing with x1 and x2.

4 Colour choice

There are a number of problems with this:

focus Edges between regions of different colour cannot be brought to sharp focus, because of chromatic
aberration in the eye. This can cause eye strain.

edges The visual subsystem that detects edges between regions responds only to intensity differences,
not to differences purely of colour. So such edges would not be well perceived.

motion Similarly, our motion detection subsystem also responds only to intensity, so the motion of the
soccer players would not be well perceived either.

colour blindness A significant fraction of the population is red-green colour blind, and hence may not
be able to see the difference between the players and the background.

The solution is to make the difference one of intensity as well as of colour—say by making the background
dark green instead, and perhaps also by drawing a black outline around the players.

2

5 Video images

The basic problem is that we don’t have a enough lines, and we have too many frames per second. The
simplest solution is to replicate every 5th line coming through in each frame. That is, if the lines coming
in are ABCDE, we output the lines ABCDEE. This gives us 105 extra lines, a total of 630, and we can
just drop the extra 5 lines to leave 625. We also just drop every 6th frame coming in, to reduce the
number of frames from 30 per second to 25 per second. The main problem with this is that the picture
and motion is distorted on a small scale, but it comes out about right over all. On the input side, the
computation just requires a single line of storage. However, additional lines of buffers may be needed on
the input side, and additional whole images of buffers on the output side, in order to make timing work
out properly.

Going back the other way, we have too many lines, and too few frames. We can do a similar trick, but
this time we drop every 6th incoming line. This drops us down to 521 lines, then we can tack on an extra
4 black lines. We also replicate every 5th frame, to bring up the frame rate. The computation needs at
least an entire image stored on the input side (so the entire frame can be replicated when needed), but
again may need additional whole image buffers on the input and output sides to make all the timing
work out properly. Again, shape and motion will be distorted a little on the small scale but overall will
be about right.

The issue of how much input and output buffering is needed for the sake of timing is one I haven’t given
enough thought to. You might like to think about it more yourself.

More complex (and more accurate) methods for converting between the two T.V. standards can be based
on spatial and temporal interpolation.

6 The robot’s camera

(a) From the position of the point’s projection in the image, all we can infer is the line of sight it lies
along. However, since it’s a point on the ground plane, we know it must lie at the unique point
where this line of sight intersects the ground plane.

A reasonable coordinate system puts the 3D origin on the ground directly below the camera’s
optical centre, with the Y axis up, the X to the robot’s right, and the Z axis going backwards.
The camera-cantered system has the same X and Z, but we have to subtract h (the height of
the robot’s camera) from camera Y coordinates in order to get world Y . So, in terms of world
coordinates, our projection equations are:

x

f
=

X

Z
(1)

y

f
=

Y − h
Z

(2)

In this system, the ground plane is given by Y = 0. Substituting this into Equation 2 gives

y

f
=
−h
Z

, or

Z =
−hf
y

(3)

Knowing Z from Equation 3, we can compute X by substitution into Equation 1.

X =
Zx

f
= −hx

y
(4)

And of course, Y = 0, so we have all three coordinates of this point in space.

3

A minor variation is to make the robot-centred coordinates the same as the camera-centred co-
ordinates. In this case the ground plane has instead the equation Y = −h, but the derivation is
similar.

(b) We need to be able to assume that the object is resting on the ground (not flying through the air),
and that its point of contact with the ground is detectable (for example, no extensive overhangs
that block view of the object’s base).

(c) It’s the horizon line. Look at Equation 3 and consider what happens as y → 0. Notice that nothing
above this line could possibly come from something on the ground. This is the horizon for an
infinite flat earth—not quite the same as the horizon for our spherical earth, but close.

(d) Then this method breaks down, but the question is, How much? If we had an accurate topographical
map of the terrain, we could instead compute the intersection of the line of sight with the ground
surface. Harder to do, but the same principle. Failing that, if we could put upper and lower bounds
in the ground surface, we could feed these bounds through the equations to derive bounds on the
3D position of a seen ground point. And failing even that, for points that appear in the image
vertically lined up, we can at least infer that the higher-up one is qualitatively further away than
the lower-down one. (This may not hold for extremely pathological ground surfaces, but then I
wouldn’t send my robot to such a place.)

7 Composition of a scaling transformation

We do this by translating everything so that the point at
(
cx cy

)
arrives at the origin. This is a

translation by
(
−cx −cy

)
. Then we scale about the origin, and translate back again, that is by(

cx cy
)
. Expressed in matrices, this combined transformation is

M = T2ST1

where

T1 =

 1 0 −cx
0 1 −cy
0 0 1

S =

 sx 0 0
0 sy 0
0 0 1

T2 =

 1 0 cx
0 1 cy
0 0 1

So

ST1 =

 sx 0 −cxsx
0 sy −cysy
0 0 1

T2ST1 =

 sx 0 cx(1− sx)
0 sy cy(1− sy)
0 0 1

In homogeneous coordinates, the corner points are respectively(

0 0 1
) (

1 0 1
) (

1 1 1
) (

0 1 1
)

4

or any multiples of these. The centre of the square is the point
(

1/2 1/2 1
)
, and we’re scaling by

2 both horizontally and vertically (sx and sy). Plugging this into our symbolic matrix gives

M =

 2 0 −1/2
0 2 −1/2
0 0 1

Multiplying this onto our four corner points (on the right) gives respectively(

−1/2 −1/2 1
) (

3/2 −1/2 1
) (

3/2 3/2 1
) (

−1/2 3/2 1
)

With, in this simple case, the obvious conversion back into regular 2D coordinates (just drop the extra
1—but it isn’t always this simple).

Basically, all these transformations are a linear change in coordinates. When fed through the equation
of a line, we still get the equation of a line.

8 Transformation by composition

Steps�

�� Translate A to origin

T� �

�
�

� ��

� ��

�

�
�

�� Scale� Re�ect about the x axis�

Sx � �

Sy � ��

5

�� Scale� Use AB and A
�

B
�

to determine scale in x and AG and A
�

G
�

to determine scale in y�

Sx �

p
�� � ��

�� � ��
�
p
�

Sy �

p
�� � ��

�� � ��
�
p
�

�� Scale� Re	ect about the x axis�

Sx � �

Sy � ��

T� �

�
�

�
��

�

�
�

� Rotate by � � �
deg

T� �

�
�

cos��� �sin���
sin��� cos���

�

�
�

�

�
�

��
p
� ���

p
�

��
p
� ��

p
�

�

�
�

� Translate to A��

T� �

�
�

� �
� �

�

�
�

The combined transformation matrix �CTM� is determined by multiplying the matrices to�
gether�

CTM � T�T�T�T�T�

�

�
�

� �
� �

�

�
�
�
�

��
p
� ���

p
�

��
p
� ��

p
�

�

�
�
�
�
p
� p

�
�

�
�
�
�

�
��

�

�
�
�
�

� ��
� ��

�

�
�

�

�
�

� �
� �

�

�
�
�
�

� ��
� �

�

�
�
�
�

�
��

�

�
�
�
�

� ��
� ��

�

�
�

�

�
�

� �
� �

�

�
�
�
�

� ��
� �

�

�
�
�
�

� ��
�� �

�

�
�

�

�
�

� �
� �

�

�
�
�
�

� � ��
� ��

�

�
�

�

�
�

� � ��
� �� �

�

�
�

6

9 Computational properties of matrices

This should be obvious from multiplying out: . . .
. . .
0 0 1

 . . 0
. . 0
. . 1

Essentially, the last column of the second matrix “selects out” the last column of the first matrix as the

last column of the product, and this is

 0
0
1

.

Basically, all the 2D transformations we’ve seen—translation, rotation, scaling, reflection—have this
characteristic. This means that to represent such transformations (or any product of such transforma-
tions) as homogeneous matrices, we need only store and compute 6 numbers rather than 9.

10 Convex hulls and Bézie curves and 20 joining Bézier curves

Additional part to question: ray tracing curved surfaces. Assume you’re doing ray-tracing.
Compare Bézier surface patches and quadric surfaces in regard to the computational cost of computing
intersections of rays with the surfaces, and cost of computing surface normals at the intersection point.
Take into account the use of bounding volumes to speed intersection tests. What about for rendering
methods other than ray-tracing?

These questions are all inter-related. First, about convexity: For a Bézier curve segment we can use this
convex-hull property to speed intersection tests, say with straight line segments (or other curves). If
the line segment doesn’t intersect the convex hull of the control points, then we know it can’t possibly
intersect the curve segment. This is generally a win, because computing the intersection of a line with
a Bézier cubic parametric curve requires solving cubic equations, which is doable but non-trivial. This
convex-hull property (in 3D) also holds for Bézier surface patches in 3D. If you think about the surface
patch Q(s, t) as being a family of curves in t, one for each value of s, then these t-curves sweep out the
surface as s changes. Any point on a t-curve is a convex linear combination of that curve’s control points.
These control points themselves move along curves defined by the control points in the other direction,
and are therefore convex linear combinations of these other control points. This means that any point
on the surface is ultimately a convex linear combination of the 16 control points, and therefore must lie
within their convex hull. This property can be useful for much the same reason, intersection tests, like
intersection with a line of sight for ray-tracing.

For two successive Bézier curve segments, to get C1 continuity, first have to have C, and to achieve this,
you have to have the end point of the first curve segment be identical to the starting point of the second
curve segment. This is already the case in this formulation, since the control point P4 is common to both
curve segments. Beyond this, to obtain C1 continuity, the tangent vector at the end of the first segment
has to be the same as the tangent vector at the start of the second segment. This is achieved by having
the vector P3P4 be the same as the vector P4P5. In other words, P3, P4, P5 must all be collinear, with
P4 midway between P3 and P5.

For intersecting a ray with a surface: For a Bézier cubic surface, this requires solving a cubic equation.
There is a (more or less) a closed-form solution for this, but it’s relatively expensive. For a quadric
surface, it’s just a matter of solving a quadratic equation, which is much simpler.

Computing the normal at a point (s, t) on a Bézier surface patch requires computing the tangent vectors
to the surface in each of the s and t directions, and then computing their vector cross product (since
the normal must be perpendicular to both tangent vectors). This involves evaluating six quadratic

7

expressions (for the three components of the two tangents) plus the cross product. For a quadric surface,
the normal is essentially the gradient of the quadratic form, whose three components are just linear
expressions, and so much easier to compute.

Note, this doesn’t take into account shortcuts from use of bounding volumes, such as convex hulls or
bounding boxes, but I expect the speed up from these would be much the same for both cases. Note also,
that quite often for rendering a Bézier patch will be “diced” up into quadrilaterals (by stepping through
s and t in sufficiently small steps). Then this mesh of quadrilaterals can be rendered by techniques
similar to those used for polygonal meshes. (The quadrilaterals are not necessarily planar and so won’t
be polygons, but would usually be pretty close.) Or the quadrilaterals can be subdivided into triangles
(by running an arbitrary fake diagonal edge across a quadrilateral) and then it can be rendered as a
triangular mesh (a special case of a polygonal mesh), often with some sort of interpolated shading. To
ray-trace a diced Bézier patch, we have to compute intersections with many triangular (quadrilateral)
pieces.

Sometimes dicing is done even for quadric surfaces. Because quadric surfaces are easier to handle, this
probably isn’t worthwhile on stock hardware, but may be an advantage say if you have special graphics
hardware for rendering triangles.

12 Piece-wise curves

So long as you have some machinery and conventions for finding a seed point inside the enclosed region,
simplest would be just to draw the entire boundary (assuming you have code for tracing the curves), and
then flood-fill the inside. (You’d probably also need to assume that the boundary didn’t cross itself.)

Some kind of scan-line approach would be possible, but much more involved than in the polygon case.
For any scan-line, you could compute intersections with all the curve pieces and sort the intersections by
their x coordinate. But doing this would require being able to solve the equations for all the intersections
of the scan line with each curve piece. This would be fairly easy and reliable if the curve pieces were
quadratics (conic sections) but harder if they were higher-order curves.

The sorting of pieces for orderly progression wouldn’t work directly, because a curve piece could wiggle
up and down arbitrarily between its endpoints. However, it would be possible to compute (as additional
information) the y extremes of each curve piece, and use these instead. (Obviously, the endpoints and
extremes are the same for straight line segments.)

Also, if the scan lines progress row by row down the image then the intersections on one row would
normally differ only a little from those on the previous row. So they could profitably be computed by using
the previous intersections as starting approximations in some iterative root-finding procedure, rather than
finding the roots from scratch on each row. (For circular arcs, the circle version of Bresenham’s method
could be used.)

13 Rotation by shear

Note: the following solution assumes the following matrix form:

Rθ =

(
cos θ sin θ
− sin θ cos θ

)
= HaVbHa

=

(
1 0
a 1

)(
1 b
0 1

)(
1 0
a 1

)

8

(According to the convention used in lectures, this should really be:

Rθ =

(
cos θ sin θ
− sin θ cos θ

)
= HaVbHa

=

(
1 a
0 1

)(
1 0
b 1

)(
1 a
0 1

)
)

Solution:

HaVb =

(
1 0
a 1

)(
1 b
0 1

)
=

(
1 b
a 1 + ab

)
Therefore

HaVbHa =

(
1 b
a 1 + ab

)(
1 0
a 1

)
=

(
1 + ab b

2a+ a2b 1 + ab

)
Equating this element by element with Rθ, we’d have to have:

b = sin θ, and

1 + ab = cos θ, therefore

a =
cos θ − 1

sin θ
=
− sin θ

1 + cos θ

= − tan
θ

2

If we have this, then

2a+ a2b =
2(cos θ − 1)

sin θ
+

(cos θ − 1)
2

sin θ

sin2 θ

=
2 cos θ − 2 + cos2 θ − 2 cos θ + 1

sin θ

=
cos2 θ − 1

sin θ
=
− sin2 θ

sin θ
= − sin θ

which confirms that it all comes out right.

Calculating a rotation by direct multiplication by a rotation matrix (once you know sin θ and cos θ)
takes four multiplies and two additions. A single shear takes just one multiply and one addition, so three
shears take three multiplies and three additions to do the rotation. Since on most machines, addition is
faster than multiplication, this gives a slight edge to rotation by shears. This analysis ignores the cost
of data movement, but that should be fairly small and about the same for both methods—besides, it
depends a lot on the instruction set of the target machine. However, for most machines, the triple-shear
method would also have a slight edge in data movement and register usage.

We’ll see later how this triple-shear method is a bigger winner for rotation of digital images.

9

14 Computational efficiency of homogeneous coordinates

Hint: consider the number of multiplications and additions required. This is discussed in the Foley text
in Section 5.6.

15 Perspective in homogeneous coordinates

If we think of perspective projection as a mapping from 3D to 2D, then it can be expressed as a
multiplication (on the right) by a 4× 3 matrix (that is, 4 rows, 3 columns).

We want the homogeneous point (X,Y, Z, 1) in 3D to “go to” the homogeneous point (fX/Z, fY/Z, 1)
in 2D—this comes straight from the equations of perspective projection. This latter point is the same as
(X,Y, Z/f), since multiplication throughout by the constant Z/f gives the same point in homogeneous
coordinates, and

(
X Y Z 1

)
1 0 0
0 1 0
0 0 1/f
0 0 0

 =
(
X Y Z/f

)

Perspective projection can also be thought of as a mapping from 3D to 3D, given by the 4× 4 matrix:

(
X Y Z 1

)
1 0 ∗ 0
0 1 ∗ 0
0 0 ∗ 1/f
0 0 ∗ 0

 =
(
X Y ∗ Z/f

)

where the starred matrix column can be filled in in various ways to provide a Z coordinate for the
result. One way is to just map onto the plane Z = f , another (popular in 3D graphics) computes
a so-called pseudo-depth, which, while not the same as true depth, is a monotonic function of depth,
and therefore can be used conveniently for ordering points in hidden-surface elimination, and similar
processes. Pseudo-depth can also make perspective projection into an invertible affine transformation.

Treatments of perspective projection in most graphics textbooks tend to have the viewing/image surface
pass through the origin, and have the centre of projection away from the origin. This gives slightly more
complicated equations than our setup. Conversion from one to the other requires a 3D translation. This,
and the use of pseudo-depth, explains the slightly different formulation of perspective projection as a
matrix operation seen in many graphics texts. But the underlying idea is the same.

16 Perspective transformations using matrices

Here we have a slightly constrained version of the fully general “synthetic camera”: in this case the
camera can move anywhere, but its orientation is determined by its 3D position.

The main problem is to transform from world coordinates into camera coordinates—once there, the per-
spective projection (or orthographic projection) is quite simple. This coordinate-change transformation
is the same transformation that (applied to the camera) brings the camera coordinate frame to match
the world coordinate frame.

To take a simple 2D example, if the camera were at coordinates (U, V) in the plane, then the transfor-
mation that would convert from world coordinates to camera coordinates is a translation by (−U,−V).
This is the same translation that would bring the camera to the origin.

10

But first we need to specify what the pose (position and orientation) of the camera is. Obviously, the
position of the camera (optical centre) is at (U, V,W). The camera is pointing towards the origin, so
the direction of the camera-Z axis is along the direction of the vector

(
U V W

)
. (Remember that,

with our conventions, the positive direction of the camera-Z axis is backwards from the direction the
camera is looking.) This direction can conveniently be expressed as a unit vector

(
u v w

)
where

u =
U√

U2 + V 2 +W 2
, v =

V√
U2 + V 2 +W 2

, w =
W√

U2 + V 2 +W 2

However, this gives only the pitch and yaw of the camera (or pan and tilt)—it does not give the camera
roll. To do this, we need to specify one of the other camera axes, camera-X or camera-Y . Let’s take
camera-Y (which is the same direction as the y axis of the image surface coordinates). This points
towards the positive world-Z axis. There are probably more succinct ways of deriving this, but here’s
a way that’s fairly direct and intuitive. Directions are invariant to scale, so we can imagine scaling the
whole set-up down so the camera actually is positioned at

(
u v w

)
. Camera-X and in particular

camera-Y must lie in the plane
uX + vY + wZ = 1

which passes through the camera centre, normal to camera-Z. This plane intersects the world-Z axis
(X = Y = 0) at the point (0, 0, 1/w). The vector from the camera centre to this point, by vector
subtraction, is (−u,−v, (1/w)− w), or

(
−u,−v, (w − 1)/w2

)
. This vector defines the camera-Y axis.

Having established the camera pose, we can now proceed to the transformation that brings the camera
frame to the world frame. First we have to translate by

(
−U −V −W

)
, to move the camera to the

world origin. Call this translation T .

Next we have to rotate to line up the camera-Z axis with the world-Z axis. For example, this could be
achieved by a rotation about the world-X axis to bring the camera-Z axis into the world XOZ plane,
followed by a rotation about the world-Y axis (within the world XOZ plane) to bring camera-Z into
exact alignment with world-Z.

Alternatively we could have rotated first about world-Y and then about world-X.

We have to remember this composite rotation, call it R1.

We have to apply R1 to the camera-Y axis—this tells us where camera-Y has ended up after all this.
The final thing to do is to rotate around world-Z to bring camera-Y into alignment with world-Y . Call
this rotation R2.

So the composition of all these three TR1R2 is the transformation that will bring the camera to line
up with the world coordinate frame. It is therefore also the transformation that will convert world
coordinates into camera-cantered coordinates. Once a world point (X,Y, Z) is converted into camera-
centred coordinates, the simple projection equations can be applied to obtain image x and y.

I haven’t provided the details of these transformations, but note that that u, v, and w are actually the
cosines of the angles the unit vector

(
u v w

)
makes with the respective coordinate axes. (They are,

after all, also known as “direction cosines”.) So the sines and cosines needed for the rotation matrices
for R1 and R2 can be computed algebraically from u, v and w—there is no need to invoke trigonometric
functions.

This derivation has behind it the mental picture of an object sitting on a table, with world plane XOY
being the table top, world-Z upwards, the origin somewhere under the object, and the camera looking
down on the object from somewhere above the table. The camera-orientation constraints get problematic
if the camera is allowed to go below the table. (This might make sense if the table top were glass and
we wanted to get an underside view of the object.) Under the table, you just can’t get positive image-y
to point to positive world-Z. The derivation given here would force the camera to flip over as it went
below the table, so that positive image-y would point towards negative world-Z.

11

This is not unrelated to an anecdote about the automatic flight-control systems for a certain American
jet fighter. The first time it was flown south of the equator, the plane flipped over and tried to fly
upside-down. There is similar geometry involved.

Alternatively, the camera could keep the same general sense of “up” as it sank below the table top,
so that instead negative image-y changed over to point to negative world-Z. But this would require a
slightly different characterisation of camera-Y .

17 Multiple light sources

Since the light source is “distant”, all points on a face will be effectively at the same orientation with
respect to the light-source direction. This means that we’ll get the same light intensity reflected to the
viewer from all the points on the face. We can store in our frame buffer some kind of index number
for the face each pixel belongs to. We can then compute the intensity of that face, depending on the
intensity and direction of the light source, the intensity of ambient light, and the albedo (reflectivity) of
each face, and store that into the lookup table entry for that face’s index. This ensures that each pixel
will be displayed with the correct intensity.

If we change the light-source direction (or intensity for that matter) all we have to do is recompute the
lookup-table entries for each face index, and the image pixels will be displayed with the correct, new
intensities. This could be done quite quickly, say in response to mouse input, mapping mouse positions
on screen to directions in space.

For the Lambertian case, there’s no problem with multiple (distant) light sources—it’s just a matter of
adding up their individual contributions. The image intensity would still be constant across each face,
so the same trick of storing a face index in the lookup table would still work.

Specular reflection (like a mirror) also depends on the viewer direction. For a nearby viewing position,
the viewer direction would vary across the face, and this technique wouldn’t work. It would work
fine, however, for a distant viewer (or for parallel projection, which amounts to about the same thing).
Remember, though, that that the specular reflection (highlight) would be the same all the way across
the face, and this might not look very realistic for an object composed of just a few large faces. (It
does happen, say when the late sun catches the side of one of those mirror-faced skyscrapers.) It would
probably look more realistic for an object made up of many small polygonal faces approximating a curved
surface. Then the highlight would just come off one small patch (face or few adjacent faces).

If there is more than one object, or if the object is non-convex, then for certain light-source directions
parts of the object may be in shadow (either cast by other objects, or other parts of the same object).
The shadowing calculations are quite complex (roughly the same as hidden-surface elimination), and
most important for us, will vary across each face. So our lookup-table approach couldn’t be made to
work.

18 Difference between Phong and Gouraud

Since Phong handles specular reflection (highlights) better than Gouraud, a good guess would be an
example involving such. Take the extreme case (what better!) of a perfect mirror face, and a point light
source. Take it that the normals at the face vertices are the same as the face normal.

On viewing such a face, what you’d see (assuming things are lined up right) would be a mirror image
of the point light source located somewhere inside the face. With no ambient lighting, you see just a
single point of light—everything else would be black. In particular, the vertices of the face would be
black, so any scheme, like Gouraud’s, that interpolates between vertices would colour the face all black.

12

Phong shading would interpolate the normal direction across the face (in this case constant) and catch
the point image of the light source (so long as it was cooperative enough to fall exactly on a pixel).

More reasonably, the face would not be so perfectly specular, so the point source would give an extended
highlight. But the same reasoning applies: along a scan line, Phong shading would start out at zero, rise
to a maximum passing through the highlight, then fall back to zero. Gouraud shading would linearly
stay at zero all the way along.

19 Shading highlights

You can use Gouraud shading with specular reflection (instead of Lambertian reflection) to create lighting
highlights on object surfaces by simply calculating specular properties at vertices and interpolating.

In terms of comparison of Phong shading, as a function of number of polygons and amount of computation
required,

• you would require more polygons using Gouraud than Phong because don’t interpolate surface
normal.

• you would require more computation in Phong (to calculate shading equation at each interpolated
point) but would require less polygons and visa-versa.

20 Computational cost of shading

• Phong shading is also known as normal-vector interpolation shading,

• as you interpolate the surface normal vector N̄ , rather than the intensity.

• At each pixel a new intensity calculation is performed using the illumination model (such as the
Phong illumination model).

• The computational cost at each pixel includes,

– re-calculation of the illumination model at each pixel, and

– the interpolated surface normal must be normalised.

• DUFF79 : combination of difference equations and table lookup can be used to speed up these
calculations.

• Bishop and Werner: Approximation using Taylor series expansion to get greater speedup.

21 Intensity and RGB colour

Normalised colour can be very useful, within limits, because to a large extent it does cancel out the
incidental effects of illumination and shading. But it does throw some of the baby out with the bath
water, in that the intrinsic albedo of surfaces is also lost. For example, all grays, from (almost) black
through dark gray through light gray to white, which are characterised by R = G = B, are normalised
to r = g = b = 1/3.

And saying “almost” black gives a hint of the other problem: Normalised colour is obviously undefined
for “perfect” black, R = G = B = 0, but also runs into severe error problems in any dark area,

13

characterised by low values of R, G, and B. Intensity quantisation (and added noise if any) introduce
a certain absolute error into the RGB values. For small RGB values, this absolute error can be a quite
large relative error, which is what counts for doing division (as in computing normalised colour). As an
extreme example, RGB value (1, 1, 0) normalises as (1/2, 1/2, 0), the same as “pure” yellow, while only
a one-step change (which could easily come about from an accident of quantisation or noise) could give
(1, 0, 0), which normalises as (1, 0, 0), the same as “pure” red. This means that normalised-colour values
can be extremely unreliable in dark areas of an image, and that normalised colour values computed in
bright areas of an image cannot be computed at all in the darker areas.

This is a general problem that shows up whenever we’re computing ratios of quantised values, like the
ratio between two images, or edge directions from gradient components. If the values are small (just a
few quantisation steps), the large relative errors can make the ratios almost meaningless.

22 Different shading approaches

No, the suggested shortcut doesn’t really work, and is yet another example of the old adage “you can’t
average averages”. Consider the case of incoming light that is pure red (say PR = 1, PG = 0, PB = 0,
where these are the respective RGB light-source components) and an object that reflects only blue light
(say rR = rG = 0, rB = 1, where these are the respective RGB reflectivities). Then the object will
reflect none of the incoming red light (rR = 0), and won’t get any blue light that it could reflect PB = 0.
So overall, the object will reflect no light in any RGB component, and therefore will appear black.

Now if we add together the incoming light to get P = 1, and average together the reflectivities to get
r = 1/3, then we’ll get a monochrome shade of 1/3 (on a scale of black 0, white 1). Wrong answer!

The situations in which this will work are when the objects are all intrinsically gray (having equal
reflectivities in RGB), or when the incoming light is white (all RGB components equal). In both cases,
there is a constant that can meaningfully be factored out of the calculations. The first situation is
not very interesting—an all-gray world—, but the second corresponds closely to a common situation of
coloured objects illuminated by (presumably white) natural light. Not a perfect fit, since natural light
may not be perfectly white, but pretty close for most purposes.

Really even the “full” RGB approach is only a convenient approximation. Light has a continuous
distribution across all possible wavelengths, and object surfaces can have different reflectivities at all
different wavelengths. In a sense, the RGB approach is a kind of projection of this infinite-dimensional
wavelength space onto just a three-dimensional RGB colour space. Since our human colour perception
is essentially three-dimensional, this works pretty well for most reasonable situations. However, there
are unusual cases in which it can break down. Imagine looking at an object that reflects spectral red
and green (but not yellow) under a pure spectral yellow sodium lamp. The object should appear black.
But if we treat the incoming light as a yellow-looking mixture of red R and green G components, then
the object will appear yellow.

23 Refraction

If we label the angles as in the diagram, Figure 1, then obviously θ2 = θ3 because of all the parallels.
Taking the refractive index of the plate (glass) as n2, and the refractive index of the surrounding medium
(air) as n1 (which would be 1.0 for air), two applications of Snell’s Law (one at each interface) give us:

sin θ1
sin θ2

=
n2
n1

14

Figure 1: Double refraction through a glass plate.

and
sin θ4
sin θ3

=
sin θ4
sin θ2

=
n2
n1

From this, it’s obvious that sin θ4 = sin θ1, so θ4 = θ1. Since both the incoming and outgoing rays make
the same angle with the (parallel) surfaces, they must be parallel. Looked at another way, it’s obvious
from the symmetry of the situation.

Suppose the plate had thickness d, then the path of the light through the plate has length x = d/(cos θ2).
The angle between this path and the original path of the incoming ray is θ1−θ2. This angle forms a right
triangle of which the hypotenuse is length x, and the offset we seek ∆ is the opposite side. Therefore

∆ = x sin(θ1 − θ2) = d
sin(θ1 − θ2)

cos θ2

Ultimately, this should be reduceable to a formula just in terms of θ1, n1 and n2 (actually just their
ratio), but I haven’t done this yet.

Remember that the sines and cosines that appear in many formulas are actually ratios than can be
computed from the direction components of suitable vectors. (That’s why the components of a unit
vector are called direction cosines—that’s what they are.) So it’s usually not necessary to deal with
explicit angles and call trig functions to get the ratios, the needed ratios are already there in the geometry.

15

24 Hidden surface removal

Linear interpolation of depth means we can use an adaptation of Bresenham’s algorithm to do the
interpolation quickly using only integer arithmetic. Think of a polygon that slants away from the viewer
in depth. A step in x at the near end will cover a small step in depth; the same-size step in x at
the far end will cover a bigger step in depth. The greater the slant, the worse the effect. So linear
interpolation doesn’t really work right. If we’re happy to recompute respective polygon depths at the
intersection points, and dispense with interpolation, then it doesn’t matter. If we used interpolation
we’d get (slightly) wrong answers. The advantage of pseudo-depth is that it preserves the ordering of
true depth, and (being obtained by a linear transformation) preserves linearity. So linear relationships
(like planarity) are preserved even after perspective transformation into x, y, and pseudo-depth (in
homogeneous coordinates). This is a nice property that has its uses, one of them being that it is possible
to do linear interpolation of pseudo-depth after perspective transformation, when x and y are in image
coordinates. Since pseudo-depth preserves the ordering of true depth, hidden surfaces work the same.
Pseudo-depth has a couple of other nice properties: it is bounded, so we can handle infinite depth
conveniently. And (related to this) for a quantised pseudo-depth, a greater part of its range is devoted
to nearby objects than to far away objects, in contrast to what we’d get with a uniform quantisation or
true depth. In a sense, it requantizes depth to give finer quantisation where it most counts.

25 Animation and kinematics

For this question refer to lecture slides on animation and kinematics in the lectures slides. The theme of
the question relies on the balance between forward kinematics (when you have at least as many equations
as unknowns) and inverse kinematics (when you have more unknowns than equations).

One of the downside of forward kinematics, however, is that you typically need to specify the parameters
of transformations ahead of time, whereas in inverse kinematics less needs to be specified. Of course,
this is overlaid with the problem of how many joints each limb or component being animated has.

16

