Review for the Final
Final

- **Style**
 - Short answer
 - Essay: apply a concept
- **Length**
 - 90 minutes
Learning Goals

• Express yourself in executable form
• Basics of what is hard and easy to rapidly prototype
• Terminology and approaches used by programmers, so you can work with them
• Experience pain of programming
• Design and conduct informal user tests
User Interfaces Introduction

• Terms: Users, user interfaces, usability
• Why are interfaces important?
• Why are interfaces hard to design?
• Why are interfaces hard to implement?
What is Design?

• Terms: design, affordances, user conceptual model, constraints, natural mappings, feedback
• Good and bad examples
• Norman’s 7 stages
• Gulf of evaluation and gulf of execution
• Tradeoffs/issues
• Design support
• How designers work
Usability Engineering Design Process

- Terms: waterfall model, iterative process

- **10 steps of process, issues**
 1. Study the users and their tasks
 2. Study the competition
 3. Set usability goals
 4. Participatory Design
 5. Coordinating the Total Interface for Consistency
 - Include documentation, help, etc.
 6. Guidelines and Heuristic Evaluation
 - Evaluate your interface according to the guidelines.
 7. Make prototypes of the system early and quickly
 - Actually is faster to prototype first
 8. Empirical testing
 9. Iterative design
 10. Collect feedback from field use

- Obstacles/warnings
Prototyping

- Terms: prototype, lo-fi, medium-fi, high-fi
- What, why, who, when, how
- Types of prototypes
- Types of prototyping
- Trade-offs
- Testing
- Support tools
- Paper prototyping exercise/lessons
UI Software Organization

• Terms: separation of concerns, windows system, windows manager, toolkit, UIDE
• UI flow
• Models
 – Model-View-Controller
 – Object-oriented
• Layers of UI software
• Window System: input and output model
• Window Manager
• Toolkit and High-Level Tools
Debugging

- Terms: bug, debugging
- Why debug?
- Why is it hard?
- Types of bugs, how to fix
- Debugging steps and approach
- Debugging strategies
- Tools
Output Styles

• Terms: metaphors, styles
• Issues with interaction styles
 – How do you choose?
• Interaction styles: pros/cons
 1. Question and answer,
 2. Single character commands and/or function keys,
 3. Command Language,
 4. Menus
 5. Forms/Dialogue Boxes
 6. Direct Manipulation
 7. WYSIWYG
 -- really is a subclass of DM, not another style
 8. Gestures
 9. Natural Language
 10. Natural Behavior
Output Graphics

• Terms: anti-aliasing
• Models: stroke, pixel, region, color, FRAME BUFFER
• Coordinate systems
• Drawing Objects: Lines, Bezier Curves, Fonts, FontMetrics, Images,
• Transformations
Input Devices

• Why harder than output?
• Devices: keyboard, buttons, valuators, locators,
• Absolute, relative, clutched absolute locators
Input Models

• Terms: \textit{events}
• Logical devices, \textit{events}, sampling
• Unified model of \textit{events}
• What does an \textit{event} consist of?
• Extending \textit{events}
• \textbf{Synchronizing} \textit{problem}
• Dispatching and handling \textit{events}
Interaction Techniques

• Relation to interaction styles and widget libraries
• Macintosh 7
• Features for design/selection
 – Affordance, feedback, performance (feel, Fitt’s Law)
 – Guidelines
• Advantages/disadvantages of widget libraries
• Choosing a technique
Finite State Machines

- What are they, what do they do?
- Relation to interaction techniques
- Why do we need them?
- Notation: enough to draw a very simple FSM, or explain FSM
- Relation of FSM to event loops
- Why don’t they scale?
- General technique on how to combine 2 independent finite state machines
Properties of People

• What are **mental models**: difference between system designer’s and end user’s

• Good UI: convenient access to functionality to complete task efficiently & user’s mental model accurately predicts interface action
 – Only one is a property of people
 – Affect with feedback, affordances
Properties of People

• UI Guidelines
 – System designer can’t pretend to be a user
 – Explicitly design conceptual model and use feedback and affordance to reinforce
 – Premature optimization is bad
 – Errors are not exceptional events -- > help form mental model
Properties of People

• Performance:
 – How long physical motion takes: Fitt’s Law
 – How much can people remember: short term, long term memory, recognition vs. recall
 – How fast do people perceive: STM decay, bad response time, expectations, consistency
Animation

• What value do they serve?
• Challenges in prototyping: animation
• **Animation**: visual continuity enhancing perception (change); draws attention
• 3 principles:
 – **Solidity**: objects appear solid
 – **Exaggeration**: exaggerate physical actions to enhance perception
 – **Reinforcements**: effects to drive home feeling of reality
Animation

• Solidity:
 – Motion *blur*
 – *Squash and stretch* (mass and shape)
 – *Follow through*: objects don’t stop

• Exaggeration: tweak perception
 – *Anticipation*, squash and stretch, follow through

• Reinforcement:
 – *Slow-in/slow-out*, move in arcs

• 3 parts of motion: anticipation, motion, follow through
Internationalization

- What is it, why important, how support
- Interface designed for different cultures
- **Internationalization vs. localization**
- How icons come to have meaning
 - Arbitrary, reference, resemblance
 - What to avoid
- Care in wording, numbers
- Implications for design:
 - Space, layout, content, decide what to translate, pictures vs. text
Context awareness

• Give examples of smart spaces
• Give brief summary of issues relating to
 – Privacy
 – Feedback
 – Affordances
• Questions?