MELODY-JOIN: Efficient Earth Mover’s Distance Similarity Joins Using MapReduce

Jin Huang †, Rui Zhang †, Jian Chen ‡, Rajkumar Buyya †

† Department of Computing and Information Systems
The University of Melbourne, Australia

‡ School of Software Engineering
South China University of Technology, China
Motivation I: Similar Image Detection
Motivation II: Stock Distribution Analysis
Motivation III: Usage Pattern Analysis

Preliminaries: Earth Mover’s Distance [Rubner et al. 2000]

Given two histograms with equal weights, the \textbf{minimum} cost of transforming one to the other

\begin{itemize}
 \item \text{cost} = \sum \text{amount transformed} \times \text{distance transformed}
 \item \text{EMD}(A, B) = 1 \times \text{dist}(2, 3) + 1 \times \text{dist}(3, 4) + 4 \times \text{dist}(4, 5)
\end{itemize}

\begin{itemize}
 \item (a) \(A = \{6, 8, 3, 10, 3\} \)
 \item (b) \(B = \{6, 7, 5, 5, 7\} \)
 \item we consider \(l_2 \) for \(\text{dist}(\text{bin}, \text{bin}) \)
Preliminaries: Problem Definition and Observation

- **EMD based Similarity Join** Given two histogram datasets H_R and H_S and a EMD threshold ϵ, the join returns $\{(h_R, h_S) | EMD(h_R, h_S) \leq \epsilon, h_R \in H_R, h_S \in H_S\}$

- Highly computation-intensive
 - Linear programming optimization in each distance
 - Simplex method: $O(n^3 \log n)$
 - EMD ($n = 32$) vs. l_2: 50 ms vs. 0.002 ms
 - Join $O(H_R \times H_S)$

- We propose to use MapReduce to join large amount of data
Preliminaries: MapReduce (MR)

Example: Counting word frequency in text files

MRSimJoin:

- Intensive distance computation in data partitioning
- Vulnerability towards skewed datasets
Preliminaries: Normal Lower Bounds [Ruttenberg and Singh 2012]

1. Project high-D histograms to 1D histograms
2. Approx. 1D Cumulative Distribution Function (CDF) with normal CDF

\[
EMD(A, B) \geq \left| \int CDF_A - \int CDF_B \right| \\
\geq \left| \int \Phi(\mu, \sigma^2)_A - \int \Phi(\mu, \sigma^2)_B + error_A - error_B \right|
\]

3. Hough transform normal CDF for record-group LB
MELODY-JOIN: Mapreduce *Earth mover’s distance Lower bOund baseD similarity Join*

- Avoid EMD: use lower bounds to prune and partition data
- Three MR jobs to implement the idea with grids
 - Job 1: Obtain Hough space domain and grid
 - Job 2: Compute the approximation errors for cells
 - Job 3: Prune, partition, and refine records

\[H \quad \text{compute} \quad C \quad \text{prune} \quad \text{a histogram} \quad \text{grid space} \quad \text{partition} \quad \text{cells with} \quad C \quad \text{refine} \]
MELODY-JOIN: Job 1

Obtain space and grid for LB_{normal}

- **Map:**
 - Project high-D histogram to 1D histogram
 - Approximate 1D CDF with normal CDF
 - Transform normal CDF $\Phi(\mu, \sigma^2)$ to record $(\frac{1}{\sigma}, \frac{-\mu}{\sigma})$ in Hough space

- **Reduce:** Obtain domain of the Hough space and divide space into (diamond-shape) grid
MELODY-JOIN: Job 2

Aggregate approximation errors of cells for LB_{normal}

- **Map:**
 - Compute containing cell for each histogram
 - Distribute histograms to their containing cells

- **Reduce:**
 - Aggregate the approximation errors for each cell
 - Count the histograms in each cell

- Similar to counting word frequency
 - Each line: each histogram
 - Word frequency: errors and counts of cell
MELODY-JOIN: Job 3

Prune, partition, and refine pairs

- **Map:**
 - Prune cells from a histogram h if $\text{LB}_{\text{normal}}(h, \text{cell}) > \epsilon$
 - Distribute histogram to containing cell and unpruned cells

- **Reduce:** refine pairs of histograms by computing EMD

- This job dominates the running time
Enhancing: Separating Histograms

- Employ **multiple projection vectors** for multiple spaces
 - Compose cell keys: $G_h = \{10, 6, 8\}$, i.e., h is in the cell 10 in space 1, cell 6 in space 2, and cell 8 in space 3
 - Prune the cell from a histogram if any $LB_{normal} > \epsilon$

- A **quantile based grid** to handle skewed data
 - Compute quantile values in Job 1 in addition to the domain
Enhancing: Multiple Types LB

- **Plug in pruning:** LBs that support record-group computation, e.g., the Dual Lower Bound [Xu et al. 2012]
 - Compute dual keys for histograms in Job 1 and Job 2
 - Compute LB_{dual} in Job 3 Map in addition to LB_{normal}, i.e., $LB_{dual}(h, cell) \geq \epsilon$ or $LB_{normal}(h, cell) \geq \epsilon$ lead pruning

- **Plug in refining:** Chain Projection LB, Dual LB, Reduction LB, Independent Min LB

\[
LB_{proj} \rightarrow LB_{dual} \rightarrow LB_{red} \rightarrow LB_{ind} \rightarrow EMD
\]
Enhancing: Cardinality Based Load Balancing

- Composite keys are skewed on number of histograms

| g | $|h|$ | $\{g^1, g^2\}$ | $|h|$ |
|-------|------|-----------------|------|
| $g^1 = 0$ | 8 | $\{0, 0\}$ | 8 |
| $g^1 = 1$ | 8 | $\{1, 1\}$ | 6 |
| $g^1 = 2$ | 8 | $\{2, 2\}$ | 4 |
| $g^1 = 3$ | 8 | $\{3, 2\}$ | 4 |
| $g^2 = 0$ | 8 | $\{2, 3\}$ | 3 |
| $g^2 = 1$ | 8 | $\{3, 3\}$ | 3 |
| $g^2 = 2$ | 8 | $\{1, 3\}$ | 2 |
| $g^2 = 3$ | 8 | $\{2, 1\}$, $\{3, 1\}$ | 1 |
| Others | | | 0 |

- Group composite cells to achieve balanced loads

| e_G | G | $|h|$ |
|-------|------------------|------|
| 1 | $\{0, 0\}$ | 8 |
| 2 | $\{1, 1\}$, $\{1, 3\}$ | 8 |
| 3 | $\{2, 2\}$, $\{2, 3\}$, $\{2, 1\}$ | 8 |
| 4 | $\{3, 2\}$, $\{3, 3\}$, $\{3, 1\}$ | 8 |
Experiments: Settings

- Image collections:
 - COREL: 68040 images
 - MIRFLICKR: 1 millions images

- Image Feature Representations (for evaluation only):
 - COREL: MPEG-7 Dominant Color Histogram (CC), MPEG-7 Color Layout Histogram (CL)
 - MIRFLICKR: MPEG-8 Edge Histogram Vertical (MV), Horizontal (MH), and Slash (MS)

- Default to 3 projections, 4×4 grid, and on a 48-node Hadoop instance
Experiments: Results

(l) Varying Cardinality

(m) Varying Threshold

(n) Scaling Out
Conclusion

- First study on EMD similarity join
- A novel framework MELODY-JOIN to leverage lower bounds for pruning
- Enhance pruning power by multiple lower bounds; balance load by quantile based grid and cardinality based grouping.
- Extensive experiments confirming orders of magnitude improvement on the state-of-the-art technique.

- Future work: top-k similarity join, other frameworks
Jin Huang: jin.huang@unimelb.edu.au
Appendix A: Discussion on MRSimJoin

MRSimJoin does not support LB pruning:

- Most LB are not metric, e.g., without triangular inequality and transitivity
- Even metric LB may not preserve the locality of EMD, e.g., the nearest pivot of a record in terms of LB may not be the nearest pivot in terms of EMD

LB can be integrated into MRSimJoin in refining

- Experimental comparison is conducted on implementation with the identical chain of LB from MELODY-JOIN

of pivots in MRSimJoin is selected to produce the number of reduce tasks that fits into the capacity of the cluster
Appendix B: Discussion on Load Balance

Effects of our load balancing efforts

- Use the standard deviation on the completion time of reducers

- The standard deviation of MELODY-JOIN is orders of magnitude smaller than that of MRSimJoin
Appendix C: # of Projections and Grid Granularity

Effects of parameters on the performance of MELODY-JOIN

3 projection vectors and 4×4 grid achieve the best performance in most datasets