Summary

- Principled design of pervasive systems
 - Framework
 - Design tool
 - Additional issues
- Interacting with pervasive systems
 - Gestural interaction
 - Experiment: can we do without GUIs?
- Future research
Design of pervasive systems
What are pervasive systems?

- They pervade the
 - physical,
 - social,
 - cognitive

- environments
 - They affect the way we move, behave and think

- Large scale vs small scale pervasive systems
 - Public vs domestic
A design framework for pervasive information access

- Established HCI design foci
 - user
 - task
 - domain

- Design foci for public pervasive systems
 - citizen
 - sphere
 - space

Social considerations
Citizen

- Traditional “user” focuses on psychological characteristics
 - Large-scale system ➔ interaction with everyday norms & regulations (user makes no sense?)

- We can say little about the particular user of a large-scale publicly available system, but in respect of citizens we know
 - rights
 - responsibilities
 - membership

- A wide-scale provider of information may be viewed as a public service
 - Public services: characteristics, expectations
Sphere

- Traditional notion of task studies cognitive aspects
- Pervasive systems: what task?
 - Need to abstract
 - Conceptualise ownership/control
 - Effects of location / technology on task
- Information spheres
 - Public sphere
 - Private sphere
 - Social sphere
Space

- Space: more than GPS
 - Architectural/physical space
 - Place (i.e. social dimensions)

- Effects of technology, information

- Abstract away those important characteristics
 - Physical space: public, social, private
 - Interaction space: public, social, private
Visual interaction spaces
Auditory interaction spaces
Designing with the framework

- In designing systems for the delivery of information and services, we have a range of artefacts available; e.g. wall displays, PDAs etc.
- We use these artefacts to define appropriate interaction spaces.
- To know what kind of interaction space to create, we need to take account of the information sphere and the space in which the citizen is currently located.
• Manipulate interaction spaces (change the technology that is used)
• Relocate artefacts (relocate technology)
• Re-establish links between information and technology (what information to deliver using which technology).
Using the design tool (Hospital A&E case study)
Where did my framework come from?

Testing out of my framework
- Post hoc evaluation (can I explain something that exists?) hospital case study
- A priory design (can I propose something new?) city of Bath case study

Levels of application
- Generate proposals (city of Bath)
- Design exploration and alternatives (hospital)
- Interaction design
Further design issues

Pervasive computing and architecture
 – Architecture: Manipulates physical spaces
 – PerComp: Manipulates interaction spaces

Design of pervasive systems:
 – Effective integration of physical spaces + interaction spaces
 – Learning from architecture
Interacting with pervasive systems
Interaction spaces can be created by
- devices (PDA, speakers, screen, etc)
- the physical aspects of interaction (keyboard, touchscreen, etc)

In PerComp we can make use of varying devices to create appropriate interaction spaces
- What about interaction itself? How can we control the interaction spaces created by the *act* of interaction?

Need to *decouple* the interaction from the artefact (abstract away)
- Stroke-based gestural interaction
What is stroke recognition?

A stroke is a recorded path of a motion performed by an input device or token
Identify pre-defined paths
Execute a command assigned to a particular motion / stroke
The DSR
(Directionality Stroke Recognition)

- Separate the device from the interaction
- Provides flexibility of stroke input & output devices
 - Can use a mouse, stylus, smart ring, smart card, and any object that can be carried
- Uses bare minimum characteristics of a stroke
 - Only the direction is used
 - Position of strokes, or relative position of many strokes is not used
Examples of Strokes

Single Strokes

Multiple Strokes

- EE
- SS-EE
- WW-SS
- NN-SS
- SW-EE
- SS-EE-NN
- SS-NN-EE
- EE-WW-EE
- EE-SS-EE
Flexibility of Directional Strokes

- Smart Ring
- Stylus
- Finger
- Bright Object
- Mouse
- Touch Screen
- Object Tracking

Coordinates
Gesture Recognition
Touch-Screen Strokes
Camera Tracking

[Image of a software interface for camera tracking with various controls and settings]

- Camera Driver: Driver 0
- Start Camera / Stop Camera
- Camera Settings:
 - Camera Setup / Video Source
 - Preview
- What to track:
 - Enable Tracking
 - H: 49, Width: 20
 - S: 68, Height: 20
 - L: 182
 - Threshold: 20
- Adding to gesture Point: (24,99), (65,97), (120,79), (140,79), WW-EE
- FindGesture
- Mouse Test - Hold LButton Down
How can the DSR help us?

- Define appropriate interaction spaces
 - run time
 - user decides
 - carried across devices
 - carried across systems
 (? – future work)
Experiment: Multimodal Interaction

- Separation between device & interaction
- Can we do without GUIs?
- Effects of presence/absence of visual cues
Further work

- Slow object recognition (different technology?)
- Personalization, mental mapping?
- Multiple object tracking?
Research for the immediate future
To do…

- CHI ’05 Workshop
 - “Social implications of ubiquitous computing”
 - Social issues affect more than just the design…
 - ETH Zurich, Fraunhofer Institute, Bartlett UCL

- Interacting with Computers Special Issue
 - “Social impact of emerging technologies”
 - Trends from traditional to emerging technologies, government involvement

- Space syntax of public pervasive systems (Bartlett)

- Cityware (Bartlett, Imperial, Vodafone, HP, etc.)
Many thanks to colleagues and friends

- Eamonn O’Neill, Hilary Johnson, Alan Dix
- Peter Johnson, Peter Wild, Rachid Hourizi, Iya Solodilova, Manasawee Kaenampornpan, Anne Bruseberg, Andy Warr, Dawn Woodgate
- Vlad Coroama, Alan Penn, Irene Lopez de Vallejo, Carsten Magerkurth, Tim Kindberg
The end
Thank you

Vassilis
vk@cs.bath.ac.uk