Destination Prediction by Sub-Trajectory Synthesis and Privacy Protection Against Such Prediction

Andy Yuan Xue #1, Rui Zhang #2, Yu Zheng †3, Xing Xie †4, Jin Huang #5, Zhenghua Xu #6

University of Melbourne, Victoria, Australia
andy.xue@unimelb.edu.au rui@csse.unimelb.edu.au
jin.h@iojin.com zhxu@student.unimelb.edu.au

†Microsoft Research Asia, Beijing, P.R. China
{yuzheng, xingx}@microsoft.com
1 Introduction

2 Destination Prediction
 • Overview
 • Algorithms

3 Privacy Protection

4 Experimental Study

5 Conclusion
Purpose: To predict destinations of travel based on public data.

A demo: Visitor drives from the Forbidden Palace in Beijing to the International Airport.
Introduction

Applications:
- Recommend sightseeing places
- Send targeted advertisements
- Automatically set destinations and route in navigation systems
An example of a baseline solution adapted from existing work:

- Grid representation
- Trajectory matching
- A user travels from l_1 to l_4: Predicted destinations l_7 and l_8
- Query trajectory $\{l_1, l_2, l_3\}$: no predicted destination due to lack of training data.

Baye’s rule

$$P(d \in l_j | TP) = \frac{P(TP | d \in l_j) \cdot P(d \in l_j)}{\sum_{k=1}^{g^2} P(TP | d \in l_k) \cdot P(d \in l_k)}$$

- **Data Sparsity Problem**
Sub-Trajectory Synthesis (SubSyn):

- Solves the **data sparsity problem** by expanding the historical dataset.
- Two phases: **Decomposition** and **Synthesis**
Sub-Trajectory Synthesis (SubSyn): Decomposition

- Partition and group POIs into grid cells.
Sub-Trajectory Synthesis (SubSyn): Decomposition

- Partition and group POIs into grid cells.
- Decompose historical trajectories into sub-trajectories.
Destination Prediction

Sub-Trajectory Synthesis (SubSyn): Decomposition

- Use Markov model
- Transition matrix M: p_{12}, p_{14}, p_{78}, etc.

Figure: 3×3 Markov model
Sub-Trajectory Synthesis (SubSyn): Synthesis

- Starting from \(n_1 \), what is the probability of travelling to \(n_9 \)?
- **Shortest Path is 4**: \(p_{1 \rightarrow 9} = M_{1,9}^4 \)
- \(M^4 \): transition between cells with distance 4.

Consider detour (within 1.2 times shortest path. \(\alpha = 0.2 \))

Users may travel either distance 4 or 5 (\([4 \times 1.2]\)) to reach

\(n_9 \): \(p_{1 \rightarrow 9} = M_{1,9}^4 + M_{1,9}^5 \)
Sub-Trajectory Synthesis (SubSyn): Synthesis

- Given a user's route: \(T^p = \{n_1, n_4, n_5\} \),
- The probability of \(n_9 \):
 \[
P(n_9 \mid T^p) = P(n_9 \mid n_1, n_4, n_5)
 \approx \frac{p_{5\rightarrow 9}}{p_{1\rightarrow 9}} \cdot P(n_9 \mid n_1)
 \] (derivation in paper using Bayes' rule)
Algorithms

\[P(n_k|T^p) \propto \frac{p_{c\rightarrow k}}{p_{s\rightarrow k}} \cdot P(n_k|n_s) \]

- Two stages: **Training** and **Prediction**
- **SubSyn-Training** constructs Markov model and computes various probabilities needed for prediction. (RHS of the equation)
- Efficiently perform **huge matrix multiplications**. E.g., compute \(M^{100} \) where \(M \) is a 2500 \(\times \) 2500 matrix.
- **SubSyn-Prediction** retrieves these probabilities to compute the destination probabilities \(P(n_k|T^p) \)
Privacy Protection

Demo

A demo: check-ins on your way home.
Privacy Protection

Methods

Exhaustive Generation Method

- Iteratively delete each node in query trajectory
- Inefficient

End-Points Generation Method

- **Theorem:** Only the starting and current nodes affect the probabilities of predicted destinations
- Is a property of first-order Markov model
- Dramatically reduced search space, efficient for online queries
Experimental Study

Dataset

Real-world taxi trajectory dataset in the city of Beijing.

Contains:

- 580,000 taxi trajectories
- 5 million kilometres of distance travelled
Experimental Study

Grid Granularity

Figure: Map of Beijing with 30×30 grid overlay: Each cell $\approx 1.78 km^2$
Randomly pick 1000 test/query trajectories

Algorithms: Existing vs SubSyn

Measurements: Coverage and Prediction Error

More experiments in the paper
Experimental Study

Runtime Efficiency

SubSyn-Training

<table>
<thead>
<tr>
<th>Grid Granularity</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Time (hours)</td>
<td>0.03</td>
<td>0.5</td>
<td>3</td>
<td>17</td>
</tr>
</tbody>
</table>

- Commodity computer: Intel i7-860 CPU 4GB RAM

SubSyn-prediction

Privacy Protection

![Graphs showing performance metrics for SubSyn-Training and Privacy Protection]
Conclusion

- Identified **Data Sparsity Problem**, and proposed a **Sub-Trajectory Synthesis (SubSyn)** algorithm which successfully addressed the problem.

- SubSyn decomposes historical trajectories into sub-trajectories to exponentially increase practicality.

- SubSyn can predict destinations for **up to ten times** more query trajectories than the existing algorithm.

- Runs **over two orders of magnitude faster** constantly.

- Also proposed an efficient method (**two orders of magnitude faster**) to avoid privacy leak.
Questions

Demo:

Contacts:

Andy Yuan Xue andy.xue@unimelb.edu.au
http://people.eng.unimelb.edu.au/yuanx/

Rui Zhang rui.zhang@unimelb.edu.au

References:

- Andy Yuan Xue, Rui Zhang, Yu Zheng, Xing Xie, Jin Huang, Zhenghua Xu. Destination Prediction by Sub-Trajectory Synthesis and Privacy Protection Against Such Prediction. IEEE International Conference on Data Engineering (ICDE) 2013.

- Andy Yuan Xue, Rui Zhang, Yu Zheng, Xing Xie, Jianhui Yu, Yong Tang. DesTeller: A System for Destination Prediction Based on Trajectories with Privacy Protection. International Conference on Very Large Data Bases (VLDB) 2013 (Demo)