Worker Performance in a Situated Crowdsourcing Market

Jorge Goncalves1*, Simo Hosio1, Yong Liu2 and Vassilis Kostakos1

1Department of Computer Science and Engineering, University of Oulu, Pentti kaiteran katu 1, PO Box 4500, FI-90014 Oulu, Finland
2School of Business, Aalto University, Runebergsgatan 14-16, FI-00100 Helsinki, Finland
*Corresponding author: jgoncalv@ee.oulu.fi

We present an empirical study that investigates crowdsourcing performance in a situated market. Unlike online markets, situated crowdsourcing markets consist of workers who become serendipitously available for work in a particular location and context. So far, the literature has lacked a systematic study of task performance and uptake in such markets under varying incentives. In a 3-week field study, we demonstrate that in a situated crowdsourcing market, task uptake and accuracy are generally comparable with online markets. We also show that increasing task rewards in situated crowdsourcing leads to increased task uptake but not accuracy, while decreasing task rewards leads to decreases in both task uptake and accuracy.

RESEARCH HIGHLIGHTS

• We present a 3-week empirical study on worker performance in a situated crowdsourcing market.
• We manipulate task rewards to investigate its effects on performance.
• Increasing task rewards led to increased task uptake but not accuracy.
• Decreasing task rewards led to decreased task uptake and accuracy.
• We compare the performance of our reported tasks and literature using several types of crowdsourcing.

Keywords: user studies; touch screens; empirical studies in HCI; computer supported collaborative work; tablet computers

1. INTRODUCTION

This paper is the first study to provide empirical evidence on task performance in a situated crowdsourcing market. The characteristics that set apart situated crowdsourcing from traditional crowdsourcing are location and context, enticing people to physically go to certain locations to complete tasks (as opposed to visiting a website). Situated crowdsourcing is performed using input mechanisms embedded into a physical space (e.g. public displays, tablets). It primarily leverages users’ serendipitous availability (Müller et al., 2010), idle time or Shirky’s ‘cognitive surplus’ (Shirky, 2010), in a designated location.

As such, situated crowdsourcing enables geo-fenced and contextually controlled experiments targeting certain populations or communities (Heimerl et al., 2012), leveraging users’ local knowledge (Goncalves et al., 2014a) and reaching an untapped source of potential workers (Hosio et al., 2014b). This is in sharp contrast to online crowdsourcing markets that do not always attract workers of a desired background or with a set of skills because the short work duration and small rewards bias the worker demographics (Ross et al., 2010). For example, it is challenging to recruit workers who speak a particular language, live in a given city (Ipeirotis, 2008) or have domain-specific knowledge (Heimerl et al., 2012). This can be detrimental for tasks like the creation of newspaper articles (Alt et al., 2010) or document translation (Zaidan and Callison-Burch, 2011) that require workers within a relevant context.

However, it is yet unclear whether performance in situated crowdsourcing substantially differs from other types of crowdsourcing. A risk with situated technologies is that they are typically in the hands of users, away from the controls of a lab setting and may produce ‘noisy’ results due to
unpredictable behaviour from users (Hosio et al., 2014a; Schroeter et al., 2012). Furthermore, while they can offer timely contextual information, it is challenging to maintain people’s interest and engagement over time (Goncalves et al., 2014b). For these reasons, performance and work quality in a situated crowdsourcing market can be questionable.

In this paper, we systematically measure task accuracy and uptake in a situated crowdsourcing market. Our study was conducted on Bazaar, a situated crowdsourcing market (Hosio et al., 2014b). Previous work has demonstrated that Bazaar has strong market characteristics and follows economic principles, and workers exhibit rationality by changing their behaviour according to price-setting. However, no study has yet investigated task performance in this situated market under varying incentives. We demonstrate that task uptake and accuracy in a situated crowdsourcing market are generally high. Furthermore, our findings suggest that increasing task rewards in situated crowdsourcing will lead to an increase of task uptake but not necessarily an increase in accuracy while decreasing rewards will decrease both task uptake and accuracy.

2. RELATED WORK

2.1. Incentives and performance in crowdsourcing markets

It is important to provide an overview of why people take part as workers in crowdsourcing markets, and what does the theory suggest about their performance in completing tasks. A traditional ‘rational’ economic approach to eliciting higher quality work is to increase extrinsic motivation, i.e. an employer can increase how much they pay for the completion of a task (Gibbons, 1997). Some evidence from traditional labour markets supports this view: Lazear (2000) found workers to be more productive when they switched from being paid by time to being paid by piece; Hubbard and Palia (1995) found correlations between executive pay and firm performance when markets were allowed to self-regulate.

An experiment by Deci (1975) found a ‘crowding out’ effect of external motivation: students paid to play with a puzzle later played with it less and reported less interest than those who were not paid to do so. In the workplace, performance-based rewards can be ‘alienating’ and ‘dehumanizing’ (Etzioni, 1971). If the reward is not substantial, then performance is likely to be worse than when no reward is offered at all; insufficient monetary rewards can act as a small extrinsic motivation that tends to override the possibly larger effect of the task’s likely intrinsic motivation (Gneezy and Rustichini, 2000). Given that crowdsourcing markets such as Mechanical Turk tend to pay very little money and involve relatively low wages (Paolacci et al., 2010), external motivations such as increased pay may have less effect than requesters may desire. Indeed, the research examining the link between financial incentives and performance in Mechanical Turk has generally found a lack of increased quality in worker output (Mason and Watts, 2009). The relationship between price and quality has also had conflicting results in other crowdsourcing applications such as answer markets (Harper et al., 2008). Although paying more can get work done faster, it is unclear if it was performed better.

Another approach to improve work performance could be increasing the intrinsic motivation of the task. Under this view, if workers find the task more engaging, interesting or worth doing in its own right, they may produce higher quality results. Unfortunately, evidence so far has not fully supported this hypothesis. For example, while crowdsourcing tasks framed in a meaningful context motivate individuals to do more, they are no more accurate (Chandler and Kapelner, 2013). On the other hand, the work by Rogstadius et al. (2011) suggests that intrinsic motivation has a significant effect on workers’ performance.

These contradictory results and a number of other issues that suggest the question of motivating crowd workers has not yet been definitively settled. First, prior studies have methodological problems with self-selection, since workers may see equivalent tasks with different base payment or bonuses being posted either in parallel or serially. Secondly, very few studies besides have looked at the interaction between intrinsic and extrinsic motivations; Mason and Watts (2009) vary financial reward (extrinsic), while Chandler and Kapelner (2013) vary meaningfulness of context (intrinsic) in a fixed diminishing financial reward structure. Finally, the task used in Chandler and Kapelner (2013) resulted in very high performance levels, suggesting a possible ceiling effect on the influence of intrinsic motivation.

In our experiment, we financially reward workers, thus we use extrinsic motivation in a market-driven model rather than intrinsic motivation. This decision was made to increase the external validity of our study, since we wanted to investigate performance under realistic market conditions.

2.2. Crowdsourcing with ubiquitous technologies

Crowdsourcing with ubiquitous technologies is increasingly gaining researchers’ attention (Liu et al., 2012; Vukovic and Kumara, 2011), especially on mobile phones. This has allowed researchers to assign tasks to workers, anywhere and anytime. Targeting low-end mobile phones, txtEagle (Eagle, 2009) is a platform for crowdsourcing tasks specific to inhabitants of developing countries. Similar platforms are MobileWorks (Narula et al., 2011) and mClerk (Gupta et al., 2012) that specifically focus on asking users to convert handwritten words to typed text from a variety of vestigial dialects. In a larger project, a mobile crowdsourcing platform called MoneyBee (Govindaraj et al., 2011) was made accessible to mobile phone users in emerging markets through their mobile operators and therefore reaching a higher number of potential workers.
Targeting smartphones, Alt et al. (2010) explore location-based crowdsourcing for distributing tasks to workers. They focus on how workers may actively perform real-world tasks for others, such as giving a real-time recommendation for a restaurant, or providing an instant weather report wherever they are. Similarly, Väätäjä et al. (2011) report a location-aware crowdsourcing platform for authoring news articles by requesting photographs or videos of certain events from its workers. Mashhadi and Capra (2011) suggest using contextual information, such as mobility, as a mechanism to ensure the quality of crowdsourced work. Finally, mCrowd (Yan et al., 2009) enables mobile users to utilize sensors on their smartphone to participate and accomplish crowdsourcing tasks, including geolocation-aware image collection, image tagging, road traffic monitoring and others.

An active community has grown around the topic of crowdsourcing measurements and sensing (Liu et al., 2012). This participatory sensing movement is part of the larger concept of ‘Citizen Science’ (Paulos et al., 2008) that relies on mobilizing large parts of the population to contribute to scientific challenges via crowdsourcing. Often this involves the use of smartphones for collecting data (Burke et al., 2006) or even donating computational resources while one’s phone is idle (Arslan et al., 2012).

Despite the appeal of mobile phones, using them for crowdsourcing requires workers’ implicit deployment, configuration and use of the device. For example, in SMS-based crowdsourcing, participants need to explicitly sign up for the service, at the cost of a text message exchange. This makes worker recruitment challenging, as a number of steps are necessary before a worker can actually contribute using their device. An alternative approach is to embed input mechanisms (e.g. public displays, tablets) into a physical space and leverage users’ serendipitous availability (Müller et al., 2010). This means that, contrary to mobile crowdsourcing, situated crowdsourcing through embedded interfaces does not require any deployment effort from workers (Goncalves et al., 2013; Goncalves et al., 2014c).

In such a deployment, Heimerl et al. (2012) reported Umati, which used a vending machine with a touch display for locally relevant tasks, albeit with certain limitations. For example, it was available at a single location only, and it lacked diverse tasks to keep users engaged for long. Goncalves et al. (2013) public display crowdsourcing deployment also suffered from the lack of diverse tasks. These findings suggest that task diversity is key to sustaining a situated crowdsourcing market.

3. MARKET DESCRIPTION

Our study was conducted on Bazaar, a situated crowdsourcing market (Hosio et al. 2014b). A full description of the market is beyond the scope of our paper, yet we include all the necessary details relevant to our study and findings. Bazaar has a virtual currency (‘HexaCoins’) that can be redeemed for goods or cash. It consists of a grid of physical crowdsourcing ‘kiosks’ coordinated by a single network server that records in detail all user actions and completed tasks. Each kiosk contains an Android tablet with a 10.1 touch-screen, a charger to keep the tablet always on, and uses WiFi to connect to the server. The tablets are set to ‘kiosk mode’ (Surelock, 2014) to ensure that if the crowdsourcing software is always visible on screen, it recovers from crashes, and unwanted OS functionality (notification bars, etc.) is disabled. The physical buttons of the tablet are obscured by the kiosk’s enclosure.

The welcome screen of the kiosks contains a brief introduction to the system, and prompts users to log in or create an account. Registration requires just a username and password. Upon login (Fig. 1), users can work on new tasks and see whether their previous work has been approved. They can also review their HexaCoin balance, transfer them to another user or exchange them for goods/cash.

![Figure 1. Bazaar’s main menu and task menu screens.](image-url)
3.1. Hexacoins: virtual currency

Bazaar workers are rewarded with HexaCoins which they can in turn exchange for goods or cash. When completing tasks, users receive HexaCoins subject to moderation by administrators or crowd-based moderation. Moderation and rewarding take place in chunks.

The value of HexaCoins is \(\sim 3600 \) HexaCoins per hour of work. In other words, workers expect to receive one HexaCoin per second of work. This value is influenced by the contextual and cultural factors of the location where the platform is deployed, and therefore these do not follow online prices (e.g. Mechanical Turk). In addition, workers are given 100 free HexaCoins on the first login of each day, to motivate them to return daily and perform more tasks. Users can ultimately exchange HexaCoins for goods, using a rough exchange rate of 360 HexaCoins per 1€. They can obtain cash in 10€ or 25€ packs, and various other goods, including badges, coffee vouchers, movie tickets. Previous work has shown that cash and movie tickets are typically the most popular items on this platform (Hosio et al., 2014b). Workers email the administrators to schedule a pick-up of the items, which is usually preceded by an interview.

4. STUDY

We conducted a 3-week study to investigate workers’ performance in Bazaar. During our study, four Bazaar kiosks were active in different buildings of a university campus (Fig. 2). Bazaar is not promoted actively in any way online, only by an A3-sized poster on each of the kiosks. Online promotion is avoided to minimize participation bias.

During this period, we obtained access to the server logs of Bazaar. The server logs all interactions on all kiosks: logins, logouts, starting and ending of performing tasks (time spent), answers for each task. This allowed us to look at task accuracy and task uptake for all tasks and their varying rewards. All users who received goods/cash from Bazaar were interviewed when they picked up their rewards using a standardized interview form.

During our study, there were six different types of tasks available in Bazaar (Table 1) (Hosio et al., 2014b):

(i) **Data categorization**: Categorization and labelling of photographs is a frequently offered crowdsourcing task due to its computational complexity. Workers had to count the number of males and females in a photograph, and another where they had to type the name of the fruit shown in a photograph.

(ii) **Sentiment analysis**: For this task, workers were shown a looping 3-s video of a person’s face, and were asked to identify the emotional state of the individual using six response buttons. These buttons correspond to the emotional states that humans can identify quite reliably: anger, happiness, sadness, fear, surprise and disgust (Ekman and Friesen, 1971).

(iii) **Content creation**: For this task, workers had to type a textual description of their surroundings. A worker

<table>
<thead>
<tr>
<th>Task category</th>
<th>Unique tasks available</th>
<th>Type</th>
<th>Stimulus</th>
<th>Worker input</th>
<th>Reward (HexaCoins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counting genders</td>
<td>373</td>
<td>Data categorization (counting)</td>
<td>Static (images)</td>
<td>Text (numbers)</td>
<td>10</td>
</tr>
<tr>
<td>Identifying fruits</td>
<td>370</td>
<td>Data categorization (identification)</td>
<td>Static (images)</td>
<td>Text (short)</td>
<td>10</td>
</tr>
<tr>
<td>Identifying emotions</td>
<td>1350</td>
<td>Sentiment analysis</td>
<td>Dynamic (videos)</td>
<td>Multi-choice buttons (6)</td>
<td>5</td>
</tr>
<tr>
<td>Describing location</td>
<td>4</td>
<td>Content creation</td>
<td>Text</td>
<td>Text (long)</td>
<td>150</td>
</tr>
<tr>
<td>Moderation</td>
<td>Same as number of tasks approved</td>
<td>Content moderation</td>
<td>Static, dynamic, text</td>
<td>Multi-choice buttons (2)</td>
<td>5</td>
</tr>
<tr>
<td>Survey</td>
<td>1</td>
<td>Survey</td>
<td>Text</td>
<td>Text and radio buttons</td>
<td>500</td>
</tr>
</tbody>
</table>
could complete this task only once per Bazaar kiosk. This is a task that can greatly benefit from workers’ local knowledge (Goncalves et al., 2014a).

(iv) **Content moderation**: For this task, workers had to review other workers’ tasks and label them as ‘good’ or ‘bad’. This pool of tasks grew in real-time as workers completed tasks across all Bazaar kiosks. Previous work has shown that crowd-moderation can be a practical approach to quality control (Lampe et al., 2014).

(v) **Survey**: The survey was a one-off task that each worker could complete only once, and only after they had completed 30 other tasks. It contained a set of open-ended questions regarding how they found out about Bazaar, their motivations behind using it, any suggestions of improvements, a standardized System Usability Scale (SUS) and a standardized five-item personality scale (Gosling et al., 2003).

5. **RESULTS**

5.1. Overall use

As reported in (Hosio et al., 2014b), during the study, we observed sustained use with a total of 194 accounts created, 1067 logins, 75 229 tasks completed (62 602 approved) in 310 114 s (86.1 h) of crowdsourcing effort, and 832 548 HexaCoins generated (Fig. 3). In Fig. 4, we can see the number of logins done by each individual user. As expected with most crowdsourcing studies, there were a number of workers that engaged with our platform purely out of curiosity with about half of them log in in more than once. The most popular task category was moderation ($N = 23 986$), followed by counting genders ($N = 14 011$), identifying emotions ($N = 13 624$) and identifying fruits ($N = 10 765$). On the other hand, the location description task was completed 138 times and the survey 78 times. A total of 25 transfers were registered (to 10 unique users) worth 14 600 HexaCoins in total. Of the 194 accounts created, 97 (50%) were returning users.

5.2. **Accuracy**

In Fig. 5, we can see a breakdown of the accuracy of each task. Four out of the five tasks had over 85% accuracy with the highest being the describe location task (≈98%). The identifying emotions task achieved 59% accuracy, suggesting it was a difficult task.

A detailed analysis of the Moderation task reveals similar patterns. This demonstrates that crowd-moderation was mostly effective, except for the Identifying Emotions task (Table 2).

To investigate further why the Identifying Emotions task was performed so poorly, we generated a breakdown of

![Figure 3](http://iwc.oxfordjournals.org/)

Figure 3. Cumulative progression of accounts created, logins, tasks approved and time spent crowdsourcing (s) throughout the deployment. (Hosio et al., 2014b)
5.3. Reward manipulation

We experimentally manipulated incentives on a weekly basis to measure the effect on performance. During the first week of deployment, we introduced a reward multiplier, applied to one of the kiosks at a time. For the duration of a whole day, a single kiosk yielded twice \(2\times\) the HexaCoins for each task completed, while all other kiosks operated as usual. We applied this manipulation on four sequential days (Monday–Thursday), each day with the multiplier in a different location. This was done to investigate the performance differences between kiosks that had no multiplier and the one that did considering accuracy and task uptake. In terms of accuracy, the only day the multiplier kiosk performed significantly better than others was Wednesday. Our analysis showed no significant difference between the locations that had a multiplier and those that did not in terms of accuracy: \(\chi^2(3) = 0.37, P = 0.95\) (Table 3). However, it did have a consistent effect on task uptake: \(\chi^2(3) = 1106.21, P < 0.05\) (Table 4).

During Week 2, we modified the rewards of specific task categories, rather than kiosks locations, as follows:

(i) The reward for tasks in the Moderation category was reduced from 5 to 2 HexaCoins. This yielded a 7-fold decrease in task uptake during Week 2 (Fig. 6) and an 8% decrease in accuracy (Fig. 7).

(ii) The reward for tasks in the Identifying Emotions category increased from 5 to 10 HexaCoins. This yielded a 3-fold increase in task uptake during Week 2 (Fig. 6) while the accuracy remained roughly the same (Fig. 7).

During Week 3, we made further manipulations to the rewards per task category as follows:
Figure 6. Breakdown of the answers given in the identifying emotions task.

Table 3. Accuracy (%) on each of the locations in the first week of deployment.

<table>
<thead>
<tr>
<th>Location 1</th>
<th>Location 2</th>
<th>Location 3</th>
<th>Location 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>73.3</td>
<td>78.5</td>
<td>77.4</td>
</tr>
<tr>
<td>Tuesday</td>
<td>71.9</td>
<td>77.7</td>
<td>83.9</td>
</tr>
<tr>
<td>Wednesday</td>
<td>89.8</td>
<td>81.0</td>
<td>81.3</td>
</tr>
<tr>
<td>Thursday</td>
<td>91.7</td>
<td>87.4</td>
<td>87.7</td>
</tr>
<tr>
<td>Friday</td>
<td>82.1</td>
<td>90.9</td>
<td>88.6</td>
</tr>
</tbody>
</table>

The underlined bold values correspond to instances where a reward multiplier was present.

Table 4. Task uptake on each of the location in the first week of deployment.

<table>
<thead>
<tr>
<th>Location 1</th>
<th>Location 2</th>
<th>Location 3</th>
<th>Location 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>30</td>
<td>805</td>
<td>214</td>
</tr>
<tr>
<td>Tuesday</td>
<td>281</td>
<td>345</td>
<td>281</td>
</tr>
<tr>
<td>Wednesday</td>
<td>6272</td>
<td>1089</td>
<td>546</td>
</tr>
<tr>
<td>Thursday</td>
<td>156</td>
<td>2535</td>
<td>4789</td>
</tr>
<tr>
<td>Friday</td>
<td>178</td>
<td>319</td>
<td>2044</td>
</tr>
</tbody>
</table>

The underlined bold values correspond to instances where a reward multiplier was present.

(i) The reward for tasks in the Identifying Fruits category decreased from 10 to 5 HexaCoins. This yielded a 4-fold decrease in task uptake during Week 3 (Fig. 7) and an 8% decrease in accuracy (Fig. 8).

(ii) The reward for tasks in the Counting Genders category increased from 10 to 15 HexaCoins. This yielded a 10-fold increase in task uptake during Week 3 (Fig. 7) and a 4% decrease in accuracy (Fig. 8).

5.4. Surveys and interviews

As reported in (Hosio et al., 2014b), a total, 78 users completed the survey task (51 male, 27 female). The average age was 23.8 (SD = 4.1). The three most cited reasons for why they used Bazaar were out of curiosity (N = 41); to get the rewards illustrated in the posters (N = 22); they were recommended by a friend (N = 14). When asked where they learned about it we identified two main responses: either the respondents indicated that they just stumbled upon the kiosks at the campus (N = 55), or they were informed by their friends about it (N = 23).

Analysis of the SUS revealed a score of 81.3 (SD = 10.8) on a scale from 0 to 100. The positive statement with the lowest value for positive was if users would like to use the system frequently (M = 3.6, SD = 1.2). Other values showed that users did not consider the system to be complex (M = 1.8, SD = 0.7), found that it was easy to use (M = 4.4, SD = 0.7), can quickly be learned (M = 4.4, SD = 0.7) and requires no technical support (M = 1.2, SD = 0.5). To provide a fairer grading assignment, we used percentiles like those calculated in Sauro (2011) using a curved grading scale. This means that the SUS score for our system obtained an A grade (above 80.3%).

Finally, 45 workers (26 male, 19 female) of the 194 who created an account in Bazaar purchased prizes and were interviewed during their pick-up of the items. The average age was 23.9 (SD = 3.8). The key findings from the interviews are used to support our discussion.

5.5. Personality influence on performance

A Big-5 personality scale was also part of the survey answered by 78 Bazaar crowd workers. We used this data assess for the potential influence of worker’s personality on their performance. The measures we used were as follows:

(i) Agreeableness, the tendency to be compassionate, cooperative, trusting and helpful (high score) vs self-interested, suspicious, antagonistic and uncooperative (low score).
(ii) **Conscientiousness**, the tendency to show self-discipline, act dutifully, be organized, careful and disciplined (high score) vs disorganized, careless and impulsive (low score).

(iii) **Emotional stability**, the tendency to be calm, secure and self-satisfied (high score) vs anxious, insecure and self-pitying (low score).

(iv) **Extraversion**, the tendency to be sociable, fun-loving and affectionate (high score) vs retiring, somber and reserved (low score).

(v) **Openness**, the tendency to be imaginative, independent and interested in variety (high score) vs practical, conforming and interested in routine (low score).

The analysis of the results showed that there was no significant effect of any of the Big-5 personality traits, or any of their combinations, on either task uptake or accuracy.

6. DISCUSSION

Our study is the first in-depth investigation of worker performance in a situated crowdsourcing market. A previous study on Bazaar has focused on its market characteristics such as...
as price elasticity, adjustment of labour supply using price adjustments, worker preference in terms of financial rewards and moderation of the market (Hosio et al., 2014b). However, they have overlooked worker performance in terms of accuracy and task uptake under varying incentives.

6.1. Worker accuracy and task uptake under varying incentives

The majority of the tasks achieved high levels of accuracy (above 85%) with the only exception being the Identifying Emotion task and the moderation of said task. However, we argue that the subpar worker accuracy for this task was not due to the technology or setting but was a direct cause of its complexity. As seen in Fig. 6, workers had a hard time distinguishing between certain pairs of emotion (e.g. anger/disgust, surprise/fear). One interpretation for these results is that task ambiguity caused workers to arrive to a rushed judgement. Our interviews suggest that this was due to the task’s inherent difficulty, and workers decided to move to another task category after completing just a few of the identify emotions tasks as one interviewee stated:

I liked the emotion task because it was fun with people making funny faces. However, most of the time it was really hard to identify the emotions so I just ended up swapping to other tasks. (P8)

Furthermore, our results show that increasing task rewards in situated crowdsourcing will lead to an increase of task uptake but not necessarily an increase in accuracy (Tables 3 and 4, Figs. 7 and 8). The same phenomenon has also been observed in online crowdsourcing (Chandler and Kapelner, 2013). For instance, during the first week of our deployment, locations with reward multiplier had more tasks completed on average when compared with locations with no reward multiplier (3388 vs 931). At the same time, accuracy between these locations remained fairly equal (83.23 vs 83.37%, respectively).

On the other hand, a decrease in task rewards will lead to both a decrease in task uptake and accuracy (Fig. 8). For example, when we decreased the task reward of the moderation and identifying fruit tasks, we saw a 7- and 4-fold drop in task uptake, respectively, while accuracy also dropped by 8% in both cases.

Therefore, our findings highlight the importance of carefully deciding the rewards given to the tasks so that they remain mostly unchanged. This is of particular importance in situated crowdsourcing as it needs to take into account the cultural and social factors when deciding the rewards. The only scenario where a reward change is advisable, given the same context, is when a task requester needs their task completed quickly and would then increase the reward without sacrificing its accuracy.

Regarding task uptake, we found that Bazaar maintained a task throughput of almost 3000 tasks per day, which is a very high volume compared with previous studies. Previous work has shown that situated crowdsourcing in general tends to have a much greater task uptake when compared with Mechanical Turk. For instance, in a study by Rogstadius et al. (2011) non-paid workers took over 45 days to complete 100 tasks while those who were paid (3 or 10 cents) took over 15 and 10 days to complete 200 tasks. Meanwhile, while using the same task Goncalves et al. (2013) took 25 days to complete 1200 tasks, without any monetary compensation given. Further, the performance of Umati was compared with that of MTurk, finding that the situated approach with only a single deployed interface was capable of producing 3× more daily labour with over 1000 tasks done daily (Heimerl et al., 2012).

While MTurk studies with high task uptake exist (Lampe et al., 2014), we feel that Bazaar with only four deployed kiosks achieved a workforce throughput that is at least comparable with MTurk, mobile crowdsourcing and previous situated crowdsourcing studies (Table 5).

6.2. Worker abuse and personality

In general, only a handful of workers abused the system by completing tasks in a negligent manner. This type of behaviour can be expected when rewards are given per task rather than per hour (Kittur et al., 2013). However, Bazaar’s first-stage moderation and rejection of bad quality work did substantially curb abuse, and in fact we did notice abusive workers eventually produced high-quality work which some workers admitted in the interviews.

I noticed that after some time my pending tasks were getting deleted instead of awarding me coins. That’s when I realised someone was actually checking my answers so I stopped writing nonsense in the identifying fruits task and started answering more seriously. (P22)

Finally, we conducted a test to identify any potential influence of personality traits on worker performance and uptake in situated crowdsourcing. While a prior work (Kazai et al., 2011) suggests that openness significantly relates to accuracy while conscientiousness and agreeableness may also have a positive relation to accuracy, our analysis showed no statistically significant interaction between personality traits and performance. Because only 78 participants completed the survey, and given the field deployment, it is possible that this test did not reliably capture the behavioural traits we were interested in. While our study found no evidence between personality and worker performance, we believe this issue is worthy of a more systematic effort in our future research.

6.3. Crowdsourcing on non-personal devices

A characteristic of situated crowdsourcing that can influence worker performance is that it is performed using non-personal devices as opposed to other means of crowd work. There is a clear distinction between crowdsourcing using one’s own personal device (e.g. mobile phone, personal computer)
versus a non-personal device that is embedded in the urban
space (e.g. kiosks). A key affordance of performing tasks
using your own personal device when compared with non-
personal devices is that it can be done in the comfort of
one’s home, and using familiar technology. However, workers
of mobile crowdsourcing need to explicitly sign up for the
service (potentially at the cost of a text message exchange)
and normally they cannot really control when they receive
requests on their phones unless the system allows them to
specify when they wish not to be disturbed (Church
et al., 2014). This means that task requests may come at inopportune
times and lead to disinterest over time (Gupta
et al., 2012). Meanwhile, online crowdsourcing gives workers much more
flexibility and possibly the best interaction experience out of
all forms of crowdsourcing. However, it requires workers to
actively look for and sign up to crowdsourcing markets which
limits the type of workers that perform tasks.

On the other hand, Müller et al. argue that situated
technologies do not invite people for a single reason, but users
come across and start to use them with no clear motives in
mind (Müller et al., 2010). Therefore, they reach users that
could otherwise be hard or borderline impossible to reach
and ultimately have at that moment free time to spare. As
noted by the vast majority of interviewees, most workers of
Bazaar were completely new to crowdsourcing, and admitted
to have never used any of the popular crowdsourcing markets
such as Amazon’s Mechanical Turk and CrowdFlower. This
strongly indicates the potential of situated crowdsourcing to
reach untapped populations of workers and enable high task
uptake. Thus, while crowdsourcing with situated technologies
is still just an emerging opportunity, research in the area
is encouraging and motivates further exploration. Similar
findings have been demonstrated in the past, in the context
of bridging citizens and city officials through situated
technologies (Hosio et al., 2015). In that study, users were
able to contribute serendipitously with low effort. This further
suggests that situated technologies can appeal to a whole new
user base or crowd worker.

Finally, a previous work suggests that crowdsourcing
deployments that leverage situated technologies should be
designed for ‘loners’, because groups of people may exhibit
non-serious performance when completing crowdsourcing
tasks (Goncalves et al., 2013). However, this may be difficult to
achieve when using bigger public displays for crowdsourcing
as people feel a certain awkwardness and external pressure
when interacting alone in public, where passersby can observe
them using the display (Brignull and Rogers, 2003). This often
leads to displays being used simultaneously by multiple users
(most likely friends) (Hosio et al., 2014a) potentially leading
to a dip in the quality of crowdsourcing contributions. In our
study, through the use of tablets Bazaar makes performing
crowdsourcing tasks with situated technologies a more
‘personal’ experience. This is highlighted in our interviews
where workers reported being comfortable performing the

Table 5. Comparison of performance between the reported tasks (rows 2–5) and literature using several types of crowdsourcing (rows 5–14).

<table>
<thead>
<tr>
<th>Task description</th>
<th>Stimulus</th>
<th>Worker input</th>
<th>Crowdsourcing type</th>
<th>Input technology</th>
<th>Accuracy (%)</th>
<th>Uptake (tasks per day)</th>
<th>Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counting genders</td>
<td>Image</td>
<td>Text (numbers)</td>
<td>Situated</td>
<td>Public tablet</td>
<td>85</td>
<td>667</td>
<td>194</td>
</tr>
<tr>
<td>Identifying fruits</td>
<td>Image</td>
<td>Text (short)</td>
<td>Situated</td>
<td>Public tablet</td>
<td>89</td>
<td>513</td>
<td>194</td>
</tr>
<tr>
<td>Identifying emotions</td>
<td>Video</td>
<td>Multi-choice buttons (6)</td>
<td>Situated</td>
<td>Public tablet</td>
<td>59</td>
<td>648</td>
<td>194</td>
</tr>
<tr>
<td>Moderation</td>
<td>Image/video</td>
<td>Multi-choice buttons (2)</td>
<td>Situated</td>
<td>Public tablet</td>
<td>89</td>
<td>1142</td>
<td>194</td>
</tr>
<tr>
<td>Count cells (Goncalves et al., 2013)</td>
<td>Image</td>
<td>Text (numbers)</td>
<td>Situated</td>
<td>Public display</td>
<td>40–90</td>
<td>48</td>
<td>n/a</td>
</tr>
<tr>
<td>Count cells (Rogstadius et al., 2011)</td>
<td>Image</td>
<td>Text (numbers)</td>
<td>Situated</td>
<td>Personal computer (MTurk)</td>
<td>66–83</td>
<td>2.2–20</td>
<td>158</td>
</tr>
<tr>
<td>Digitize text (Gupta et al., 2012)</td>
<td>Image</td>
<td>Text</td>
<td>Mobile</td>
<td>Personal phone</td>
<td>76–93</td>
<td>1350–2570</td>
<td>221</td>
</tr>
<tr>
<td>Digitize text (Narula et al., 2011)</td>
<td>Image</td>
<td>Text</td>
<td>Mobile</td>
<td>Personal phone</td>
<td>89</td>
<td>500</td>
<td>10</td>
</tr>
<tr>
<td>Describe current location (Goncalves et al., 2014b)</td>
<td>Image</td>
<td>Current context</td>
<td>Situated</td>
<td>Public display</td>
<td>80–90</td>
<td>200</td>
<td>n/a</td>
</tr>
<tr>
<td>Slashdot moderation (Lampe et al., 2014)</td>
<td>Text</td>
<td>Text and buttons</td>
<td>Online (Slashdot)</td>
<td>Personal computer</td>
<td>80</td>
<td>15 665</td>
<td>24 069</td>
</tr>
<tr>
<td>Named entity extraction (Finin et al., 2010)</td>
<td>Text</td>
<td>Text</td>
<td>Online (MTurk)</td>
<td>Personal computer</td>
<td>91</td>
<td>800</td>
<td>42</td>
</tr>
<tr>
<td>Translation (Eagle, 2009)</td>
<td>Text</td>
<td>Likert rating</td>
<td>Mobile</td>
<td>Personal phone</td>
<td>75</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Reading task (Kittur et al., 2008)</td>
<td>Text</td>
<td>Likert rating</td>
<td>Online (MTurk)</td>
<td>Personal computer</td>
<td>51</td>
<td>210</td>
<td>58</td>
</tr>
</tbody>
</table>
tasks publicly on account of their body occluding the screen and that they would only approach the kiosks when alone.

My body pretty much prevented anyone else from seeing what I was doing so it was not problem at all for me. (P9)

Did not even think about feeling self-conscious doing this in public. Nothing different in here, it’s just the same as fiddling with my phone. Also, as it is just there already physically, it is the same as the computer terminals at university. (P10)

6.4. Limitations

We acknowledge certain limitations in this study. We encountered run-time problems particularly with WiFi connectivity, leading to suboptimal user experience at times. This is, however, to be expected with any real-world deployment, and the outages usually lasted just a few minutes. The length and magnitude of the deployment, we feel, counterbalances the issue. Finally, cultural issues were not investigated, which could affect the acceptability and performance of situated crowdsourcing.

7. CONCLUSION

This study investigates worker performance in the situated crowdsourcing market Bazaar. Particularly, we look at levels of task uptake and accuracy across different tasks, and fluctuations caused by manipulating incentives. Our results show that task uptake is generally high compared with previous crowdsourcing studies, while accuracy was also high except for one difficult task on sentiment analysis.

Furthermore, through manipulating the rewards for different locations and tasks, we demonstrate that while increasing rewards will yield higher uptake of tasks, it will not necessarily lead to an increase in accuracy. On the other hand, decreasing rewards will ultimately lead to a decrease in uptake and accuracy. These findings have obvious implications for price-setting on a situated crowdsourcing market because task requesters should carefully deliberate the reward to avoid making changes throughout the task’s life cycle. In general, increasing the price is easier than decreasing the price.

In addition, we compare the performance between the reported tasks and literature using several types of crowdsourcing. We show that Bazaar with only four deployed kiosks achieved a workforce throughput that is at least comparable with MTurk, mobile crowdsourcing and previous situated crowdsourcing studies. Finally, we discuss the impact on performance given the characteristics of crowdsourcing on non-personal devices and of the situated crowdsourcing workforce. By making the situated crowdsourcing experience more ‘personal’ by using tablet instead of more public input mechanisms (e.g. public displays), our platform invited more ‘loners’ which have been shown to be the ideal worker in situated crowdsourcing (Goncalves et al., 2013).

FUNDING

This work is partially funded by the Academy of Finland (Grants 276786-AWARE, 285062-iCYCLE, 286386-CPDSS, 285459-iSCIENCE), and the European Commission (Grants PCIG11-GA-2012-322138 and 645706-GRAGE).

REFERENCES

Jorge Goncalves

Crowdsourcing Platform for Workers at the Bottom of the Pyramid. In AAAI Workshop on Human Computation, pp. 121–123. AAAI.

