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ABSTRACT
We have developed the Cross Domain Desktop Compositor,
a hardware-based multi-level secure user interface, suitable
for deployment in high-assurance environments.

Through composition of digital display data from multi-
ple physically-isolated single-level secure domains, and ju-
dicious switching of keyboard and mouse input, we provide
an integrated multi-domain desktop solution. The system
developed enforces a strict information flow policy and re-
quires no trusted software. To fulfil high-assurance require-
ments and achieve a low cost of accreditation, the archi-
tecture favours simplicity, using mainly commercial-off-the-
shelf components complemented by small trustworthy hard-
ware elements.

The resulting user interface is intuitive and responsive and
we show how it can be further leveraged to create integrated
multi-level applications and support managed information
flows for secure cross domain solutions.

This is a new approach to the construction of multi-level
secure user interfaces and multi-level applications which min-
imises the required trusted computing base, whilst maintain-
ing much of the desired functionality.

1. INTRODUCTION
High assurance systems require greater rigour in their de-

sign, development, implementation, and verification to en-
sure they correctly satisfy certain safety or security critical
properties [9]. Examples include avionics [24], or national
security infrastructure systems [8], where the consequences
of failing to enforce these properties can be grave. As such,
systems targeted for operation in these environments are
usually subjected to strict evaluation and accreditation re-
quirements before they are put into service [3, 21]. Often the
accreditation requirements either unduly constrain a system,
or limit its use to operation in lower assurance environments.
Typically, a formal analysis of the system reasoning about
the critical properties is needed [23] prior to deployment. As
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a consequence, high assurance systems require a balance be-
tween complexity, security or safety properties, and usability
to ensure a system is suitable for the intended environment.

In a computing environment, separate security domains
enforce strict isolation to prevent data leakage and maintain
system integrity and availability. This is especially impor-
tant for government, national security, and other sensitive
networks (e.g., financial, medical), where data compromise,
data loss, or system down-time can have severe impact [10].
Using multiple of these single-level secure systems in par-
allel can be cumbersome and inefficient, often resulting in
replicated infrastructure and multiple user interfaces.

Extant high assurance hardware solutions allow user in-
terface infrastructure to be shared [20], however the user
still interfaces with each domain independently. Extant soft-
ware solutions do combine the user interfaces for multiple
domains onto the same desktop [1], however these rely on
large trusted computing bases comprising hypervisor, secu-
rity domain software, and drivers – making them too com-
plex to evaluate and too risky to accredit for high assurance
use. Software solutions fail to address the increasing risk of
compromised hardware [22], implicitly incorporating many
hardware components into the trusted computing base.

Protecting the integrity of isolated security domains, and
preventing information leakage between the domains, pre-
cludes the use of existing software solutions on our most sen-
sitive networks. We instead present an approach that inte-
grates the user interface from multiple computing domains,
external to the domain computing infrastructure. We sacri-
fice some functionality and loss of semantic information for a
smaller trusted computing base and a verifiably more secure
solution – attempting to combine the security of existing
hardware solutions, with the cognitive integration benefits
of the software solutions.

The Cross Domain Desktop Compositor (CDDC) is a mul-
ti-level secure (MLS) user interface that uses hardware-based
composition to simultaneously display and decorate graph-
ical output from multiple single-level-secure domains on a
single computer monitor. There is no need to trust any
software residing on the individual domains, or the hard-
ware platforms on which they exist. Secure keyboard and
mouse switching dynamically directs user input between do-
mains to provide a seamless user experience and maintain
confidentiality between domains.

Orchestration of the composited graphical output regions
and the keyboard/mouse switching allows a unified user in-
terface to be constructed. Through this interface a user can



Figure 1: The Cross Domain Desktop Compositor

interact with the domains as though they were part of a sin-
gle desktop environment. At any point in time, one domain
is designated as the active domain which has its windows
composited foremost and exclusively receives all user input.

Figure 1 shows three domains being composited and DO-
MAIN 2 is currently active.

Creating an MLS user interface for use in high assur-
ance environments is difficult: the CDDC achieves this and
creates a converged desktop for modern operating systems
using simple, hardware-based compositing and intelligent
trusted switching. Once in use, the CDDC can be leveraged
to facilitate the deployment of true MLS-like applications
without many of the usual requirements for evaluation and
accreditation of such solutions.

In this paper, we position and analyse the CDDC in the
field of related solutions, describe the threat model and
architecture of the CDDC, cover the implementation of a
hardware-based demonstrator, and detail the operation of
domain-side software. Consideration is given to the oper-
ation of the trustworthy elements within the design and a
formal analysis of the security properties of the CDDC is
presented.We analyse potential covert channels and steps
that can be taken to mitigate information leakage. We then
look at deploying integrated cross-domain applications on
the architecture and examine the benefits, as a generalised
approach for application delivery across multiple domains.
We conclude with some remarks on the architecture and for-
ward looking research.

2. RELATED WORK
Historically, the development of an MLS desktop experi-

ence has been tackled in a variety of manners from multi-
level secure workstations [18] to virtualised desktops [6], se-

cure graphical user interfaces (GUIs) and secure keyboard-
video-mouse (KVM) switches. The goal of these approaches
is to provide a user experience where multiple computing do-
mains can share a common interface and a user can interact
with all applications in a common environment.

Modern systems that virtualise access to desktops include:
AFRL’s SecureView [1, 15], which runs multiple environ-
ments in logically isolated Virtual Machines and provides
secure software based compositing of different level win-
dows. SecureView provides similar window decoration and
input switching as the CDDC; and Raytheon’s Trusted Thin
Client [16] which uses a customised Centos operating envi-
ronment to support the delivery of remote desktops from
multiple domains across a single wire.

Increasingly, the trusted element in these solutions is a
hypervisor such as Xen [2]. Often a relatively small secure
domain will contain additional trusted code to further sup-
port the required user interface functionality. Some exam-
ples include TrustGraph [13] which implements a trustwor-
thy graphics subsystem, and Qubes OS which implements a
secure GUI virtualisation subsystem [17].

Similarly, secure GUIs and trusted windowing systems op-
erate on top of trusted operating systems, hypervisors, or
microkernels. Examples include: Nitpicker [5] which pro-
vides secure window buffers for different applications to write
into, and then be displayed and moved around on the screen;
and Trusted X [4] which secures client interaction with the
X server, preventing applications accessing each others’ dis-
play data. Although these models are useful, they often do
not operate or interact well with the complexities incorpo-
rated in modern desktop user interfaces – the windowing
environments and API constructs are too complex.

The above solutions all have a software trusted comput-



ing base and also assume for a large part that the underlying
hardware mechanisms can be unconditionally trusted. Two
issues with the software trusted computing base arise: first,
the size of the code is often too large and unwieldy to for-
mally analyse; and second, the software is often vulnerable
to many well-known attacks, as well as zero-day attacks.

Conversely, the CDDC does not rely on trusting any soft-
ware or any commercial-off-the-shelf hardware. Instead, a
simple trusted computing base is constructed in hardware
and can be retrofitted to existing multi-desktop environ-
ments, removing any vulnerability to software-based attacks
and making it more amenable to formal security evaluation.
The computing domains themselves remain untrusted, push-
ing the trust boundary into the small, well controlled exter-
nal hardware, which both strengthens the security guaran-
tees, and increases the performance of the solution, whilst
making it easier to accredit for high-assurance environments.

The K424F-SH from Smart Security Labs [20, 19] is a
secure KVM switch that allows multiple domains to be si-
multaneously viewed on a single screen. The domains are
each presented within their own decorated window that can
be moved or scaled on the screen in either a tiled or cascaded
type of display. The keyboard and mouse are switched be-
tween the domain through mouse interaction.

The CDDC architecture is similar to the K424F-SH, tak-
ing advantage of isolating input video paths, and isolating
and proxying Human Interface Device (HID) paths. Visual
desktop integration in the K424F-SH occurs at a coarse level;
where the entire graphical user interfaces for each domain
are presented separately and a user still interacts with each
domain separately. In contrast, the CDDC presents individ-
ual windows from each domain together on a single graphical
desktop interface – providing a user with the cognitive ben-
efits of operating within a single desktop environment.

The draw-back of operating in hardware is the loss of
semantic information – the CDDC operates purely on the
video output from a desktop, with no implicit notion of
windows, widgets, or other interface elements. This issue
is mitigated by the aid of untrusted domain-side software.

3. THREAT MODEL
The single-level secure computing infrastructure from each

domain is untrusted. This includes the hardware platforms,
operating systems, and application software; even if that
software supports the operation of the CDDC.

The display is trusted, more so than for a single level
display as it is relied upon to accurately reflect the multi-
level secure state of the user interface. The keyboard and
mouse are also trusted. The consequences of a malicious
keyboard and mouse are discussed in Section 7.

The CDDC device is trusted to operate correctly. A deeper
analysis of the trusted computing base is provided in Sec-
tion 4.4.

4. THE CDDC ARCHITECTURE
Desktop computers from separate single-level secure do-

mains are connected to the CDDC via their digital display
output (e.g., displayport) and USB input to accept HID in-
put, i.e., keyboard and mouse data – Figure 2.

The main components of the architecture are: unidirec-
tional forcing elements on the input video streams and the
HID outputs; video processing blocks to extract display re-

Figure 2: Basic CDDC architecture

gions to composite from each input video stream; a com-
positing engine that generates the composited output in real-
time; and a trusted switch that directs the key strokes and
cursor position to the correct domain.

The CDDC is differentiated from a secure KVM in the
manner it identifies and operates on sub-regions of each
video stream and consequently how the user interacts with
the composited output.

4.1 Window Identification
Modern operating environment GUIs are often constructed

using rectangular windowed regions of the display; e.g., ap-
plication windows, dialog boxes, and desktop icons. These
rectangular elements combine together to form the familiar
desktop interface. The CDDC constructs an MLS user inter-
face by compositing these windowed regions from multiple
isolated domains onto a single graphical output.

There are various methods to identify window regions,
e.g., chroma-key information or image processing algorithms.
These methods can be complex and unreliable and result in
inadequate composition. In the prototype CDDC, windows
are identified by untrusted domain-side software and sent
in-band within the raw video stream, encoded as pixel data.

This approach has two benefits, firstly the location of all
windows is accurately known, and secondly the reported lo-
cations are implicitly associated with each and every frame
of the video stream received. We address the trustworthiness
of the window locations in Section 7.1.

4.2 Composition
The CDDC receives a separate video stream containing a

full graphical desktop from each domain. The CDDC identi-
fies window regions from each desktop and composites them
based on a dynamically defined domain ordering, outputting
only the pixel value from the foremost domain window region
at any specific pixel location. Necessarily, window regions
within any one domain are kept in the same order, as the
CDDC only has access to the raw video stream, and hence
can only manipulate already drawn window regions.

Domain ordering prescribes which content to display when
multiple window regions are identified at the same pixel lo-
cation. Domain ordering is controlled by the CDDC and
updated based on user interaction with the domains. The
active domain has the highest priority and its content is
output in preference to all other domains.

The CDDC augments the composition by generating and
rendering its own content. CDDC generated content is MLS
content, it is used to identify windows from different domains
by decorating them with a unique coloured border. CDDC



generated content is output in preference to other content
at any pixel location, and cannot be modified by any in-
dividual domain. CDDC generated MLS content is trusted.
Figure 3 shows a typical converged desktop with composited
and decorated windows from three separate domains.

Figure 3: Composited Desktop view for three do-
mains. DOMAIN 1 is the active domain.

Undecorated regions of the composited display are treated
according to a predetermined security policy, e.g., render-
ing as a static background colour, or rendering a greyed-out
version of the unidentified content from the currently active
domain. Rendering this content unaltered may encourage
certain spoofing attacks.

4.3 User Interaction
To facilitate secure user interaction, the CDDC renders

a cursor, as the highest priority, on the composited output.
The position of this cursor is dictated solely by the move-
ments of the mouse as interpreted by the CDDC. The cursor
position and keyboard input are exclusively directed to the
active domain. The user is alerted to the currently active do-
main by a non-maskable CDDC generated banner rendered
across the top of the composited output. It is large and eas-
ily distinguishable from other elements, to aid correct user
interaction and understanding of the current context.

A user can interact with all visible windows through nor-
mal move and click cursor actions. The CDDC reacts ap-
propriately, fordwarding the HID actions to the correct do-
main. The active domain is changed by: a mouse click when
the cursor is positioned above content from a different do-
main; a physical button press on the CDDC; or a click on a
virtual button rendered by the CDDC. The domain order,
top banner, and keyboard and mouse switch are all consis-
tently updated with the active domain. The set of window
regions from the newly active domain are composited fore-
most. Figure 3 shows the trusted banner across the top of
the composited display and the virtual buttons in the top
right corner.

The CDDC can render arbitrarily complex user interfaces
that allow a user to communicate with and control aspects
of the CDDC.

4.4 Trusted Computing Base
Our design philosophy was to minimise the size and com-

plexity of the trusted components, allowing us to focus on

their trustworthiness, and enforce an appropriate informa-
tion flow policy – non-interference between the separate do-
mains. The minimal trusted computing base of the CDDC
consists of a composition module and a switch for the HID
data. We also use replication and isolation of components,
and enforced unidirectional data flows to help achieve the
desired non-interference property.

Minimising this trusted computing base, limits the attack
surface for both malicious software and hardware attacks.
Limiting the trusted component to a single FPGA allows
specific Hardware Trojan countermeasures to be applied.

4.4.1 Trusted Composition
The correct composition and decoration of window regions

is critical for the integrity of the CDDC. A user must be able
to discern which domain they are currently interacting with.
By decorating all identified content from every domain, cor-
rectly ordering the domains, and displaying the active do-
main banner a user can always be sure of the current context.
Whilst window decoration is not critical to ensuring this, it
aids the user against potential spoofing attacks, and as such
it must operate correctly.

The position of the cursor must also be accurately ren-
dered to ensure a users actions are correctly enacted.

Failure of the decoration, active banner or cursor render-
ing can result in a compromise of the CDDC’s security. A
user may either unwittingly perform incorrect actions, or
perform actions in an incorrect domain – risking both the
integrity and confidentiality protections afforded by a cor-
rectly operating CDDC.

The window position inputs are not trusted, however the
identified window positions are always correctly decorated.
Attacks against these positions could cause user confusion.
The active domain banner combined with the decoration
should alert users to potential issues. Possible attacks are
explored later in Section 7.3.

The trusted code for the firmware to implement the com-
position, including the on-screen display and cursor render-
ing is around 150 lines of VHDL for the prototype described
in Section 5.2.

4.4.2 Trusted Switch
The HID switch is trusted to direct the key strokes and

cursor position to the currently active domain. Failure of
this switch could compromise the confidentiality of data as-
sociated with the underlying domains. The trusted code for
the firmware to implement the switch is only a couple of
lines of VHDL.

4.4.3 Failsafe Architecture
We maintain separation between the inputs and replicate

video processing up until the data is composited – mean-
ing data is only mixed in the trusted components. We en-
force undirectionality constraints on the input video streams
and the output HID data in the hardware. Whilst there
are no generic processing elements that could take advan-
tage of bidirectional channels, these hardware-based data
diodes provide failsafe mechanisms in the architecture, and
also provide primitives upon which we can model and reason
about the security of the CDDC.

The underlying unidirectional nature of the input and out-
put streams means there is little impact of these data diodes.
The dynamic information flow policy we desire is: informa-



tion will only flow from the keyboard or mouse input to a
single (active) domain at any one time; and no information
will flow between domains.

The integrity of the CDDC relies on the compositor being
trusted to correctly: apply domain decorations, maintain
domain ordering, render the active domain banner, main-
tain and render cursor position, and interpret some cursor
interactions, e.g., window-based domain switching.

When correctly operating, the CDDC can protect the in-
tegrity and confidentiality of user actions to an equivalent
level of a single-level secure system.

5. PROTOTYPE

5.1 Domain Software
Untrusted domain-side software identifies graphical win-

dows to be composited by using standard Windows API
calls. This list includes the application windows, task bars,
pop-up windows, dialogue boxes, menus, desktop icons, and
tool tips. The list is processed to remove duplicates and
some items fully enclosed within other windows (e.g., some
tool-tips, dialogue boxes and menus).

The domain software reserves the top portion of the dis-
play, e.g., the top 50 lines of the screen. The presentation
order (z-order), location, and size of each window is encoded
into pixel values and sent in-band within the digital display
data to the CDDC by drawing directly to the desktop can-
vas in the reserved space. Other windows are prevented
from being located in this area, stopping the in-band infor-
mation being obscured, and also preventing windows from
residing underneath the trusted banner. For similar reasons,
the domain-side software also hides the cursor. An exam-
ple of the domain software and a close-up of the in-band
information is shown in Figure 4.

Figure 4: In-band encoded window information

A defined format including a header and checksum pro-
vides for reliable in-band communications.

The CDDC extracts the in-band information for each do-
main, allowing it to operate on the identified window re-
gions. The CDDC also renders the top portion of the out-
put display with the trusted banner indicating the currently
active domain, obscuring the in-band communications from
the user’s perspective.

Having all domains running the same operating environ-
ment (e.g., Windows 7) at the same resolution, aids the in-
tegrated look and feel of the CDDC. If the task bars and

desktop icons are in the same positions for the different do-
mains, then only the elements for the active domain are
displayed and decorated, with the other elements obscured
in the composition; providing a level of cognitive integration
and uniformity when interacting with the different domains.
This circumstance is not uncommon with many large enter-
prises deploying a standard operating environment.

5.2 Hardware
We developed a hardware prototype, Figure 5, that ac-

cepts three displayport inputs, operating up to 1920x1200
resolution and outputs a composited display at 1920x1200
resolution. The hardware also accepts a single USB key-
board and mouse input and switches the output to any of
the three domains. The composition, control, and switching
is performed in a Xilinx Kintex 7 FPGA.

Figure 5: Displayport hardware prototype

5.2.1 Architecture
The natural decoupling between the keyboard and mouse

data, and the display data allows separate processing chains
for each. Figure 6 shows the very simple hardware architec-
ture. Three displayport input streams flow separately into
an FPGA for processing, composition, and output on a sin-
gle displayport output. The keyboard and mouse are input
through USB host interfaces, which connect to the FPGA
via a Serial Peripheral Interface (SPI) link. The keyboard
and mouse are output to each domain through a USB client
interface, which also connects to the FPGA via an SPI link.

Figure 7 shows the firmware architecture of the modules
contained in the FPGA. The display inputs and keyboard
and mouse outputs are unidirectional and the hardware en-
forces this unidirectionality within the FPGA logic.

Isolating the input video paths and output USB paths al-
lows the TCB to be kept simple. Any malicious action in
these paths could also occur on the single-level secure do-
mains, hence they are not considered part of the TCB. The
TCB consists of the compositor, HID switch, video trans-
mitter, mouse SPI interface, and the unidirectional links.
The keyboard interface is not trusted and cannot affect the
operation of the compositor.

5.2.2 Cursor Control
The CDDC rendered desktop cursor is the only element

that crosses between the display composition and the in-
put devices. It is the users actions through the cursor that
unifies the trusted composition and the trusted switching to



Figure 6: Hardware block diagram

Figure 7: Firmware block diagram

create the converged desktop experience – the cursor crosses
the trust boundary between the domains. The cursor also
provides user control over the MLS actions of the CDDC.
Given the importance of the cursor, its position is controlled
and rendered by the CDDC, informed by the physically con-
nected pointing device.

5.2.3 Composition
Xilinx displayport IP cores handle the display input and

output from the FPGA. The input streams are buffered in
independent, 3-frame cyclic buffers to compensate for video
frequency variations, prevent I/O contention, and allow syn-
chronous processing of the input display streams.

Frames are then synchronously processed in real-time in
a raster fashion. Whilst processing the top portion of a
frame (the bit corresponding to the position of the trusted
banner), the identified windows regions are extracted from
the pixel data and stored separately for each domain. In
our prototype, this region of the display was 50 pixels high,
corresponding to 50 lines of video.

The compositor module also creates and stores separate
decoration regions representing the extents to be decorated;

trimming the original identified window regions if necessary.
In our prototype the decoration was 4 pixels wide. Pixel
processing then follows the pipeline shown in Figure 8.

Figure 8: Pixel processing pipeline

Firstly, for every pixel in each domain frame, hardware
comparators compare the current pixel raster location with
the stored window and decoration regions for that domain,
creating an intermediate decorated pixel output for each do-
main. This decorated pixel contains either: original win-
dowed content; domain decoration colour; or no content.
The z-order of the windows within a domain is important
in correctly applying decorations, the algorithm used is in-
cluded in Appendix A for reference.

The intermediate pixel values are then combined together
to form the composited output. The output is generated
based on the domain ordering and the existence of content
at a raster pixel location, giving priority to the domains
based on their ordering:

In the final pipeline step, the CDDC adds its generated
content, including the active domain banner, virtual but-
tons, and the cursor.

For regions of the composited output that contain no pixel
information, i.e., no windowed domain content, no decora-
tion content, and no CDDC generated content, the compos-
itor renders the background of the currently active domain
greyed out by pixel modification. Greying out the back-
ground can prevent certain spoofing attacks where a do-
main attempts to render its own decorated content without
reporting its window location.

5.2.4 Domain Switching
Seamless domain switching underpins the intuitive inter-

face provided by the CDDC. On startup the CDDC defines
and composites the domains in a specified order. The do-
main order can be changed by clicking on content or deco-
ration from another domain, clicking on a CDDC generated
virtual button, or pressing a physical button corresponding
to a different domain. When a domain switch occurs, the
new domain becomes the active domain and the ordering of
all other domains remains the same. Composition ordering
is updated at the start of the next video frame.

5.2.5 HID Switching
USB keyboard and mouse events generated by the trusted

input devices are converted into unidirectional serial streams
by FTDI VNC2 USB integrated circuits.

To facilitate responsive domain switching, a separate USB
proxy device maintains a continual USB keyboard and USB
mouse connection with each domain, similar to [20], us-
ing a Cypress PSoC acting as a serial to USB converter.
Unmodified keyboard packets, and updated mouse packets
are exclusively directed to the proxy for the currently ac-



tive domain. In this manner domains are unaware of being
connected or disconnected to the real keyboard and mouse.
When a domain switch occurs, the CDDC ensures any ex-
isting keystrokes are flushed to the currently active domain
before switching to the newly active domain.

The USB mouse proxy is reported as an absolute position-
ing device, this ensures the cursor is positioned correctly in
the active domain when a domain switch occurs.

5.3 Software Emulator
A software emulator of the CDDC has been developed. It

connects to multiple desktop computers via the VNC proto-
col and composites the received video output. The keyboard
and mouse are logically switched between the domains as re-
quired. The software emulator provides a base for further
experimentation and refinement of composition algorithms.

6. FORMAL ANALYSIS
Formal modelling in Isabelle/HOL [12] was used to exer-

cise the design early in the development, identifying data
structures, exposing assumptions and exploring weaknesses.
The emphasis for this work was to provide timely input, and
thus the system’s design was modelled at a relatively high
level of abstraction and a global confidentiality property in
the style of noninterference [7] was proved.

Even at this relatively coarse level of abstraction, however,
the resulting security property captures a number of poten-
tial channels in the system. These include, for instance,
buffered keyboard data from the current domain that needs
to be flushed (i.e. cleared) when switching to a different do-
main to prevent information flows due to residual data, as
well as potential information flows arising from when the
user chooses to switch between domains.

In this section, we give just a flavour of the overall struc-
ture and intuition of the formal model and the security prop-
erty proved for it. The model is formally defined as an event
system comprising a number of concurrently executing com-
ponents, and the security property comes from Murray et
al.’s value-dependent noninterference formulations [11].

6.1 Formal Model
Let each of the external domains (i.e. the domain-side

computers, each of whose video output is plugged into the
CDDC and each of which receives its keyboard and mouse
input from the CDDC) be denoted by a unique natural num-
ber between 1 and the number N of such external domains,
and let extdom = {1. . . N}. Then the formal model com-
prises the components: Keyboard, Mouse, CDDC and WSd

for each d ∈ extdom.
For the sake of brevity, in this presentation we restrict

our attention to those parts of the model that deal with key-
board and mouse input processing, including domain switch-
ing. The full formal model also captures the processing of
video frames, including their composition and rendering of
CDDC-generated content, like the mouse cursor, and the
banner across the top of the screen indicating the currently
active domain and the trusted window decorations. How-
ever, these operations pose little security threat, given the
unidirectional nature of the information streams involved.
Hence, they are modelled abstractly and the confidentiality
property says less about them.

Figure 9 depicts the component decomposition of the for-
mal model. The CDDC component models the behaviour of

Keyboard CDDC

Mouse

WSN

WS1

key_src1

key_srcN

…

key_buffer

mouse src mouse_buffer

output1

outputN

…

cur_coord dom_orddisable

input1

inputN

…
aug

Figure 9: Relevant components of the CDDC formal
model.

the internal keyboard/mouse input processing loop of the
CDDC and its interaction with the other components. Its
internal state includes dom ord the current external domain
ordering (the topmost domain of which is the currently ac-
tive domain): when a domain switch occurs, this ordering
is updated by putting the newly active domain on top. Its
state also includes a number of internal buffers, including
key buffer, a keyboard buffer, and mouse buffer, a mouse
buffer, as well as output buffers outputd for each of the exter-
nal domains d ∈ extdom. Finally, in this simplified presenta-
tion, its state includes the framebuffer aug, which holds the
augmented display data generated by the CDDC, including
the top banner that indicates to the user the currently ac-
tive domain. A system-wide invariant that we proved, and
is required for security to be proved, is that the topmost
domain in dom ord agrees with the currently active domain
as indicated by aug. We return to the CDDC component
shortly.

Each WSd component models the untrusted domain-side
computers connected to the CDDC. Its internal state in-
cludes an input buffer inputd into which the CDDC com-
ponent places keyboard and mouse input data. A single
execution step for a WSd component has it read the next
item of data in the CDDC’s outputd buffer and copy it to
the inputd buffer, modelling the receipt of user input data
by the domain-side computer connected to the CDDC.

The Keyboard component models a trustworthy user typ-
ing on a trustworthy keyboard. Its internal state includes,
for each external domain d ∈ extdom, an infinite stream
key srcd of characters representing user input typed at level d.
Its state also includes a disable flag (not depicted) that it
shares with the Mouse component, modelling a mechanism
by which the CDDC component temporarily disables the key-
board and mouse while it is analysing a mouse-click (see
below, and Section 7.2). For each computation step, if the
disable flag is not set, the Keyboard component reads the next
input character from key srcactive, where active is the cur-
rently active domain as indicated by the CDDC-generated
augmented display data aug. It places this character in
key buffer, the keyboard input buffer of the CDDC compo-
nent. This models a faithful user who always types input at
the level indicated by the CDDC-generated banner across
the top of the display.

The Mouse component models the trustworthy user pro-
viding mouse input to the CDDC. It contains a single infinite



GetInput: Read datum dt from mouse buffer or,
if none available, key buffer;

ifdt is a mouse click then
set disable flag and goto TestClick;

else
update cur coord as needed;
goto Ferry(dt);

TestClick: let d = domainOf (cur coord);
update dom ord and aug as needed;
if d is not the old active domain then
goto Flush(0);

else
unset disable flag;
goto Ferry(click(cur coord));

Ferry(dt): let activedom = topmost(dom ord);
put dt into outputactivedom ;
goto GetInput;

Flush(n): if n < BUFLEN then
clear(key buffer [n]);
goto Flush(n + 1);

else
unset disable flag;
goto Ferry(click(cur coord))

Figure 10: Behaviour of the CDDC component.
Given coordinates c, the function domainOf (c) re-
turns the topmost domain in dom ord whose windows
occupy position c, while click(c) creates a mouse click
event at location c.

stream mouse src of mouse input data. At each computation
step, if the disable flag is not set, this component reads the
next item from mouse src and places it in mouse buffer, the
mouse input buffer of the CDDC component.

The CDDC component has the most complex behaviour.
Its internal state includes a structured program counter vari-
able and each computation step atomically executes an en-
tire labelled block (i.e. everything up to execution of the
next goto statement) of the input processing loop described
in Figure 10, namely the block identified by the current value
of the CDDC’s program counter. The goto statements in
Figure 10 show how the program counter variable is updated
in each execution step.

The entire system executes the above components in par-
allel, interleaving their individual execution steps to form ex-
ecution traces. No component ever blocks, nor synchronises
with any other, so issues such as enabledness and termination-
sensitivity are irrelevant.

6.2 The Security Property
The security property is a variant of noninterference, and

essentially forbids information at the level of one external
domain d being observed at another d′.

To phrase this requirement we group the data in the sys-
tem into (sometimes overlapping) collections, called security
labels, and define a global information flow policy that says
how information is allowed to flow between these labels. For
the CDDC formal model, the set of security labels includes
just the following. Each external domain d ∈ extdom has
its own label, Externald. However, we also include an extra
label Internal, for data that at no instant in time belong to
any of the external domains. The Internal label includes,
for instance, the mouse input data which, because it defines

when domain switches occur, cannot be labelled at the level
of any of the external domains, as otherwise it would create
a trivial information channel between all such domains [11].
Specifically, when a domain switch occurs, the domain be-
ing switched to necessarily learns that the mouse cursor was
(clicked) over one of its windows, and so learns something
about the current mouse position. Thus the mouse data
cannot be labelled with any external label.

The information flow policy ;, then, says that informa-
tion is allowed to flow from the Internal label to all others,
but that no other information flows are permitted between
labels.

Internal ;d d ;d’ −→ d = d’

This policy ensures that, while when domain switches occur
can (and will) be controlled by Internal state, this is the
only state that can do so. In practice, the CDDC formal
model adheres to this requirement because it allows domain
switches to occur only in response to mouse clicks.

To state the security property, we then need to define the
labelling of the data in the system. This labelling is defined

by, for each label l, defining an equivalence relation
l∼ on

states of the system so that s
l∼ s′ holds for any two states s

and s′ precisely when the values of all data labelled by l
are identical between s and s′. We say that the equivalence

relation
l∼ includes all data labelled by l.

Before describing the labelling and the equivalence rela-
tions, we first define the confidentiality property that we
prove for the system, to show that it adheres to the in-
formation flow policy ; defined above. This property is
equivalent to the following.

Definition 6.1. Confidentiality holds when for all labels l,
for all reachable states s and t, and all states s′ and t′ reach-
able from these respectively after a single execution step per-
formed by the same component in each,

s
l∼ t ∧ s

Internal∼ t −→ s′
l∼ t′

Confidentiality simply requires that each execution step
reveals to an arbitrary label l only information that l al-
ready knew, or Internal information (which, recall, ; allows
anyone to learn).

The essence of what this security property means and en-
forces, then, is captured by the labelling defined in terms of

the equivalence relations
·∼.

Note that by phrasing the labelling via equivalence rela-
tions on states s and t, it may depend on the contents of s
and t themselves. This allows the labelling to depend on
fixed parts of the state, namely the Internal-labelled state
that the policy ; allows all other labels to observe. We
make use of this to have the labelling for labels Externald
depend on whether d is the currently active domain.

Specifically, the state labelled Externald naturally includes
all (containers holding) d-classified data in the system: the
Keyboard’s input stream key srcd, the CDDC’s output buffer
outputd, and the WSd’s input buffer inputd. When d is the
active domain, it also includes the CDDC’s key buffer. An
implication is that the security property then requires (i.e.
it enforces) that the key buffer only ever contain the data of
the currently active domain. This is why it must be cleared
when switching to a new domain, and why the keyboard
must be disabled during this process, by the CDDC (see
Figure 10).



Finally, when d is the active domain, the CDDC’s program
counter (mentioned above) is also labelled by Externald. As
we will see below, the behaviour of the CDDC component
is largely independent of the keyboard data it receives from
the current domain, except when the program counter is
e.g. Ferry(dt), in which case the program counter’s value
directly encodes potential keyboard data dt from the current
domain. Clearly values of this form for the program counter
contain information of the current domain. However, all
other information contained in the program counter (besides
dt) contains only publicly observable information (i.e. that
derived from Internal data).

This allows the remainder of the information in the CDDC’s
program counter to be labelled Internal. Specifically,

Internal∼
relates two program counter values that are equal, as well as
any two values of the form Ferry(dt) and Ferry(dt’). The re-
mainder of the state not labelled by any Externald label (i.e.
the Keyboard’s mouse src and disable flag, plus the CDDC’s
mouse buffer, cur coord, dom ord and aug) is all labelled In-
ternal. It is precisely this state that controls when domain
switches occur.

The confidentiality security property is sound and com-
plete to one over entire execution traces, for which we refer
the reader to [11].

6.3 Discussion
The formal analysis was extremely helpful internally to

the development, as a careful attempt to write down what
was meant by the technical ideas in the design. In particu-
lar, it suggested several covert channels – discussed in Sec-
tion 7.2, and a closer analysis of the keyboard state. More-
over, the implementations above for policy and the label
equivalence relations were just one choice of many, which
led to explorations of the alternatives.

The security property above rules out information flows
from the user’s keyboard input to any but the currently ac-
tive domain. It is predicated on the assumption of a faithful
user who never suffers confusion about which domain is cur-
rently active (i.e. always heeds the banner rendered by the
CDDC at the top of their screen).

However, importantly, it permits information flows from
the user’s mouse inputs to all domains. This means that a
CDDC implementation that broadcast all mouse data to all
domains would satisfy the property.

A more nuanced model and security definition might apply
a more fine-grained (state-dependent) labelling to the mouse
input stream, to allow only the mouse clicks that will cause
a domain switch to be labelled Internal. One could then
specify that all other mouse input should be directed only
to the currently active domain. We leave this exploration
for future work.

7. SECURITY ANALYSIS
Achieving perfect security in an MLS user interface is a

difficult proposition, in such systems, security is often in
conflict with the usability of the user interface. Increased
usability is usually obtained through complexity, making
it more difficult to evaluate and accredit a solution. The
CDDC gives a user most of the functionality they desire,
whilst minimising the trusted computing elements. Cus-
tom hardware, small trusted modules for composition and
switching, and enforced unidirectional flows provide a real-
istic target for formal analysis and subsequent evaluation as

a high assurance device.
The authors believe that usable security, even in the pres-

ence of small covert channels is better than perfect, unusable
security that drives a user to bypass security mechanisms.

7.1 Architectural Security
Keeping most of the functionality untrusted, including the

graphics subsystems, operating environments, and existing
commodity computing infrastructure can reduce the total
cost of the solution. The most contentious decision is al-
lowing the domain-side software and hence the windowing
information to remain untrusted – this also allows the video
processing blocks to remain untrusted. Malicious software
could attempt to thwart security by sending incorrect in-
formation, such as locations of non-windows, or by rapidly
changing the size, number, and location of the windows, or
by sending no information. The CDDC hardware is trusted
to correctly decorate each region and always display the cor-
rect active domain banner. Whilst the display might look
confusing, the banner can still be trusted and incorrectly
drawn windows should alert users to potential issues.

7.2 Covert Channel Analysis
The tension between usability and security also influences

the covert channels present in the CDDC. Our goal was to
ensure no information flowed between domains, and from
a hardware perspective this has been achieved – under the
implicit assumption that we trust the external keyboard,
mouse and display. A malicious display cannot leak informa-
tion back to another domain through the CDDC, the threat
is equivalent to a malicious display attached to a standalone
system. The mouse only provides input to the CDDC, which
always displays the correct location of the cursor. A mali-
cious mouse could annoy a user and at worse, provide an
increased channel for some automated attacks discussed be-
low. A malicious keyboard could act as a storage channel –
recording keystrokes from one domain and replaying them
to another domain. The CDDC can mitigate against this by
powering down the keyboard between domain switches.

The cursor is the only element that crosses the trust bound-
ary between all the domains – the movement and switching
activities are potentially visible to more than one domain.
We believe the only timing covert channels present in the
system are through the user and the use of this domain
crossing cursor. Two types of covert channel are explored
here, incidental channels and malicious attacks. As the cur-
sor moves across the screen, the mouse position is sent to the
active desktop. When a domain switch occurs the cursor po-
sition is then directed to the newly active domain. Although
a domain does not know when it has been switched to, or
from, monitoring cursor activity may give some indication.

By examining the cursor position when an incidental do-
main switch occurs, the previously active domain may gain
some knowledge about the positions of windows in the newly
active domain. Information can then be transferred from one
domain to another encoded within the window positions.

In general the window positions are under user control,
and given the likely fidelity of window positions discernible
through a domain switch, orchestrating data leakage through
this channel would prove difficult.

It is possible to mitigate against this timing channel, for
example extra mouse movements could be constantly in-
jected into all non-active domains, this may have unintended



side effects, such as tool tips and other mouse hover function-
alities occurring. Other policy-based methods can also pre-
vent or limit these timing covert channels at the expense of
usability. For example: the CDDC could only pass through
cursor clicks and not cursor movement to the domains; cur-
sor movement could be passed through only when above
an identified window; the CDDC could limit the number of
domain switches, could enforce switching using physical or
virtual buttons, or provide a keyboard shortcut to switch
domains. Ideally switching using mouse clicks on windows
is the most natural interaction with the CDDC interface and
the policy enforced would be a matter for accreditation.

In a more malicious scenario, if a user can be enticed to
click somewhere specific in one domain through actions of
another domain, then information may be transferred. One
way to entice a user to click somewhere specific is to have
a malicious non-active domain quickly display and hide a
dialog box, hoping it would be composited and visible. A
user then attempts to click on the dialog box but it disap-
pears and instead clicks at a specific location in the currently
active domain, transferring information between domains.

This activity would be quite orchestrated and user train-
ing and awareness should highlight the impact of unusual
behaviours in the system.

7.3 Cognitive Threats
Another threat to the CDDC is cognitive, whereby mode

confusion may cause a user to act in a way that leaks infor-
mation either directly, for example by typing in the incorrect
domain, or indirectly, for example by incorrectly believing
certain information viewed to originate from a specific do-
main. The ability for a user to successfully operate within
such an MLS user interface is part of our ongoing research.

One important cognitive requirement is that a user knows
when a domain switch has occurred. At the moment, the
CDDC alerts a user to this change by changing the trusted
banner. A domain switch may require a more distinctive
action, for example, an audible alert, or a flash of the screen.

Specific cognitive threats to the CDDC include spoofing
attacks, whereby a domain draws a window within one of its
own windows, does not report the sub-window and draws its
own decoration the colour of another domain. While a user
might click on this content, the trusted banner will always
correctly show where the keyboard and mouse are directed.

Malicious software can try and confuse a user by sending
wrong window positions, it is hoped this would be obvious
to a user, and the trusted banner would still indicate the
current context. Domains can also have very small or thinly
shaped windows where no content at all can be visible, yet
the active domain banner will still be shown.

The domains can also render their own cursors, which may
confuse a user if multiple cursors are displayed on the screen.
Hardware mitigations might include being able to uniquely
identify the CDDC rendered cursor, for example making it
flash a specific colour when requested.

These covert channels and cognitive issues are not unique
to the CDDC, but need to be carefully considered in any
implementation and follow-on deployment. Mitigations in-
clude correct user training and awareness, along with careful
consideration of any policy-based mechanisms.

8. INTEGRATED APPLICATIONS
The coarse grained window-level composition of the CDDC

provides a useful converged MLS desktop interface. Through
finer grained composition we can create converged MLS-like
applications. In this scenario, sub-elements of an applica-
tion are provided by each domain, the composition that oc-
curs creates a single MLS looking application on the desk-
top. Whilst the individual elements of the application are
still single-level secure and respond at level to keyboard and
mouse interaction, the user cognitively fuses the individual
domain elements and can interact as if it were a true MLS
application, without mixing the underlying data.

A simple example is shown in Figure 11, where each do-
main renders part of an email client, when the CDDC com-
posites the regions the user is presented with an MLS-like
email client that allows a user to check email from all their
isolated domains in a “single” application.

Figure 11: Simple MLS-like email composition

The benefit of this approach is that we do not need to
construct, evaluate and accredit a true MLS application.
Instead we can use untrusted email clients at-level on each
domain. We only need to trust the CDDC to correctly com-
posite the windows identified. Following the mantra of us-
able security, here we achieve a high degree of the desired
functionality of an MLS application, without the burden of
verifying the security of a true MLS application.

This approach to MLS application construction is similar
in philosophy to the Annex PRISM architecture introduced
by Owen et al. in [14]. Here the authors replicated single-
level secure applications and then in conjunction with a
small TCB created integrated MLS-like applications. These
applications provided a consistent user interface, for exam-
ple through Microsoft Word to some underlying MLS docu-
ment. The authors termed this Multiple integrated Levels of
Security (MiLS), which also seems an apt description of the
MLS-like applications that are achieved through our fine-
grained composition. One could imagine MiLS applications
being constructed for multi-level: database interfaces, logis-



tics clients, service catalogues, and web browsers.
We prototyped a MiLS RSS Reader application on the

hardware-based CDDC, where news feeds from multiple se-
curity domains are integrated. The user interface and com-
posited construction is shown in Figure 12.

Figure 12: MiLS RSS Reader

The security of the composition remains the same as the
coarse grained converged desktop. The user is alerted to the
context via the trusted banner and the keyboard and mouse
are switched appropriately between domains. The composi-
tion is just a carefully contrived geometric arrangement of
application fragments. Getting this arrangement correct is
key in providing a convincing MLS-like interface for a user.
The news feeds on the left composite together for an inte-
grated view, whilst the main story is composited over the
top of each other, with the active domain content displayed.

In these simple examples the composition keeps all ele-
ments from the untrusted domain software in the same po-
sition. A more complex example is presented in Appendix B.

8.1 Managed Information Flows
Visually, the converged desktop provides a convenient user

interface. In practice it would be advantageous to overlay
some desktop functionality across the domains, albeit in a
limited manner. The CDDC has scope and we have demon-
strated the ability to provide managed (deliberate) informa-
tion flows between domains. To copy and paste information
from one domain to another, data can be sent in-band from
one domain within the video stream, and pasted to another
domain in-band in the USB stream, i.e., injecting characters
into the USB keyboard stream.

Combining this managed information flow channel with
the MiLS applications can provide a very powerful user in-
terface. Further, taking advantage of existing accredited in-
formation flow devices (e.g., data diodes, and security gate-
ways) we can provide increased functionality and cross do-
main integration of our MiLS applications. An extended
example is described in Appendix B.

9. FUTURE RESEARCH
Current and future research around the CDDC includes:

increasing the flexibility of the CDDC hardware and soft-
ware ecosystem; increasing the usability and examining how
that may be controlled through sensible policy; and exper-
imenting with MiLS applications and managed information
flows to construct more tightly integrated applications.

We are investigating a supervisory processor to control
aspects of the composition and aid with the orchestration of
managed information flows and MiLS applications.

By embedding zero-client functionality into the CDDC
and using remote desktop connections, the CDDC could pro-
vide, a converged endpoint, ready for connection to extant
network infrastructure. The domain-side software already
operates over remote desktop links via thin-client endpoints.

CDDC policy could include: the shape of the cursor over a
specific domain; operation without decoration (e.g., SCADA
environments); view-only domains (e.g., Financial environ-
ments); keyboard broadcasting (e.g., lock screen), mouse
broadcasting (e.g., multi-domain application launching); and
mouse hover over non-active domain (e.g., switch mouse to
another domain and not keyboard).

The policy and hardware mechanisms surrounding the
managed information flows and the implementation of the
copy and paste are ongoing research. MiLS applications with
controlled information flows e.g., MiLS wikis with cross-
domain hyper-linking are also promising research areas.

Human factors analysis plays an important role in the use
and adoption of an MLS user interface technology. We have
started investigating the work flow and cognitive threats as-
sociated with using the CDDC.

10. CONCLUDING REMARKS
True MLS user interfaces and even constrained implemen-

tations rely heavily on trusting large amounts of underlying
infrastructure, be it software or hardware, making it diffi-
cult to evaluate and accredit these solutions for use in high
assurance environments.

The CDDC provides a very small trusted computing base,
and functionality built upon the simple premise of hardware-
based composition and trustworthy keyboard and mouse
switching. The simplicity makes the system amenable to
formal analysis, allowing us to reason about security prop-
erties of the device, specifically the non-interference proper-
ties. The approach removes most of the semantic informa-
tion before the multi-level data is handled, yet still provides
most of the benefits of more integrated solutions.

The CDDC does not provide perfect security, we would
contend that most useful systems will not have perfect secu-
rity. What it does provide is usable security with strong
guarantees for certain security properties and known in-
formation channels that can be mitigated by policy. The
CDDC can be configured to provide a balance between se-
curity and usability suitable for the deployed environment.

The CDDC can be built upon to provide unique converged
MLS-like applications without the need to trust the con-
struction of the applications to anywhere near the level of
traditional MLS software. The notion of MiLS applications
is powerful from both a user and a security perspective, al-
lowing us to keep data at-level and have a user operate on
that data at the correct level – adding carefully managed
information flows when it really is required.
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APPENDIX
A. DECORATION ALGORITHM

The decoration algorithm is important. It allows the hard-
ware, an FPGA in our prototype, to quickly determine if a
specific pixel should be decorated with a border, left undeco-
rated, or have no content at all. This needs to be performed
in real-time for each pixel location and be based solely on the
windowing information provided in-band from each domain.

window region, w = (x, y, w, h)
input pixel, p = (x1, y1)
list of windows, wl = [w1, w2, .., wn]
where: wk is in front of wk−1

apply function extend to create a decoration region:
list of decoration regions, dl = [d1, d2, .., dn]

apply function include(p, w) returning 0 or 1
to check if a pixel is within the window or decoration:
in windowsl = [b1, b2, .., bn]
in decorationsl = [b1, b2, .., bn]

the output pixel po is then calculated as:
if in decorationsl = in windowsl = 0 then

pdecorated = no content
else if in decorationsl > in windowsl then

pdecorated = decoration
else

pdecorated = window content
end if

B. EXTENDED MILS APPLICATION
Incorporating a frame-buffer in the CDDC would allow in-

put windows to be rearranged, allowing for the construction
of more intertwined, and cognitively integrated applications.

We have prototyped a fine-grained composition email client
on our software emulator. The emulator was used as it al-
lowed for quick implementations of the buffering and rear-
ranging functions. A screen shot is shown in Figure 13. In
this instance the window decoration has been replaced with
a decoration colour blob next to the inbox items.

Figure 13: More complex MiLS email composition

Using the CDDC to help orchestrate the MiLS applica-
tions can increase their complexity. Examples include: key-
board broadcasting that allows a user to search across all do-
mains at once, or mouse broadcasting to concurrently launch

multiple applications across different domains.
The notion of fine-grained MiLS composition is not limited

to the CDDC and could be usefully applied to existing secure
user interfaces, for examples Qubes OS [17], or Nitpicker [5].

Introducing managed information flows between domains
can increase the integration of these applications. We pro-
totyped replying to and forwarding emails on different do-
mains. This functionality was implemented through CDDC
rendered MLS buttons (Figure 14) and external data diodes
(Figure 15), allowing for example, an email on DOMAIN 1 to
be replied to on DOMAIN 2 by first sending the email from
DOMAIN 1 to DOMAIN 2 over the data diode, and then
displaying the email on DOMAIN 2. Having all user inter-
action occur within a single MiLS composited application,
provides the integrated feel of a true MLS email application.

Figure 14: MiLS email composition - Reply buttons

Figure 15: MiLS email composition - external data
diodes

Untrusted software is relied upon to send, receive and
marshal the data required on each separate security domain.
If this software acts maliciously we are presented with the
same cognitive threats discussed in Section 7, as well as any
at-level attacks the software could normally perform against
a single-level secure system.


