
Abstract—An important problem in creating efficient public 
transport systems is obtaining data about the set of  trips that 
passengers make, usually referred to as an Origin/Destination 
(OD) matrix. Obtaining this data is problematic and expensive 
in general, especially in the case of  buses because on-board 
ticketing systems do not record where and when passengers get 
off a bus.  In this paper we describe a novel and inexpensive 
wireless system that uses off-the-shelf Bluetooth hardware to 
wirelessly detect and record end-to-end passenger journeys.

I. INTRODUCTION

 According to the US Department of Energy, more than 
20% of the world’s energy is spent on transportation (http://
www.eia.doe.gov/oiaf/ ieo). At a t ime when the 
environmental implications of modern life are scrutinized, 
reducing the energy spent on transport is a key objective for 
achieving sustainability for our way of life. With more than 
50% of commuters driving their own car to work [4], 
governments are actively campaigning for the use of public 
transport.  Interestingly, researchers point out that even if 
more passengers choose public transport, the reduction in 
energy consumption will not be considerable due to the 
inefficiencies of public transport:

“Trains and buses are potentially much more efficient than 
cars, if only they were full. But the way we do public 
transport at present, trains and buses are not that much more 
energy-efficient than cars. There remain many other good 
reasons for encouraging a switch to public transport (for 
example avoiding congestion and reducing accidents), but 
don’t expect to reduce energy consumption enormously by a 
switch to public transport. “ [11, p. 133].

In Figure 1 we present a summary of the energy cost of 
various modes of transportation as described in [11].  While 
developing more efficient bus engines is an obvious way to 
improve buses’  energy efficiency, an orthogonal approach is 
to consider ways of increasing bus occupancy.  Designing a 
more efficient public transport network, where more seats 
are occupied more often, can greatly reduce the total energy 
spent for each passenger and hence bring us closer to 
achieving sustainable public transport.

A key requirement for designing and improving the public 
transport network’s efficiency is obtaining an Origin/
Destination (OD) matrix for passenger movement.  Such a 
matrix is effectively a table that describes the flow of 
passengers between various points in the transport network 
(or alternatively between points on a map).  In practice, the 
cumulative OD matrix can be filtered in many ways, e.g. to 
display the flow of passengers during peak hours or 
weekends.  The design of public transport networks draws 
heavily on this information, and many decisions such as the 
scheduling of buses and drivers are directly based on this 
information [16].

Traditionally, the process of obtaining an OD matrix has 
been laborious and expensive because it typically involves 
human observers manually counting the number of 
passengers over a number of days. More recently, the use of 
electronic ticketing systems has greatly simplified this 
process. While some public transport systems such as the 
underground have an end-to-end ticketing system (i.e.  the 
system records passengers’ entry and exit points), others do 
not. For instance, most ticketing systems on buses record 
when passengers get on a bus, but do not record when they 
get off the bus.  As a result, bus services still employ manual 
observation to capture the OD matrix, or rely on expensive 
sensor systems that can count the number of passengers on a 
bus at any time without being able to detect the specific 
origin and destination of any single passenger.

A further complicating factor is that depending on the 
amount of growth and change within a city the OD matrix 
changes over time, while in extreme cases (such as the 
Olympic games) these changes can happen abruptly [14].  
Hence,  while human observation can be used to capture an 
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Figure 1. Typical energy consumption of public transport.  Notes: Car 
consuming 33mpg.  Trains traveling at 33km/h, and considering energy 
cost for lighting, lifts, depots and workshops. 747 Jumbo at cruise speed 
of 900km/h. Underground average speed of 48km/h. [11].  Bus carrying 
14.4 passengers at average speed of 18 km/h, distance between stops 0.3 
km [13].



OD matrix,  this information may become inaccurate or 
obsolete within a few months.  Depending on the frequency 
of human observations (typically every 6 months due to high 
cost), the bus service is expected to operate with a certain 
degree of inefficiency measured in terms of occupancy 
(percentage of seats occupied at any given time).  An up-to-
date OD matrix can help public transport authorities to better 
allocate their resources (drives, busses,  repair crews), 
develop a more efficient transport network, and to fine-tune 
the operation of their network, effectively reducing the total 
energy spent per passenger.   Furthermore, authorities can use 
such information to refine their reward schemes.

II. RELATED WORK

Most research considering OD matrices focuses on 
deriving accurate estimations from incomplete data (for an 
overview, see [1]). Typically,  human observations and traffic 
counts do not cover every single segment of the transport 
network, and hence estimates of the flow of passengers for 
unobserved parts of the network are statistically derived [8].  
Furthermore, some observation schemes do not rely on 
direct observation but rather on passenger questionnaires, 
hence introducing unreliability in the data.

In cases where an automated ticket system exists, OD 
matrices can be captured from ticketing data.  It is important, 
however, to note that not all automated ticket systems are 
suitable for this task.  For instance, in most cases buses do 
not record passengers’ exit points, hence capturing 
incomplete information about journeys.  Furthermore, many 
ticket systems were not originally designed for data 
collection [15]. As a result, many lack important 
information, collect data for specific and limited purposes, 
and record in a fragmented, intermittent, and difficult-to-use 
format. Furthermore, different subsystems (e.g. GIS and 
ticketing systems) may be supplied by different vendors and 
thus managed in completely different databases,  thus making 
analysis difficult.

The problem of inferring an OD matrix from origin-only 
data has been addressed by Zhao et al. in their analysis of the 
Chicago Transit Authority rail system which collects origin-
only data [15].  However, their analysis is based on a number 
of assumptions (p.  381): i) there is no private transportation 
mode trip segment (car,  motorcycle, bicycle,  etc.) between 
consecutive transit trip segments in a daily sequence; ii) 
passengers will not walk a long distance to board at a 
different rail station from the one where they previously 
alighted; iii) passengers end their last trip of the day where 
they began their first trip of the day.  Such assumptions 
inevitably introduce inaccuracies in the calculated OD 
matrix, especially when considering a bus-only network. 
Furthermore, this approach completely fails to take into 
account one-way tickets, and passengers who do not have a 
permanent travel card.

Mobile phone tracking has been used as an approach to 
measure the flows of passengers between parts of a city [4, 
6]. Such data, however, has low spatial resolution and is 
most appropriate for long-distance segments such as 
highways. This approach cannot be effectively used in a 

condensed network such as inner-city bus networks. Another 
approach to capturing passenger trips on busses is to make 
use of the onboard cameras and apply automated head 
detection [2], use pressure sensitive carpets, or use infrared 
sensing for capturing the number of passengers onboard a 
bus at any given time. However these techniques have the 
drawback that individual passengers are not detected.

While our use of Bluetooth as a means of capturing OD 
matrices is novel, Bluetooth has previously been used on 
public busses for automatic downloading of diagnostics and 
reports once busses return to their garage. Furthermore, 
Bluetooth has been considered as a replacements for cables, 
which can run up to 4 km on a single bus, thus reducing 
weight and overall petrol consumption [10]. In addition, 
prototype systems have considered Bluetooth as a 
mechanism for providing passengers access to the internet 
[9]. Finally, other systems have considered exploiting 
passengers’ mobile devices for optimizing the transport 
network, by exploring how passengers’ mobile devices can 
help plan and execute journeys in realtime [7]. This 
approach, however, requires custom software to run on 
passengers mobile devices, which introduces considerable 
development costs and compatibility issues.

The above uses of Bluetooth technology onboard buses 
are encouraging for us, because we can easily piggy-back 
our system on top of an existing Bluetooth infrastructure, as 
described next.  

III. IMPLEMENTATION

Our system was implemented for Horários do Funchal,  the 
public transport operator in Funchal, Madeira, Portugal.  
This organization has over 160 buses serving about 30 
million passengers per year, across more than 1400 bus 
stops.  These buses have an elaborate localization and 
ticketing system, which was in use prior to our study.

Each bus is equipped with an on-board GPS system, 
complemented by a digital odometer (distance travelled) and 
door sensor (doors open/closed). These three components are 
used to determine the bus location at any given moment.  
Buses report their location using a GPRS connection, and all 
bus locations are fed centrally into a real-time commercial 
simulator that estimates when each bus will reach the next 
bus stop. These estimates are then transmitted to bus stops 
using GPRS, and each bus stop displays the estimated arrival 
time of each service on an electronic display.

Additionally, each bus has a ticketing system that records 
information about the time when passengers boarded the 
bus, and the type of ticket they purchased.  Horários do 
Funchal uses RFID tickets for all passengers, including those 
purchasing single trips. This data is stored on-board and 
transmitted using WiFi each time the bus returns to the 
central garage.

Our system was developed on a Gumstix Waysmall 
btx-400, which has a 400MHz processor, a class 1 Bluetooth 
adapter, and 16 MB of storage.  We refer to our system as a 
“scanner”, and for our trials we installed one scanner in one 
bus. The scanner was installed on the roof inside the main 
bus cabin, near the exit area located in the centre of the bus 



(see Figure 2).
The scanner software constantly issues a Bluetooth 

discovery request and records the results. According to the 
standard Bluetooth protocol, a Bluetooth device set to 
“Discoverable” mode must respond to the discovery request 
by transmitting its unique Bluetooth identifier (12 hex digits) 
and device class (6 hex digits). Our scanner constantly issues 
the same discovery request,  and constantly records the 
presence of the various devices it encounters (along with the 
date and time of each distinct instance a device was 
discovered). Using this approach, we have the additional 
benefit of not requiring any special software to run on 
passengers’ devices. The only requirement is that passengers 
set their devices’ Bluetooth adapter to “Discoverable” mode.  
While we had not explicitly measured the proportion of 

residents in Funchal carrying a discoverable Bluetooth 
device prior to our study, we expected this proportion to be 
in the order of 7.5% of the population, as estimated by 
previous work [12].

IV. DATA ANALYSIS

While our localization and ticketing equipment is in 
constant use,  we deployed our scanner for a period of two 
week. Single-day pilots where first run to empirically 
establish the performance of our system. During the actual 
study the bus covered 4 different routes at different times of 
the day.  This is due to the way buses, drivers and routes 
interweave in the schedule of Horários do Funchal in order 
to improve operational robustness. Practically,  this means 
that our scanner collected data for a number of different 
routes while remaining on the same bus. During our trial the 
scanner recorded more than 2000 unique Bluetooth devices.

In Figure 3 we present how we correlate the two datasets 
we have access to: our Bluetooth data and the bus 
localization data. First, we pre-process our Bluetooth data 
such that we derive device “trips”. A device trip is defined 
by the unique Bluetooth ID of a device, the time when the 
device become visible to our scanner,  and the time when the 
device disappeared from our scanner. In practice, our 
scanner’s discovery cycle lasts 10.24 seconds, and no device 
names are further requested. To derive device trips we 
accumulate consecutive device discoveries that are less than 
5 minutes apart.  We set such a high threshold to compensate 
for instances where standing passengers possibly block the 
Bluetooth signals onboard the bus.

Having derived device trips, we then correlate these trip 
times with the bus localization database (Figure 3). By 
analyzing the localization data,  we were able to calculate the 
exact times when the bus visited the bus stops on its route 
(with a 10 second error margin). This event is recorded when 
the bus reaches the bus stop and the driver opens the doors.  
This way, we were able to identify the exact bus stop when a 
device first appeared (hence the passenger boarded the bus), 
and when a device disappeared (hence the passenger exited 
the bus).  

We should note that the correlation process removes a lot 
of noise from our Bluetooth dataset (approximately 20% of 
the raw dataset).  For instance, our scanner detected devices 
while the bus was out of service or being repaired.  Without 
the localization data, there is not way to verify if such 
Bluetooth data reflect passengers or not. With the 
localization data, however, we know that these devices 
appeared when the bus was not en-route,  hence we can 
discard this data.  Similarly, if our scanner picked up devices 
from outside the bus (e.g. passengers waiting at a bus stop), 
then these devices would appear to board and exit at the 
same bus stop, hence can easily be identified and removed.  
Finally, if any non-passenger devices where picked up in-
between bus stops then our correlation process would not 
assign them any bus stop at all. We also note that an 
assumption we make in our analysis is that passengers do 
not enable or disable their Bluetooth device while onboard a 
bus.

Figure 2. Installation of our system.  a: The Gumstix computer (left), along 
with at 24 to 5 volt converter (right) used to power the Gumstix with the 
bus’ electric circuit. b: a bus being rewired. c: our final installation consisted 
of a protective plastic case attached to the roof of the cabin. d: the system 
(indicated with an arrow) is installed near the centre of the main cabin. e: 
the control centre where real-time data is gathered from the buses’ 
localisation systems and the whole operation is overseen.

Figure 3. Correlating the Bluetooth data with the bus localization data.  
From our Bluetooth data we calculate the times when a device boarded and 
exited the bus.  Using the bus localization data, we are able to figure out at 
what times the bus visited each of the bus stops on its route. Combining 
these two datasets, we are able to calculate the bus stops where a device 
boarded and exited the bus.
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V. RESULTS

Our equipment collected information about the
• location of the bus at any given time (via localization 
hardware), 
• tickets validated on the bus (via ticketing hardware),
• presence of people on the bus (via Bluetooth hardware).
The number of passenger trips as recorded by our 

Bluetooth equipment varied each day, depending on the 
route of the bus. Figure 4 shows the number of trips broken 
down by hour.  Specifically, the top of Figure 4 shows the 
average number of trips per hour as recorded by our 
Bluetooth equipment. The bottom of Figure 4 shows the 
average number of trips per hour, as recorded by the 
ticketing equipment.    

In addition,  we examined the correlation between our 
Bluetooth data and the electronic ticket data (Figure 5). We 
found a correlation of 0.859 (Pearson product-moment, 
p<0.001) between the number of device trips per hour and 
the number of tickets validated per hour.    

Furthermore, the slope of the regression between these 
variables is closest to 1 when the number of Bluetooth trips 
is multiplied by a factor of 10.26.  This suggests that about 
9.7% of the passengers had Bluetooth-discoverable devices, 
which is in the same order of magnitude as previous 
estimates derived from [12].  

In Figure 6 we show the number of passengers according 
to how many times they boarded the bus during our study. It 
is possible to identify repeated visits since Bluetooth devices 
have a unique and persistent ID. 

Finally, a subset of the derived O/D matrix is shown in 
Figure 7 as a graph.

VI. DISCUSSION

Certain aspects of our analysis, such as calculating how 
often passengers use a service, can be carried out using 
origin-only data. Other aspects, such as trip duration, require 
both origin and destination data. While only the latter are 
truly novel in terms of transport engineering, here we 
discuss all aspects of our results in order to provide a more 
complete picture about its capabilities and limitations.

A.  Passenger behavior
Due to the bus timetable, our equipment covered various 

services at different times during the day,  without following 
any specific pattern. Equipment installed on a single bus 
does not provide enough information about the whole 
transport network, but rather gives discreet snapshots of 
individual services. This is further evident by the fact that 
the overwhelming majority of devices we recorded were 
seen only once (Figure 6), even though one would expect to 
see multiple commuters making at least 2 trips. An 
explanation for these results is the fact that our bus 
alternated between multiple services, even within a single 
day, hence missing pairs of outward and inward trips of 
individual commuters.  We expect, however, that installing 
our equipment on multiple buses would enable us to 
generate results more representative of the activity on the 
whole network, and help us identify weekly and seasonal 

Figure 4. Top: the average number of passengers onboard the bus at any 
hour during the day, as recorded by our Bluetooth equipment.  Bottom: 
number of tickets validated at any hour during the day on the same bus. 

Figure 5. Correlation between the trips recorded by our Bluetooth 
equipment and the number of tickets validated (ground truth).

Figure 6. Histogram of the number of trips per individual passenger.

Figure 7. Subset of the O/D matrix shown as a graph where nodes 
designate bus-stops and connections designate trips (connection color 
and thickness indicates the popularity of a segment).
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patterns.
In terms of temporal activity, Figure 4 (top) correctly 

highlights the expected morning, mid-day and evening 
peaks, representing people going to work, to lunch and 
returning home respectively. These figures accumulate 
information over the whole period of our study, hence 
providing more reliable temporal information.

The strong correlation (0.859) between our Bluetooth data 
and electronic ticket records provide compelling evidence 
for the accuracy of our technique.  Effectively, we regard the 
electronic ticket records as the ground truth, since every 
single passenger is required to validate an RFID ticket (even 
if bought on the bus). While the correlation is quite strong, 
we feel it can be improved further by understanding an 
important source of noise currently skewing our results.  
Notice in Figure 4 that during the morning peak hours (7-9 
am) our Bluetooth equipment is consistently under-
representing the actual number of people on the bus. A 
possible explanation for this deviation is that as the bus 
approaches full capacity of sitting and standing people, 
Bluetooth signals increasingly decay due to the fact that 
human bodies act as barriers to electromagnetic signals.  
Hence,  greater number of people on the bus lead to our 
Bluetooth equipment being able to detect a small portion of 
those passengers’ devices. This can be mitigated by 
installing multiple Bluetooth transceivers on the bus, hence 
minimizing the average distance between our equipment and 
the passengers’ devices.

An interesting point to note about the strong correlation of 
Bluetooth scanning with ground truth relates to identifying 
which groups of the population can actually be detected with 
our system. Our assumption is that Bluetooth-enabled 
devices are randomly among younger passengers, but it is 
likely that older passengers may not own such a device.

B. OD Matrix
As shown in the graph representation of the O/D matrix 

(Figure 7), popular segments can be identified by the 
intensity of their color and thickness, while popular bus 
stops can be identified by the number of incoming and 
outgoing links on the graph. The most popular bus stations 
are near the capital of the island, while the passenger flow 
captured in this O/D matrix in along a North-South axis. In 
addition, it is observed that the structure of the network is 
polycentric, with centers at the south, north, and south-east 
of the island. Each centre serves as an attractor to nearby 
regions, resulting in a large number of relatively short trips 
between each of the centers and nearby regions. This was 
further validated by directly comparing the recorded data 
with the routes that the bus served. 

 An array of tools can analyze an OD matrix and derive 
network improvements and optimizations, considering the 
micro, meso and macro scales of transportation (for an 
overview, see [5]).  The OD matrix can be used to optimize 
network simulators used to predict when buses will reach the 
next bus stop, as well as optimize the schedule itself, by 
better allocating buses and drivers to routes [15]. In this 
sense our system provides rich data about origins and 
destinations, as we record data on a bus-stop level rather 

than zone level which can be larger than a square kilometer.  
This means that our OD matrix can be used to consider bus 
occupancy for every route in the network. Similar to Figures 
4 and 5, each route can be analyzed for occupancy per hour, 
as well as per day of week. This can help identify under-
utilised and over-utilised services, hence guiding decisions 
on merging or canceling routes, increasing the frequency of 
existing routes, or introducing new routes. 

The low cost of our system (1/20th the cost of commercial 
passenger-counting systems) makes it possible to install it on 
more buses. Hence, while our system only detects 
Bluetooth-carrying passengers, it can do so on more 
services. Considering the business perspective of Horários 
do Funchal, let us assume they can afford to install a 
commercial passenger-counting technology on 5 of their 160 
busses, hence recording 5/160ths of their annual passengers.  
With the same cost, they can use our system to cover 100 
busses that record about 10% of 100/160ths of their 
passengers, or 10/160ths of their annual passengers, which is 
double the passengers compared to commercial systems.  
What is likely to be a winning strategy, however, is to use a 
mixture of the two systems, hence obtaining both fine-
grained and high-volume data.

C.  Towards Sustainability and New Services
Our system has provided the transport engineers an 

increased amount of information, both in terms of volume 
and granularity. One approach is to consider individualized 
OD matrices,  i.e. to generate an OD matrix for each unique 
Bluetooth device. During our trials we recorded more than 
2000 distinct devices. For each device we are able to 
calculate a customized OD matrix, which helps us predict 
where each passenger is likely to want to go and when they 
will get there,  given the bus stop at which they are standing, 
the day of week, and time of day. 

Considering individualized passenger information is an 
approach that can enable new types of services for before, 
during and after a passenger’s trip. Bluetooth-augmented bus 
stops can use individualized OD data to identify where 
waiting passengers are likely to want to go. Thus, bus stops 
can display the time when the next bus will arrive as well as 
when the bus will reach the bus stops of interest to the 
waiting passengers. Knowledge of where the waiting 
passengers want to go can also be used to deliver relevant 
information about events and attractions. 

Finally, our system could be used to provide a reward 
scheme that compensates passengers for time they 
potentially lose due to service inefficiencies. Our data 
already contains information about the exact time and 
location when a person boarded the bus. This can be cross-
referenced with the time that the bus was expected to be at 
that location (i.e. the bus timetable). This comparison lets us 
calculate service delays that passengers have to cope with, 
and such delays could be used as “points” that passengers 
collect while using the service. An advantage of this scheme 
is that it motivates passengers to enable their Bluetooth so 
that they can collect points, as well as the lack of necessity 
for any specialized software to run on passengers’ devices.  
Points can eventually be exchanged for free tickets or other 



possible rewards,  and will require a booth-like mechanism 
that can let us verify the person carrying the Bluetooth 
device that collected points.

D.  Limitations
An important issue to note is the penetration of Bluetooth 

through our passenger community. While we cannot 
explicitly assess the true distribution of Bluetooth within the 
community, we can expect that older passenger are less 
likely to carry such devices. What we do point out, however, 
is that mobile phones are increasingly commoditised and 
accessible to larger parts of the populations, with Bluetooth 
being a technology that is increasingly considered a standard 
feature of mobile phones. Hence, while at the moment we 
cannot directly assess which individuals carry (and enable) 
Bluetooth, our assumption is that in time the portion of 
Bluetooth-carrying passengers will grow steadily. A further 
limitation of our system is that it assumes that passengers do 
not enable or disable their phones while onboard.  This could 
potentially lead to skewing of our data because the system 
would collect inaccurate information about people’s entry 
and exit from the bus.  

E.  Privacy
Our use of Bluetooth has privacy implications which are 

increasingly becoming apparent to users. Our system tracks 
individual passengers’ behavior over time, and by 
consequence records very precise information about people’s 
location at any give time. Such information, should it fall in 
the wrong hands, can be used for harmful intents and 
purposes.   For instance, a culprit may use knowledge of the 
fact that Alice is currently on the bus to infer that she is not 
at her flat and rob it. Hence, bus companies need to make 
sure that Bluetooth data is stored securely and is inaccessible 
to third parties. We should also point out that the same 
threats are posed by magnetic and RFID tickets, since they 
can be used in the exact same way to infer the location of 
passengers over time. In this case, a feature of Bluetooth that 
works to its advantage is that the Bluetooth ID cannot be 
linked to users’ identity,  unlike magnetic and RFID long-
term passes which are usually linked to people’s identity 
when they are issued.  Furthermore,  users can always disable 
their Bluetooth, thus avoiding detection at will.

VII. 7.  CONCLUSION AND ONGOING WORK

We presented a system that can cheaply and automatically 
collect data about passengers’ end-to-end trips. The major 
output of our work has been the passenger OD matrix, the 
subsequent graphs and analyses that can be derived from it, 
as well as the new types of services that our wireless system 
has enabled.

Fulfilling our goal of improving the transport network and 
ultimately improve its energy efficiency is a long process 
involving multiple stake-holders. However, the transport 
engineers at Horários do Funchal have been very positive 
about our results, and we are in the process of extending our 

system to more buses and bus stops. As part of this 
expansion,  we are considering ways of linking our system to 
the on-board localization system and using its GPRS 
connection to remotely collect our data in real time.  As 
Bluetooth technology is increasingly being used onboard 
busses we hope that our system can be used by more 
transport organizations to collect data about their passengers 
and eventually optimize their operation by redesigning their 
network and providing new services.
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