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ABSTRACT
Strangely, despite much recent success proving information flow

control (IFC) security for C programs, little work has investigated

how to prove IFC security directly against C code, as opposed to over

an abstract specification. We consider what a suitable IFC logic for

C might look like, and propose a suitable continuation-passing style

IFC security definition for C code. We discuss our ongoing work

implementing these ideas in the context of an existing full-featured,

sound program verification framework for C, the Verified Software

Toolchain, supported by the verified C complier CompCert.

1 INTRODUCTION
Despite its age, C remains one of the most popular programming

languages ever created. Modern languages like Rust aside, C con-

tinues to be indispensable for domains such as operating system

kernels, device drivers, and embedded/real-time systems. It is also

the de facto lingua franca of programming languages, in which the

foreign function glue of almost all higher-level languages is written.

C has also played host to some of history’s deepest software

verification efforts. For instance the seL4 [23] microkernel’s proof

of correctness down to its ARM assembly [34] exploits the relatively

close semantic gap from its C source [35, 36] to its gcc-produced

binary. On the other hand, the CertiKOS [20] kernel’s assembly-

level verification leverages the CompCert [24] verified C compiler,

as does much other recent work [1, 9, 18].

At the same time, perhaps nowhere else has the promise of

software verification found more resonance than via the dream of

verified security [26]. In this category, verified information flow se-
curity [30] has remained under constant study for the past 40 years,

and has recently delivered a number of artifacts with formally veri-

fied information flow guarantees, including kernels like seL4 [28]

and CertiKOS [14], but also conference management systems [22]

and social network platforms [6].

It is perhaps curious therefore that there has been relatively

little study of logics for proving general information flow control

(IFC) theorems of C code. Indeed, while both are implemented

in C, seL4 and CertiKOS each avoided such a logic by proving
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information flow security over higher level, abstract specifications.

The resulting security theorems were then transferred to the actual

implementations using relatively expensive proofs of refinement.
1

In this paper, we consider the problem of proving IFC directly on

C code. Such reasoning is required, for instance, when the IFC prop-

erty is tightly coupled to the primitive memory layout, the way the

program manipulates pointers or to how it performs raw memory

accesses, as in the case of device drivers, embedded Multi-Level

Secure (MLS) devices [17] and cross domain appliances amongst

others. In doing so, we answer two basic questions:

• What would an IFC logic for C look like?

• How might we phrase a formal IFC definition for C?

Naturally, any IFC definition and logic for C should be phrased

over a trustworthy C semantics that incorporates as many of C’s

language features as possible. Ideally, that semantics should be

implemented by a trustworthy compiler. Moreover, the logic should

be built to enable the re-use of existing logics and machinery for

proving the functional correctness of C code. This last point is

important: the security of interesting code that controls information

flows often rests on the code’s functional correctness. seL4 is a large-

scale example, whose information flow security proofs made use of

host invariants already proved in a Hoare logic [13].

Fig. 1 provides a minimal example, whose security is inherently

tied to its functional correctness (see Sec. 2.1). This code fragment

is indicative of MLS input processing code for a cross-domain sys-

tem [7]. It processes a list, in, of data packets, each of which carries a
boolean label isSecret indicating the sensitivity of the data it con-

tains. The unzip() function takes the input list apart, prepending

all the secret packages onto the output list high and the non-secret
packages onto the output list low, respectively.

Sec. 2 provides an overview of the ingredients we argue are

required to specify and reason about such code. Firstly (Sec. 2.1), an

IFC logic here would require a means to reason about pointers and

heap accesses, and in particular to reason locally about memory-

updates via such pointers to facilitate compositional reasoning.

Secondly, note that the classification of the data in the payload and
size fields of each data packet is dictated by the packet’s isSecret
field. Thus (Sec. 2.2) any logic for reasoning about this kind of code

must support value-dependent classification [25, 27, 37].

What does it mean for a C program to satisfy IFC security? A

formal definition of IFC security needs to account for exceptional

control-flow, and so be able to handle the effects of C statements

like break and continue and early exit via return. A natural way

to phrase ordinary program correctness (e.g. the validity of Hoare

triples) for such is to adopt a continuation passing style definition [2]
based on small-step operational semantics. Sec. 3 presents the first

continuation-passing style IFC definition.

1
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typedef struct node {

bool isSecret;

unsigned int size;

void * payload;

struct node * next;

} node;

void unzip(node * in, node ** high, node ** low) {

while (in) {

node * next = in->next;

if (in->isSecret) {

in->next = *high;

*high = in;

} else {

in->next = *low;

*low = in;

}

in = next;

}

}

Figure 1: Ahypothetical fragment of packet processing code.

Our continuation passing style IFC definition is inspired by ideas

from the Verified Software Toolchain [4] (VST). The VST provides

a sound program logic for proving functional correctness of C code,

built on top of CompCert’s C semantics. Statements proved using

VST hold for the compiled code emitted by CompCert by virtue of

VST’s soundness theorems and CompCert’s correctness theorems,

all proved in Coq. VST also includes considerable automation for

easing proofs about C programs [18]. In Sec. 4, we explain our

ongoing work formalising the ideas of Sec. 2 atop the VST. By

situating our work on VST, we hope to produce the first sound IFC

logic for C code, backed by a verified C compiler.

2 LOGICAL INGREDIENTS
2.1 Separation Logic
Before we can talk about whether or not the code in Fig. 1 is secure,

we must first reason about its functional correctness. For instance,

if the pointers high and low are invalid this code’s behaviour could
be undefined. But more than knowing whether a pointer is valid,

when reasoning about a statement like *high = in; we need to

know that the two pointers high and low don’t alias, otherwise this
statement would inadvertently switch the low pointer (meant to

point to data of low sensitivity) to point to a list of high sensitivity

secret packets. More broadly, the security of this code is inherently

tied to its correct functioning, and we can’t talk about its security

in the absence of its functional correctness.

Separation logic [32] has become the dominant program logic

for reasoning about the correctness of programs with pointers, and

can be viewed as an extension of Hoare logic [21]. For some pro-

gram or statement S , precondition predicate P and postcondition

predicate Q , the Hoare triple {P } S {Q } states that if S is executed

void write_labeled_val(int v, bool b,

int* highptr, int* lowptr) {

if (b)

*highptr = *highptr | v;

else

*lowptr = *lowptr | v;

}

Figure 2: A simpler example.

from a state satisfying P , if it terminates the resulting state will

satisfy Q . Separation logic extends this by firstly requiring that S
is not allowed to reach an error state or get stuck (e.g. by derefer-

encing an invalid pointer) during its execution, and by extending

the language of the predicates P and Q to ease reasoning about

heap-manipulating programs especially with regards to aliasing.

If p denotes an address and v a value, the primitive predicate

p 7→ v states that the value v lies at location p in the heap (the

addressable part of memory). The compound separation logic pred-

icate P1 ∗ P2 denotes that predicates P1 and P2 both hold, and addi-

tionally that the parts of the heap to which P1 and P2 refer respec-
tively do not overlap. Thus the compound predicatep 7→ v ∗ q 7→ w
states not only that v and w live at p and q respectively, but also

that p and q do not alias.

Consider the similar but simpler code in Fig. 2. Here the local

variable b dictates the classification of variable v. highptr and

lowptr point to respectively Hi and Lo integers. Its correct func-

tioning relies on highptr and lowptr being valid pointers that do

not alias. We can express this precondition as follows, namely that

there exist some values h and l for which:

highptr 7→ h ∗ lowptr 7→ l

Hereh and l are logical (i.e. meta) variables that represent the values

at the heap locations highptr and lowptr respectively.

We can describe the functionality of Fig. 2 (i.e. the results of

calling this function) by writing a suitable separation logic Hoare

triple. The postcondition in any such triple needs to talk about the

final values in the heap locations highptr and lowptr and relate

those to the initial values of the variables b and v. The standard
approach is to use logical variables to capture the values of these

program variables in the precondition, which can then appear in

the postcondition. Doing so yields the following separation logic

Hoare triple for this function, where we explicitly quantify over

the logical variables h, l , b andv (since they may take on any value)

and write . . . to abbreviate the function’s body. We also abbreviate

the conjunction of assertions P1, . . . , Pn that each talk only about

local variables but not about the heap as [P1, . . . , Pn].

∀h l b v .
{highptr 7→ h ∗ lowptr 7→ l ∗ [b = b, v = v]}

. . .

{highptr 7→ (b ? h |v : h) ∗ lowptr 7→ (b ? l : l |v )}

(1)

Notice how the precondition has the logical variables capture

the initial values of the program variables and heap locations, and

then the postcondition refers to those logical variables to talk about

how the heap has been updated. For a boolean b and expressions e



and e ′, we write b ? e : e ′ as shorthand for the ternary if-expression
that evaluates to e when b is true, and to b ′ otherwise.

Separation logic [32] has rules similar to those of Hoare logic,

but we elide discussing them here in the interest of brevity.

2.2 Value-Dependent Classification
Moving on from its functional correctness, but staying with the

simpler example of Fig. 2, we now consider how to specify security.

We will work at the level of intuition for the moment and then

later show how to realise these intuitions on top of VST’s existing

separation logic for C.

We extend the 7→ notation of separation logic to carry ghost
information asserting the sensitivity of data in the heap.
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We write

p p
l
−→ v to denote thatv resides at the location denoted by p, and that

v’s sensitivity is at the security level given by expression l (which,
like all others, may mention logical variables). As elsewhere in the

literature, security labels are drawn from a lattice, where l ⊑ l ′

means that label l ′ denotes higher sensitivity than label l , and we

restrict our attention to the two-point lattice {Hi, Lo} in which

Lo ⊑ Hi but Hi @ Lo. For a local variable x we write x :: l to denote
that x holds data whose sensitivity is at the level denoted by l . The
absence of an assertion x :: l implies that x ’s level is Hi.

Given these ingredients, we can give the function in Fig. 2 a

security-aware [15] specification as follows.




highptr p
Hi
−−→ h ∗ lowptr p

Lo
−−→ l ∗

[b = b, v = v, b :: Lo, v :: (b ? Hi : Lo)]




. . .

{highptr p
Hi
−−→ (b ? h |v : h) ∗ lowptr p

Lo
−−→ (b ? l : l |v )}

(2)

Note that the precondition specifies the value-dependent classi-

fication of variable v, in terms of the value b of variable b.

2.3 Discussion
The two ingredients we argue for above, namely separation logic

reasoning with value-dependent classification, were fused together

in prior work of Costanzo and Shao [15] in the context of a toy

imperative language. The ideas we sketched in Sec. 2.2 are very

reminiscent of their logic. Our purpose in introducing them is

not to argue for their novelty but instead that they are the right

combination for performing IFC reasoning over C code.

Such reasoning, and any such logic, necessarily rests on a precise

definition of what statements like that in Formula 2 mean, with

respect to the semantics of the underlying programming language.

In the following section, we explain why a standard definition of

IFC security is ill suited to C’s semantics, and so introduce the first

continuation-passing style definition of IFC security instead.

3 THE IFC STATEMENT
This section presents our continuation-passing style IFC definition,

which ultimately gives the precise meaning to statements like that

of Formula 2. But first, we will present a more natural, “direct” style

definition and discuss its two flaws, to motivate the shape of the

IFC definition we then propose.

2
Concurrent separation logics [31] use ghost information to track heap permissions.

In Sec. 2, we introduced security aware assertions of the form

p p
l
−→ v (v lies at the heap location denoted by p and v’s sensitivity

is l ), and b :: l (stack variable b holds l-sensitivity data). Intuitively,

the former combines both an ordinary separation logic assertion

p 7→ v and a sensitivity assertion about the (value at the) heap

location denoted by p; while the latter is a sensitivity assertion

about a stack variable b. In fact, as we explain later in Sec. 4.1, both

of these kinds of assertions are simply syntactic sugar for special

cases of security-aware specification triples of the form (P ,N ,A).
Such a triple should be thought of as the primitive, security-aware

counterpart to a Hoare separation logic pre- or post-condition.

Here P is a plain separation logic assertion, N is a function from

nonaddressable stack variable names to sensitivity labels, and A is

a function from addressable heap locations to sensitivity labels. P
tracks what is true during a program’s execution, while N and A
track respectively the sensitivity of stack and heap.

We model program states σ as triples ⟨e,k,m⟩ of a variable en-
vironment e , a continuation stack k which is simply a list of com-

mands to be executed, and a heap memorym. We write σ1 → σ2
for the small-step reduction relation, and we write σ1 →

∗ σ2 for its
transitive closure, and σ1 →n σ2 to say that after n steps, state σ1
transitions to state σ2. Moreover, we define execution until final

state, written σ1 ⇓ σ2, as σ1 →
∗ σ2 where the command to be

executed in σ2 is the empty command, which means that execution

is done (and hasn’t got stuck along the way).

3.1 Semantics of IFC judgement: First attempt
Definition 3.1 (Simple low-equivalence). Two states ⟨e,k,m⟩ and

⟨e ′,k ′,m′⟩ are called low-equivalent with respect to the stack clas-

sification function N and the heap classification function A if for

all stack locations ℓ for which N ℓ = Lo, e ℓ = e ′ ℓ and for all heap

locations ℓ for which A ℓ = Lo,m ℓ =m′ ℓ.

Definition 3.2 (Meaning of IFC judgement, first attempt). The
meaning of {P1,N1,A1} c {P2,N2,A2} is: (1) The Hoare judgement

{P1} c {P2} holds and (2) for all σ1, σ
′
1
, σ2, σ

′
2
, if: P1 σ1 and P1 σ

′
1

hold and in both σ1 and σ
′
1
the command to be executed is c , and

σ1 is low-equivalent to σ
′
1
w.r.t N1 andA1, and σ1 ⇓ σ2 and σ

′
1
⇓ σ ′

2
,

then: σ2 is low-equivalent to σ
′
2
w.r.t N2 and A2.

Proving this statement for a particular program c would then

prove (termination-insensitive) information flow security for that

program in the sense that Hi data does not influence the values of
Lo data, because if we vary the values of Hi data between σ1 and
σ ′
1
, we cannot cause changes in Lo values between σ2 and σ

′
2
.

3.2 Problems with the first attempt
This direct style definition suffers two problems. First, it doesn’t

admit quantifying over logical variables to connect values of the

precondition with values of the postcondition, as we did in For-

mula 1. Consider the following example (presented in the notation

from Sec. 2, for ease of exposition):

∀x . {[sec = x , sec :: Hi, pub :: Lo]}

pub = sec;

{[sec = x , pub = x , sec :: Hi, pub :: Lo]}



Here x is a logical variable that captures the initial value of sec.
While this program is clearly insecure, the security statement is

in fact provable wrt Definition 3.2: to prove the universal quantifi-

cation, we assume x to be an arbitrary, but fixed value, so the Hi
variable sec cannot have different values in the states σ1 and σ ′

1

from Definition 3.2, and therefore, pub will always have the same

value in σ2 and σ
′
2
, which makes the statement true.

So we see that the way we combined universal quantification

with our definition of information flow security is flawed, because

it results in a vacuous information flow security statement.

Therefore, we have to give control over the quantification to the

IFC judgement, rather than adding it on the outside. We achieve

this later in Sec. 3.4 by parameterising all pre- and postconditions

by a logical variable x , which can be any user-specified tuple type.

The single variable x will contain a tuple, and so might be thought

of as a tuple of logical variables which the security-aware asser-

tion (P ,N ,A) can then refer to.

Since P links x to values on the stack and heap, allowing the

classification functions N andA to depend on x allows for the same

kind of value-dependent classification that we argued for in Sec. 2.2.

Besides this problem of quantification and logical variables, the

second problem is that Definition 3.2 does not deal with premature

exits such as break and continue. While it might be possible to

deal with them and retain a direct style definition, by appropriately

enriching the notion of a final execution state [33], VST’s experience

shows that adopting “continuation-passing” style definitions [2, 3]

can be simpler without sacrificing expressivity. Since the shape of

our continuation passing style IFC definition is inspired by VST’s,

we will explain that one first.

3.3 VST’s continuation-passing style definition
VST defines validity of Hoare triples {P } c {Q } with the following

series of definitions:

Definition 3.3 (Immediately safe). State σ = ⟨e,k,m⟩ is immedi-

ately safe if k = nil or σ → σ2 for some σ2 (i.e. execution isn’t stuck).

Definition 3.4 (Safe). A state σ is safe if for all σ2, if σ →
∗ σ2,

then σ2 is immediately safe.

Definition 3.5 (Guard). Predicate P guards continuation stack k ,
written {P } k , if for all e ,m: P ⟨e,k,m⟩ implies ⟨e,k,m⟩ is safe.

To support break, continue and return before the end of the

function body, VST’s postconditions are not just plain assertions

like the preconditions, but functions taking an exitkind and an

optional value and returning an assertion, where the type exitkind
is an enum with the four values EKnrm, EKbrk, EKcont, and EKret
(to denote normal code execution until the end of the code block, or

premature exit via break, continue or return, respectively), and
the optional value is used for the return value if there is one.

Definition 3.6 (Return guard). Postcondition R guards the con-

tinuation stack k , written {R} k , if for all exitkinds ek and values v ,
we have {R ek v} k .

For a command c and continuation stack (i.e. list of commands) k ,
c :: k is the continuation stack whose head is c and whose tail is k .

Definition 3.7 (Meaning of Hoare judgement). The meaning of

{P } c {R} is: for all continuation stacks k , {R} k implies {P } (c :: k ).

It might look like the above definition only talks about safety

in the sense of absence of crashes but, in fact, it does guarantee

functional correctness, because k could be any program which tests

whether R holds, and crashes if it does not hold. Then, the above

definition guarantees that after running c , R must hold.

3.4 Definition of the IFC judgement
We will now use this continuation-passing style for a definition of

information flow security.

Definition 3.8 (Equivalent continuations). Two continuations (i.e.

commands) c1 and c2 are called equivalent, written c1 ≡cont c2,
if they are equal or they are both a function body to be resumed

after a return, of the same function, but with potentially different

variable environments to be restored.

Definition 3.9 (Head-equivalent states). Two states σ = ⟨e,k,m⟩
and σ ′ = ⟨e ′,k ′,m′⟩ are called head-equivalent, written σ ≡head σ ′

if either both k and k ′ are the empty stack, or both are non-empty

and their head (top) continuations are equivalent.

Definition 3.10 (Matching States). Two states σ1 and σ ′
1
are called

matching, written σ1 ≡match σ ′
1
, if for all n,σ2,σ

′
2
, if σ1 →n σ2 and

σ ′
1
→n σ ′

2
, then σ2 ≡head σ ′

2
.

Matching can be thought of as some kind of low-equivalence,

with the advantage that it does not need any classification functions,

which are typically only available for the program state right before

and right after the command in question, but not for intermediate

states or future states.

In fact, low-equivalence between two memories for a bit stored

at heap location ℓ can be encoded as follows using our notion

of matching. Let k be a continuation stack whose program loads

the bit at location ℓ and then branches on the value of that bit,

executing some command c0 if it is 0, or some different command

c1 (such that c0 ≡cont c1 does not hold) if it is 1. Now if we have

two variable environments e1 and e ′
1
, and two memoriesm1 and

m′
1
, and we want to say that after running some given command

c , the bit at ℓ must be the same in both memories, we can express

this as ⟨e1, c :: k,m1⟩ ≡match ⟨e
′
1
, c :: k,m′

1
⟩. If c terminates, it does

so in a certain number of steps n, and after n + 1 steps, execution
will be in k and branch on the value stored at ℓ, putting c0 or c1
on top of the continuation stack depending on the bit stored at ℓ,

and since match requires the two continuation stack heads to be

equivalent, it ensures that the values stored at ℓ are the same.

That is, we can append a “test continuation” k to the command

c in question, which makes the matching proposition false if any

equality we desire to hold does not hold.

We can use this intuition to define an IFC guard in a similar

way as VST’s guard. Such a guard now takes a logical variable x
as an argument, as explained earlier in Sec. 3.2, as do all P , N , A,
and quantifies over x twice (once for each execution) to avoid the

aforementioned problems of vacuous security specifications.

Definition 3.11 (IFC guard). We write {λx . (P ,N ,A)} k k ′ if for
all x ,x ′, e, e ′,m,m′, if P x ⟨e,k,m⟩ and P x ′ ⟨e ′,k ′,m′⟩ hold, and e
is low-equivalent to e ′ w.r.t. N x and N x ′, andm is low-equivalent

tom′ w.r.t. A x and A x ′, then ⟨e,k,m⟩ ≡match ⟨e
′,k ′,m′⟩.



Return guards are defined straightforwardly: an IFC return guard

λx k ek v . (P ,N ,A) takes also a continuation stack k , exitkind ek
and possible return-value v and then yields a (P ,N ,A) triple.

Definition 3.12 (IFC return guard). For an IFC return guard R , we

write {R} k k ′ if for all ek and v , we have {λx .R x ek v} k k ′.

Definition 3.13 (Meaning of IFC judgement, final version). For
P = λx . (P1,N1,A1) and R = λx k ek v . (P2,N2,A2), the meaning

of {P} c {R} is: for all x , the VST judgement {P1 x } c {P2 x } holds
and for all k and k ′, {R} k k ′ implies {P} (c :: k ) (c :: k ′).

3.5 Discussion
Note that this IFC definition imposes the restriction that branch-

ing on Hi data is not allowed, so that different continuation stack

heads can be used as an indicator that values which are supposed

to be equal are not. This definition is also in some sense timing-
sensitive (unlike Definition 3.2 which was termination- and timing-

insensitive), since our notion of matching compares two executions

after the same number n of steps. While there is a growing body of

code that is written purposefully to avoid branching onHi data [10–
12, 16], we could allow programs that branch on Hi data by using a

different matching indicator, e.g. by asserting the two commands

produce the same public output or have the same termination be-

haviour. We conjecture that doing so could also allow weakening

the definition to become timing- or termination-insensitive, but

leave this investigation for future work.

4 INSTANTIATION IN VST
We are currently implementing these ideas atop the VST. With the

continuation passing IFC definition formalised, we have devised

a set of IFC rules for the major syntactic constructs of C.
3
In the

interests of brevity we defer to our working draft paper [19], and

here just present one representative rule, for memory loads.

ifc-load

P ⊢ (⟦&e⟧ = p ∧ (p 7→ v ) ∗ ⊤)
P ⊢ (clsf_expr N e = ℓ1 ∧ A p = ℓ2)

{
*.
,

P
N
A

+/
-
} id=e {nret *.

,

⟦id⟧ = v ∧ ∃v ′. P[v ′/id]
N [id := ℓ1 ⊔ ℓ2]

A

+/
-
}

The statement id=e loads the value at heap address denoted

by expression e into the stack variable id. Expression e can refer

only to stack variables, and might be e.g. an array access a[i].
⊢ denotes entailment between separation logic predicates while

nret expresses that the command terminates normally. The rule

requires that the expression e denotes an address p at which lies

some value v , whose sensitivity (given by A) is ℓ2, while the sensi-
tivity (denoted clsf_expr N e) of the expression e is ℓ1. Then after

this memory load, id has value v and contains data whose sensi-

tivity is the least upper bound of ℓ1 and ℓ2. Observe how this rule

captures traditional separation logic elements (tracked via P ) while
also tracking security information (via N and A).

Each of our IFC rules can be proved sound with respect to the

continuation passing security definition, leveraging VST’s existing

machinery for reasoning about separation logic assertions. These

proofs are currently in progress.

3
Specifically of Clight, the formal front-end language of CompCert and into which C

programs are translated for verification in VST.

4.1 Implementation of annotated assertions
Sec. 2.2 introduced security-aware separation logic assertions, like

p p
l
−→ v , while our IFC definition of Sec. 3 and the primitive rules

like ifc-load are phrased over triples (P ,N ,A). We now close the

loop and show how to build the former in terms of the latter. Doing

so will also allow us to derive more friendly IFC rules that talk in

terms of the security-aware separation logic assertions.

Each security-aware assertion encodes a triple (P ,N ,A). Such
triples are combined using a “lifted” ∗ operator, defined as follows.

(P1,N1,A1) ∗ (P2,N2,A2) ≡ (P1 ∗ P2,N1 ⊓ N2,A1 ⊓A2)

Here f ⊓ д on functions f and д is the function λx . f x ⊓ д x .

Stack- and heap-classification functions, N and A respectively, are

combined together by taking their greatest lower bound. This is to

allow a stack (resp. heap) classification function to talk about only

a sub-part of the stack (resp. heap) by returning Hi for everywhere
outside that part. Note that separation logic ensures that the parts

of the heap which P1 and P2 refer to do not overlap, so⊓will always
have a default Hi on one side and an actual label on the other side,

but never two “competing” labels which would have to be combined

with ⊔ to be sound.

Thus a stack variable classification assertion b :: l is encoded as

b :: l ≡ (emp, (λid. if id = b then l else Hi),⊤)

where emp is the separation logic predicate that talks about no

part of the heap and ⊤ here denotes the function λx .⊤. In our VST

encoding, heap assertions carry extra type information t , inherited
from VST, and are encoded as

4

p p
l
−→
t
v ≡ (p p−→

t
v,⊤, (λa. (if p ≤ a < p + size t then l else Hi))).

5 RELATEDWORK
As far as we are aware, ours is the first formulation of a continuation

passing style definition of IFC security.

As mentioned earlier in Sec. 2, our proposed logic is very similar

in spirit to that of Costanzo and Shao [15]. They prove termination

insensitive IFC for a simple imperative language with pointer arith-

metic and aliasing, also based on Separation Hoare Logic. We work

instead over C and take on its associated complexities. Their logic is

deeply embedded whereas ours is shallowly embedded, in the style

of VST. To prove their logic sound, they define an instrumented op-

erational semantics that tracks the sensitivity of values, and prove

simulation theorems with an ordinary semantics. In contrast the

rules of our logic can be proved directly against the IFC definition.

The idea of leveraging an existing Hoare like logic for proving

IFC security is well known. Murray et al. [29] build a shallowly

embedded relational logic for IFC proofs atop an existing Hoare

logic. Our work in the context of VST does something similar,

albeit for C and a separation Hoare logic. Barthe et al. [5] verify

IFC security using a Hoare like logic instead via the technique of

self composition; yet different, Beringer [8] introduces relational
decomposition, which reduces proofs of relational properties like

IFC to proofs involving only program one execution by finding

suitable witness relations between pairs of memories.

4
In fact, they also carry permission annotations inherited from VST’s concurrent

separation logic, which we ignore here for simplicity.
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