Interaction Techniques
Outline

• Overview of Interaction Techniques
• Lots of Research Videos
Interaction Techniques

- A method for carrying out a specific interactive task
 - Example: enter a number in a range
 - could use… (simulated) slider
 - type in a number (text edit box)
 - (simulated) knob
Design of Interaction Techniques

• Different interaction techniques have different pros and cons

• Guidelines for interaction technique design
 – Affordances
 – Feedback
 – Difficulty of task
 – Efficiency of solution
 – Look and feel
Difficulty

- Typically measured by Fitts’ law
 - Predicts time to make a movement
 - Time = $A + B \cdot \log_2(\text{Dist/Size} + 0.5)$
 - Difficulty depends on distance and accuracy (size of target)

- Can also measure subjective workload
 - NASA TLX measures self-reported difficulty
 - Mental Demands, Physical Demands, Temporal Demands, Own Performance, Effort, Frustration

- Can measure pupil size as well
 - Pupil shrinks for difficult tasks
Efficiency

• Expert performance closely related to time required for movements
 – Not closely related to learning (or performance) of novices
 – Still need to consider cognitive load

• Guidelines when designing new interactions
 – Minimize required movements (accuracy & distance)
 – Avoid device swapping, ex. keyboard to mouse to keyboard
 – Avoid disturbing focus of attention

• Measures
 – Time on task, Number of Errors, Learnability
Look and Feel

• Look and Feel is tricky
 – Depends on physical input device, feedback
 – Really gets back to the difficulty of the movement, but harder to characterize

• Not a lot of guidelines here

• Tends to be measured subjectively
 – Fun
 – Attractive
Case Study #1

The original “Macintosh 7”

- Macintosh (1984) was first big success of GUIs
 - originally came with 7 interactors built into toolbox
 (hence used for majority of apps)
- Most not actually original w/ Mac
 - Xerox Star + Smalltalk (more in history portion of course)
Aside: Historical Resources

- Screenshots of nearly all GUIs
 - http://www.guidebookgallery.org
 - Mac screenshots in slides come from here

- Personal histories of the original Macintosh
 - http://www.folklore.org
The Macintosh 7

- Generally very well designed
 - Iterated with real users!
 - Very snappy performance
- Huge influence
 - These 7 still cover a lot of today’s GUIs
1 – Buttons

• Shaped as flat rounded rectangles
 (compare to “modern” boxish look…)

• Inverted for feedback
 – Recall Mac was pure B/W machine
 – Pseudo 3D appearance harder
 (and hadn’t been invented yet)
2 – Sliders

- Used for scroll bars
 - but fixed size “thumb”
 - Apple Lisa had proportional thumbs, dropped until Win95
Aside: a different scrollbar design

- Openlook scroll bar

Thumb (with up/down buttons)

Page extent indicator
3 – Pulldown Menu

- This was original with Mac
- Differs from Windows version you may be familiar with
 - had to hold down button to keep menu down
 (one press-drag-release) vs click to open
- Items highlight as you go over
- Selected item flashes
4-6 – Check Boxes, Radio Buttons, Text Entry Fields

- Pretty much as we know them
- Single or multi-line text supported from the beginning
7 – File Pick / Save

- More complex than the others
 - built from the other widgets + some extra features
 - e.g. no affordance, but you could type and file list would scroll to typed name
 - keep in mind floppy disks were common, hard disks really expensive
Original Mac also had others

- Window close and resize boxes
- Drag & open file icons and folders
- Not made generally available
 - not in toolbox, so not (re)usable by other programmers
Second Major Release of Mac Added More

• Lists
 – Single & multiple selection
 – Textual lists (possibly with icons)
• Hierarchical (“pull-right”) menus
• Window maximize box
A Few More Added Since Then

- Tabbed dialogs now widely used
- Hierarchical lists (trees)
- "Combo boxes"
 - Combination(s) of menu, list, text entry
Most GUIs Support These Interactions

- Work well, uniform
 - Good for usability

- But significant stagnation
 - Basic WIMP invented early 1970s
 - Windows, Icons, Menus, Pointers
 - “Perfected” by Macintosh in 1984
 - Not much change since then (even with web)

- GUI is victim of its own success
 - Opportunities lost by not customizing interaction techniques to tasks
 - Hard for better techniques to get traction
Videos

• **Lots** of interaction techniques to follow

• Kind of interaction technique?
 – Text entry, selection, drawing, etc

• Design constraints?
 – Assumes standard desktop? Pen? Mobile?

• Pros and cons
 – More difficult to implement?
 – Requires more screen space?
 – Higher cognitive load?
 – Compare to existing techniques?
Rapid Serial Visual Presentation (RSVP)

- Idea: rapidly show one word at a time
 - ~250 words per minute

- Issues:
 - Difficulty of implementation?
 - Screen real estate?
 - Cognitive load?
 - Deployability?
 - Performance?
SHARK

• Idea: Pen-based text input with gestures

• Issues:
 – Screen real estate?
 – Learning?
 – Deployability?
 – Performance?
Cascading Menus

- Idea: Use slight gestures to activate cascading menus

- Issues:
 - Implementation?
 - Deployability?
 - Depth of menus?
 - Learnability?
Fold and Drop

• Idea: Treat windows like sheets of paper that can be bent and folded

• Issues:
 – Implementation?
 – Learnability?
 – Performance?
K-Sketch

- Idea: Make it trivial to sketch out animations

- Issues:
 - Learnability?
 - Flexibility?
Chateau: Suggestive User Interfaces

• Idea: Provide an “auto-complete” for drawings
Suggestive User Interfaces

- Uses a suggestion engine with pluggable suggestions
 - Draw in plane
 - New structures
 - Beautify
Suggestive User Interfaces

- S1 creates a drawing plane
- S2 makes a plate in a closed loop
- S3 creates a rectangle from perpendicular lines
- S4 makes a box from 3 perpendicular lines
- S5 extrudes planar lines
- S6 creates a pyramid shape
- S7 resizes the highlighted group
- S8 makes plates between parallel lines
- S9 extrudes lines under a plate
Suggestive User Interfaces

- S10 makes a chamfer
- S11 cuts a corner of a polyhedron
- S12 trims a plate
- S13 divides lines at their intersection
- S14 duplicates a group
- S15 makes a flipped copy of a group
- S16 makes the third copy of a group
- S17 makes the gaps equal
- S18 makes equally spaced copies
Suggestive User Interfaces

S19 makes equally spaced stairs

S20 arranges lines to be rotationally symmetric
Suggestive User Interfaces

Figure 7: 3D drawings created by test users using Chateau.
Multi-Touch Board

• Idea: Use frustrated total internal reflection to create a multi-touch input board

• Issues:
 – Cost?
 – Deployability?
 – Maintenance?
Projector Calibration

- Idea: Make it easy to project on arbitrary surfaces

- Issues:
 - Cost?
 - Quality?
 - Motion?
 - Interaction?
Bumptop

- **Idea:** Make a pen-based desktop more like real world

- **Issues:**
 - Learnability
 - Flexibility
 - Fun
 - How to actually work?
Administrativia

- P3 is out
 - Visualizing Bluetooth encounters

- Groups
 - 2 people per group