WSTA 20: Machine Translation

- Introduction
 - examples
 - applications
- Why is MT hard?
- Symbolic Approaches to MT
- Statistical Machine Translation
 - Bitexts
- Computer Aided Translation

Slides adapted from: Steven Bird
Machine Translation Uses

- **Fully automated translation**
 - Informal translation, *gisting*
 - Google & Bing translate
 - Cross-language information retrieval
 - Translating technical writing, literature
 - Manuals
 - Proceedings
 - Speech-to-speech translation

- **Computer aided translation**
Introduction

- Classic “hard-AI” challenge, natural language understanding
- Goal: Automate of some or all of the task of translation.
 - Fully-Automated Translation
 - Computer Aided Translation
- What is "translation"?
 - Transformation of utterances from one language to another that preserves "meaning".
- What is "meaning"?
 - Depends on how we intend to use the text.
Why is MT hard: Lexical and Syntactic Difficulties

- One word can have multiple translations
 - know: Fr: savoir or connaitre
- Complex word overlap
- Words with many senses, no translation, idioms
- Complex word forms
 - e.g., noun compounds, ‘Kraftfahrzeug’ = power + drive + machinery
- Syntactic structures differ between languages
 - SVO, SOV, VSO, OVS, OSV, VOS (V=verb, S=subject, O=object)
 - Free word order languages
- Syntactic ambiguity
 - resolve in order to do correct translation
Why is MT hard: Grammatical Difficulties

- **E.g. Fijian Pronoun System**
 - INCL = includes hearer, EXCL = excludes hearer

<table>
<thead>
<tr>
<th></th>
<th>SNG</th>
<th>DUAL</th>
<th>TRIAL</th>
<th>PLURAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1P EXCL</td>
<td>au</td>
<td>keirau</td>
<td>keitou</td>
<td>keimami</td>
</tr>
<tr>
<td>1P INCL</td>
<td></td>
<td>kedaru</td>
<td>kedatou</td>
<td>keda</td>
</tr>
<tr>
<td>2P</td>
<td>iko</td>
<td>kemudrau</td>
<td>kemudou</td>
<td>kemunii</td>
</tr>
<tr>
<td>3P</td>
<td>koya</td>
<td>irau</td>
<td>iratou</td>
<td>ira</td>
</tr>
</tbody>
</table>

cf English:

- I
- we
- you
- you
- he, she, it
- they
Why is MT hard: Semantic and Pragmatic Difficulties

- Literal translation does not produce fluent speech:
 - Ich esse gern: *I eat readily*.
 - La botella entro a la cueva flotando: *The bottle entered the cave floating*.

- Literal translation does not preserve semantic information
 - e.g., "I am full" translates to "I am pregnant" in French.
 - literal translation of slang, idioms

- Literal translation does not preserve pragmatic information.
 - e.g., focus, sarcasm
Symbolic Approaches to MT

1. Direct Translation
 - English (word string) → French (word string)

2. Syntactic Transfer
 - English (syntactic parse) → French (syntactic parse)

3. Semantic Transfer
 - English (semantic representation) → French (semantic representation)

4. Knowledge-based Transfer
 - Interlingua (knowledge representation) → English (semantic representation)
 - Interlingua (knowledge representation) → French (semantic representation)
 - Interlingua (knowledge representation) → English (syntactic parse)
 - Interlingua (knowledge representation) → French (syntactic parse)
Difficulties for symbolic approaches

- **Machine translation should be robust**
 - Always produce a sensible output
 - even if input is anomalous

- **Ways to achieve robustness:**
 - Use robust components (robust parsers, etc.)
 - Use fallback mechanisms (e.g., to word-for-word translation)
 - Use statistical techniques to find the translation that is *most likely* to be correct.

- **Fallen out of use...**
 - symbolic MT efforts largely dead (except SYSTRANS)
 - from 2000s, field has moved to statistical methods
Statistical MT

- Noisy Channel Model
 - *When I look at an article in Russian, I say: “This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.”* Warren Weaver (1949)
 - Assume that we *started* with an English sentence.
 - The sentence was then corrupted by translation into French.
 - We want to recover the original.
 - Use Bayes' Rule:
 \[
 P(e|f) = \frac{P(e)P(f|e)}{P(f)}
 \]
 \[
 \hat{e} = \arg\max_e P(e)P(f|e)
 \]
Statistical MT (cont)

\[\hat{e} = \arg\max_e P(e)P(f|e) \]

- **Two components:**
 - \(P(e) \): Language Model
 - \(P(f|e) \): Translation Model

- **Task:**
 - \(P(f|e) \) rewards good translations
 - but permissive of disfluent \(e \)
 - \(P(e) \) rewards \(e \) which look like fluent English
 - helps put words in the correct order

- **Estimate** \(P(f|e) \) **using a parallel corpus**
 - \(e = e_1 \ldots e_p, f = f_1 \ldots f_m \)
 - alignment: \(f_j \) is the translation of which \(e_i \)?
 - content: which word is selected for \(f_j \)?
Noisy Channel example

Bilingual Corpora
French/English

Monolingual Corpora
English

Statistical Translation table

Statistical Language Model

French

I don't want to work
I no will work
...

I not work
I do not work

Je ne veux pas travailler

English

Slide from Phil Blunsom
Benefits of Statistical MT

• **Data-driven**
 - Learns the model directly from data
 - More data = better model

• **Language independent (largely)**
 - No need for expert linguists to craft the system
 - Only requirement is parallel text

• **Quick and cheap to get running**

See GIZA++ and Moses toolkits, http://www.statmt.org/moses/
Parallel Corpora: Bitexts and Alignment

- **Parallel texts (or bitexts)**
 - one text in multiple languages
 - Produced by human translation; readily available on web
 - news, legal transcripts, literature, subtitles, bible, ...

- **Sentence alignment:**
 - translators don't translate each sentence separately
 - 90% of cases are 1:1, but also get 1:2, 2:1, 1:3, 3:1
 - Which sentences in one language correspond with which sentences in another?

- **Algorithms:**
 - Dictionary-based
 - Length-based (Church and Gale, 1993)
Representing Alignment

- **Representation:**

 \[e = e_1 \ldots e_l = \text{And the program has been implemented} \]
 \[f = f_1 \ldots f_m = \text{Le programme a été mis en application} \]
 \[a = a_1 \ldots a_m = 2,3,4,5,6,6,6 \]

Figure from Brown, Della Pietra, Mercer, 1993
Estimating $P(f|e)$

- If we know the alignments this can be easy
 - assume translations are *independent*
 - assume word-alignments are *observed* (given)
- Simply count frequencies:
 - e.g., $p(\text{programme} | \text{program}) = \frac{c(\text{programme}, \text{program})}{c(\text{program})}$
 - aggregating over all aligned word pairs in the corpus
- However, word-alignments are rarely observed
 - have to infer the alignments
 - define probabilistic model and use the Expectation-Maximisation algo
 - akin to unsupervised training in HMMs
Assume simple model, aka ‘IBM model 1’

\[p(f, a | e) = \frac{\epsilon}{(l + 1)^m} \prod_{j=1}^{m} t(f_j | e \alpha_j) \]

- length of result independent of length of source, \(\epsilon \)
- alignment probabilities depend only on length of target, \(l \)
- each word translated from aligned word

Learning problem: estimate ‘t’ table of translations from

- instance of “expectation maximization” (EM) algorithm
 1. make initial guess of ‘t’ parameters, e.g., uniform
 2. estimate alignments of corpus \(p(a | f, e) \)
 3. learn new t values, using corpus frequency estimates
 4. repeat from step 2
Modelling problems

- Problems with this model:
 - ignores the positions of words in both strings (solution: HMM)
 - need to develop a model of alignment probabilities
 - tendency for proximity across the strings, and for movements to apply to whole blocks

- More general issues:
 - not building phrase structure, not even a model of source language P(f)
 - idioms, non-local dependencies
 - sparse data (solution: using large corpora)

Figure from Brown, Della Pietra\(^2\), Mercer, 1993
Word- and Phrase-based MT

- Typically use different models for *alignment* and *translation*
 - word based translation can be used to solve for best translation
 - overly simplistic model, makes unwarranted assumptions
 - often words translated and move in ‘blocks’
- Phrase based MT
 - treats n-grams as translation units, referred to as ‘phrases’ (not linguistic phrases though)
 - phrase-pairs memorise:
 - common translation fragments
 - common reordering patterns
 - architecture underlying Google & Bing online translation tools
Decoding

\[e^* = \arg \max_e f(e, f) \]

- **Objective**

- **Where model, \(f \), incorporates**
 - translation probability, \(P(f|e) \)
 - language model probability, \(P(e) \)
 - distortion cost based on word reordering (translations are largely left-to-right, penalise big ‘jumps’)
 - ...

- **Search problem**
 - find the translation with the best overall score
Score the translations based on translation probabilities (step 2), reordering (step 3) and language model scores (steps 2 & 3).
Search problem

• **Given options**

<table>
<thead>
<tr>
<th>er</th>
<th>geht</th>
<th>ja</th>
<th>nicht</th>
<th>nach</th>
<th>hause</th>
</tr>
</thead>
<tbody>
<tr>
<td>he</td>
<td>is</td>
<td>yes</td>
<td>not</td>
<td>after</td>
<td>house</td>
</tr>
<tr>
<td>it</td>
<td>are</td>
<td>is</td>
<td>do not</td>
<td>to</td>
<td>home</td>
</tr>
<tr>
<td>, it</td>
<td>goes</td>
<td>, of course</td>
<td>does not</td>
<td>according to</td>
<td>chamber</td>
</tr>
<tr>
<td>, he</td>
<td>go</td>
<td></td>
<td>is not</td>
<td>in</td>
<td>at home</td>
</tr>
</tbody>
</table>

• **1000s of possible output strings**
 - he does not go home
 - it is not in house
 - yes he goes not to home …

• **Millions of possible translations for this short example…**

Figure from Koehn, 2009
Search insight

• Consider the sorted list of all derivations
 – he does not go after home
 – he does not go after house
 – he does not go home
 – he does not go to home
 – he does not go to house
 – he does not goes home

• Many similar derivations
 – can we avoid redundant calculations?
Dynamic Programming Solution

• **Instance of Viterbi algorithm**
 - factor out repeated computation (like Viterbi for HMMs, chart used in parsing)
 - efficiently solve the maximisation problem

• **What are the key components for “sharing”?**
 - don’t have to be exactly identical; need same:
 - set of translated words
 - righter-most output words
 - last translated input word location
Phrase-based Decoding

Start with empty state

Figure from Koehn, 2009
Phrase-based Decoding

Expand by choosing input span and generating translation

Figure from Koehn, 2009
Phrase-based Decoding

Consider all possible options to start the translation

Figure from Koehn, 2009
Phrase-based Decoding

Continue to expand states, visiting uncovered words. Generating outputs left to right.
Phrase-based Decoding

Read off translation from best complete derivation by backtracking

he goes home
are does not go home
it to
Complexity

• Search process is intractable
 – word-based and phrase-based decoding is NP complete (Knight 99)

• Complexity arises from
 – reordering model allowing all permutations
 solution: allow no more than 6 uncovered words
 – many translation options
 solution: no more than 20 translations per phrase
 – coverage constraints, i.e., all words to be translated once
MT Evaluation

- **Human evaluation of MT**
 - quantifying fluency and faithfulness
 - expensive and very slow (takes months)
 - but MT developers need to re-evaluate daily
 - thus evaluation is a bottleneck for innovation

- **BLEU: bilingual evaluation understudy**
 - data: corpus of reference translations
 - there are many good ways to translate the same sentence
 - translation closeness metric
 - weighted average of variable length phrase matches between the MT output and a set of professional translations
 - correlates highly with human judgements
MT Evaluation Example

- Two candidate translations from a Chinese source:
 - It is a guide to action which ensures that the military always obeys the commands of the party.
 - It is to insure the troops forever hearing the activity guidebook that party direct.

- Three reference translations
 - It is a guide to action that ensures that the military will forever heed Party commands.
 - It is the guiding principle which guarantees the military forces always being under the command of the Party.
 - It is the practical guide for the army always to heed the directions of the party.

- The BLEU metric has had a huge impact on MT
 - e.g. NIST Scores: Arabic->English 51% (2002), 89% (2003)
Summary

- Applications
- Why MT is hard
- Early symbolic motivations
- Statistical approaches
 - alignment
 - decoding
- Evaluation
- Reading
 - Either JM #25 or MS #13