Automatic Identification of Locative Expressions from Social Media Text: A Comparative Analysis

Fei Liu♠, Maria Vasardani♥ and Timothy Baldwin♠
♠ Department of Computing and Information Systems
♥ Department of Infrastructure Engineering
The University of Melbourne
fliu3@student.unimelb.edu.au maria.vasardani@unimelb.edu.au tb@ldwin.net

ABSTRACT
With the proliferation of smartphones and the increasing popularity of social media, people have developed habits of posting not only their thoughts and opinions, but also content concerning their whereabouts. On such highly-interactive yet informal social media platforms, people make heavy use of informal language, including when it comes to locative expressions. Such usage inhibits the ability of traditional Natural Language Processing approaches to retrieve geospatial information from social media text. In this research, we: (1) develop a medium-scale corpus of “locative expressions” derived from a variety of social media sources; (2) benchmark the performance of a range of geoparsers over the corpus, with the finding that even the best-performing systems are substantially lacking; and (3) carry out extensive error analysis to suggest ways of improving the accuracy and robustness of geoparsers.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Processing

General Terms
Algorithms, Experimentation

Keywords
locative expression, geoparsing, social media

1. INTRODUCTION
The coming together of social media, mobile devices and ubiquitous connectivity has led to users posting not only their thoughts and opinions, but also content relating to their whereabouts. For example, according to Gelernter et al. [14], nearly 27% of Twitter messages relating to the February 2011 Christchurch, New Zealand earthquake contained a reference to a street or building, or a toponym mention. However, due to the informal nature of social media text and widespread use of acronyms, word shortenings and irregular spellings [12, 15], various claims have been made about the ability of NLP to reliably extract information such as location mentions from social media text [17, 4, 47, 37, 3, 14]. To add to the complexity, in informal communication, people make heavy use of vague and informal place references (e.g. my cozy room, my place). While there is little hope of fully geolocating such mentions without detailed knowledge of the author, they are crucial to the task of automated extraction of spatial information and the ultimate goal of understanding place descriptions [19].

Our focus in this paper is the automatic identification of locative expressions in social media text. We build on the work of Herskovits and others [16, 32, 49] in defining a locative expression (LE) to be an expression which physically geolocates an implicit or explicit entity in the text. That is, it provides information on WHERE a given entity is located or action takes place, relating a “relatum” (the location) to a “locatum” (the entity that is being located or the agent of the action), generally via a relational word such as a preposition. For example, in I live in the East, the locatum is the East, the locatum is I (the first person), and the relational word is in; in the traditional analysis of LEs, this would be represented as a triple such as (I, in, the East), where -refers to the first-person pronoun.

While we are ultimately interested in the extraction of fully-specified locative triples, for the purposes of this work, we focus on the simpler task of identifying “degenerate locative expressions” [19], namely the relatum and relational word only, leaving the locatum underspecified; for simplicity, we will refer to degenerate locative expressions as LEs for the remainder of this paper. LEs must refer to a geophysical location (whether it is identifiable or not). As such, my place in the context of We could all meet at my place ... is an LE, but US in the context of US officials ... is not, as it refers to the government rather than the region and the officials may not be physically located in the US. In the case that locative words are part of a larger non-locative named entity (NE) (e.g. Organisation of American States), they are not considered to be LEs.

The relatum generally takes the form of a noun phrase and the relational word a preposition, as in Near Petersham Gate.

1All examples used in this paper are taken from the dataset used for evaluation.
we saw ... or ... i am nowhere in my cozy room
where my mom would come ... (where the LE is
underlined in each case). It is also possible for the
relatum to take the form of an adjective or noun
modifier (e.g. ... as slaves in European markets), or a
complex noun phrase (e.g. ... near Downtown, Chinatown and
Comiskey Park). In line with work on chunk parsing,
we assume that LEs cannot be nested. As such, the
identification of LEs relates to each of natural
language parsing, named entity recognition, semantic
role labelling (SRL) and geoparsing. It differs in that
many LEs are not NEs, not all LEs are governed by
verbs (as is generally assumed in SRL [35]), and
LEs are often informal.

Vasardani et al. [44] make the case for an LE
recogniser, capable of processing unrestricted natural
text (NL), in the task of automatically translating
descriptions into two-dimensional sketch maps. However,
to the best of our knowledge, there has been little
analysis so far on either: (1) the distribution of LEs in
different social media text types; and (2) the ability of
geoparsers to identify LEs in social media text. In
this research, we examine the output of six existing
geoparsers over social media text, based on
the corpora assembled by Baldwin et al. [3] from five
popular social media sources and one balanced corpus of English.
The geoparsers range in intent from LE recognisers
trained on informal text, to off-the-shelf named
tool recognisers, to geoparsers designed to identify
more formal spatial descriptions (such as addresses). We evaluate each
according to the same criterion, in terms of its ability to identify LEs
of all types in the different text sources. First, we manually
annotated 500 randomly-selected sentences from each of
the six corpora. We then used this data to empirically evaluate
the geoparsers. Next, we identified typical patterns of
LEs in the manually-annotated data that each tool is able to
(correctly) recognise, and also analysed the most frequent
LEs in the output of each geoparser across the full corpora.
Our findings indicate that there is substantial room for
improvement for all geoparsers, and that each has its quite
distinct strengths and weaknesses.

2. BACKGROUND

We are interested in the automatic identification of LEs
from unrestricted NL text, especially from social media posts.
Earlier work on the identification of LEs focused on the
identification of specific and application-dependent geospatial
information from restricted language place descriptions [42,
18, 24]. The identification of LEs relates closely to
gap parsing, namely the process of automatically identifying
spatial references within unstructured text. Recent
research has been focused on geoparsers which are able to process
unrestricted NL descriptions. Amitay et al. [2] and Li et
al. [23] demonstrated their approaches to identifying
graphic terms in either web pages or news articles. More
recently, with the rise of social media, the focus has been
shifted to processing text in user-generated social media
posts. However, as pointed out by Baldwin et al. [3],
traditional NLP tools tend to struggle when applied directly
due to user-generated social media text, with Twitter being a
particularly hard target. Simplistically, geoparsing
is considered to be a sub-task of named entity
recognition (NER), that is, the task of identifying (mostly proper)
names of people, organisations, locations, etc. State-of-the-
art NER models used structured classification approaches
such as linear-chain conditional random fields [22] or struc-
tured perceptron [9]. Of particular relevance over social media
are Liu et al. [28] and Ritter et al. [40], who report
F-scores of 77–78% at identifying locative named entities in
tweets.

Another widely-used approach is to match place references
in a gazetteer. An attempt was made by Paradisi [36] to
combine NER and external gazetteers. The system,
TwitterTagger, first assigns part-of-speech (POS) tags to
tweets to locate proper nouns, and then matches noun
phrases to the USGS database to identify nouns that are
likely to be places (e.g. prepositions preceding place names).

Other researchers have explored approaches based on
language models. Kinsella et al. [20] created a model by
estimating the distribution of words associated with a
location and then the probability that the tweet is related to the
location. Their model performs well at the city level but suffers
at the neighbourhood level. Gelernter et al. [14] built a geopar-
sor combining the results of four parsers: a lexico-semantic
named location parser, a rule-based street name parser, a
rule-based building name parser and a trained NER.

3. DATASETS

In this section, we detail the datasets involved in this re-
search, namely: (1) the Tell Us Where corpus [46]; and (2)
the social media corpora used in this research.

3.1 The Tell Us Where Dataset

Tell Us Where (henceforth TellUSWhere) is a location-
based mobile game where participants were asked to provide
a NL description of their location, in answer to the question
Tell us where you are [46]. The descriptions submitted by
the participants are therefore rich in LEs. The game resulted
in the submission of a total of 1,858 place descriptions, fo-
focused primarily around Victoria, Australia. These place de-
scriptions were manually annotated for LEs [43], and this
data is used to both train some of the LE identification sys-
tems (see Section 4.1), as well as to evaluate the different
tools.

3.2 Social Media Corpora

The social media corpora used in this research were origi-
nally constructed by Baldwin et al. [3] to measure (among
other things) the degree of lexical and syntactic noise in text
from different social media sources, as compared to text from
a balanced corpus of English. A dataset of around 1M doc-
ments was assembled from each source, which was then
restricted down to English documents based on automatic
language identification [29]. The (putatively) English docu-
ments were then sentence-tokenised using tokenizer. Our
analysis in this paper is based on 100K randomly-selected
sentences from each social media source, and the balanced
corpus of English. In each case, we additionally hand-annotated
500 sentences for LEs based on Penn Treebank-style word
tokenisation, to evaluate the accuracy of the geoparsers.

Below, we briefly describe the five social media sources
and balanced corpus of English.

http://geonames.usgs.gov/
http://www.cia.uni-muenchen.de/~wasti/misc/; this
was found to be the most reliable sentence tokeniser
for user-generated content by Read et al. [39], although
Baldwin et al. found the output to be noisy and the notion
of sentence to be somewhat ill-defined for social media
content.
two sets of micro-blog posts from Twitter, crawled using the Twitter Streaming API over disjoint time periods (TWITTER-1 = 22 September 2011 and TWITTER-2 = 22 February 2012) to investigate the impact of time on the composition of the data.

COMMENTS. comments from YouTube, based on the dataset of O’Callaghan et al. [31], but expanded to include all comments on videos in the original dataset.4

FORUMS. posts from the top-1000 valid vBulletin-based forums in the Big Boards forum ranking.5

BLOGS. blog posts from tier one of the ICWSM-2011 Spinn3r dataset [7].

WIKIPEDIA. wiki markup-stripped text from the body of documents in a dump of English Wikipedia.

BNC. as our balanced corpus of the English language, all documents from the written portion of the British National Corpus [6]; note that most documents were authored in the 1980s and are edited text.

3.3 Manual Annotation

LEs were hand-annotated over the Penn Treebank-style tokenisation, as contiguous token extents. While the focus of this research is on identification rather than grounding of the LEs, we made use of two interactive web-based map services in the annotation process in cases of uncertainty over whether an expression was locative or not: Open-StreetMap6 and Google Maps.7 All sentences were annotated by three annotators, with pairwise inter-annotator agreement measured at Cohen’s κ = 0.69. The annotated data is available in CoNLL format at:

including Penn-style POS tags based on ARK Tweet NLP POS Tagger v0.3 [33] and full-text chunk tags based on OpenNLP.

4. TOOLS

A total of six geoparsers were used to automatically identify LEs, which we separate into two types: (1) end-to-end locative expression recognisers, and (2) geospatial named entity recognisers. In the first case, the tool identifies LEs (e.g. They did the good folks [in Albany, GA], proud.) as a first order output, whereas in the second case, the tool identifies locative entities (e.g. They did the good folks in [Albany, GA], proud.) and requires postprocessing to map these into LEs (in Albany, GA in this case). We describe the geoparsers below, and outline the postprocessing used to generate LEs for the geospatial named entity recognisers.

4.1 End-to-end LE Recognisers

4Baldwin et al. [3] removed all occurrences of the unicode U+FEFF codepoint from the documents prior to language identification, as they found that it biased the results.

5http://rankings.big-boards.com

6http://www.openstreetmap.org/

7http://maps.google.com/

Locative Expression Recogniser

The Locative Expression Recogniser (LER) is a geoparser developed by the first author to automatically identify full LEs from informal text [27]. It is trained on the manually-annotated TellUsWhere dataset (see Section 3.1), and has been used in research on extracting “spatial triplets” from place descriptions [19]. In addition to the sentence and word tokenisation, LER requires POS tagging and full-text chunk parsing information. Acknowledging that the accuracy of standard NLP tools tends to drop appreciably on social media text, we use POS tag with the ARK Tweet NLP POS Tagger v0.3 [33] using the Penn Treebank tagset model. We use OpenNLP8 as our chunk parser.

Retrained StanfordNER

The Stanford named entity recognition [13] has been found to be both robust out of the box, and highly effective when retrained over data containing LEs [25]. In line with these findings, we retrain the Stanford named entity recogniser over the manually-annotated TellUsWhere dataset (the same dataset as was used to train LER above). We will refer to this system as Re-StanfordNER. Note that, unlike the pre-trained model, Re-StanfordNER natively recognises fully-formed LEs, and no other entity type.

4.2 Geospatial Named Entity Recognisers

In order to use geospatial named entity recognisers to identify LEs, we need to have some way of determining the syntactic context of each locative NE. In the case that it is embedded in a noun phrase headed by a relational noun (e.g. On the north east corner of Mira Mesa Blvd. and Flanders Dr., where the whole expression is a single [c] containing the locative NEs are Mira Mesa Blvd. and Flanders Dr.), the relatum should include both the locative NEs and the relational noun. To combine locative NEs into [[]] s, we apply the following heuristics (which were also used to construct TellUsWhere from the annotation of [43]):

1. Recursively combine locative NEs which are linearly connected with commas (e.g. [Albany , [GA]], apostrophes or the preposition of (e.g. [the South Side of Chicago]) into a single complex locative NE (e.g. [Albany, GA] or [the South Side of Chicago], resp.)

2. If a (possibly complex) LE is immediately preceded by a prepositional chunk (as identified via the POS tags IN and TO), combine the two into a single LE

Full-text chunk and POS information is based on the output of OpenNLP.9

StanfordNER

The Stanford Named Entity Recogniser [13] (StanfordNER) is based on a linear-chain conditional random field with a heavily-engineered feature set. In this research, we use StanfordNER with a trained 3-class (Location, Person and Organisation) model with distributional similarity features.

9http://opennlp.apache.org/index.html

9Note that we use the OpenNLP POS tagger only for LE aggregation, and we expect any differences over ARK Tweet NLP POS Tagger v0.3 to be very minor in this context.

10http://www-nlp.stanford.edu/software/CRF-NER.shtml#Download
We ignore all other than Location entities in the output of the system.

GeoLocator

GeoLocator is a geoparser designed for the purpose of geoparsing short, informal messages in social media posts [14]. In order to boost robustness and better handle abbreviations, non-standard spelling and highly localised LEs, it makes use of the results of four parsers: a lexico-semantic named location parser, a rule-based street name parser, a rule-based building name parser, and a trained named entity recogniser. The training data consists of Twitter messages posted following the February 2011 earthquake in Christchurch, New Zealand. Note that in addition to identifying LEs, *GeoLocator* predicts the location of each expression, which we ignore in our evaluation.

Unlock Text

UnlockText developed by the Language Technology group at the School of Informatics of the University of Edinburgh, is a geoparser based on gazetteers such as GeoNames and Ordnance Survey Open Data. The geoparser identifies place references in NL using external gazetteers. As with *GeoLocator*, we ignore the predicted locations of each expression, and use it simply as a NE recogniser.

TwitterNLP

TwitterNLP is a multi-purpose NLP tool tuned specifically for processing Twitter messages [40], and based on labelled LDA [38]. In addition to the NLP tasks of POS tagging and chunk parsing, it is also capable of performing classification of ten categories of named entities. In this research, we use *TwitterNLP* with the option of POS and chunk tags to achieve higher quality. To evaluate the tool, we focus on named entities classified as GEO-LOC.

5. ANALYSIS

In this section, we first compare the relative prevalence of LEs in different social media sources, then carry out an empirical evaluation of the geoparsers. Finally, we perform error analysis of the different geoparsers to better understand the limitations of current methods and provide pointers for future work in this space.

5.1 Occurrence of LEs in the Manually-annotated Data

First, we analyse the relative occurrence of spatial expressions in the annotated datasets, by calculating the total number of tokens in each dataset, the raw count of LEs, and the proportion of tokens that are part of an LE. The results are shown in Table 1.

Wikipedia has the most LEs, with 6.2% of tokens being contained in LEs. **BNC** has the next highest prevalence of LEs, at around 69% that of **Wikipedia**, followed closely by **Blogs**. **Twitter-1/2** have around half the number of LEs again, followed by **Comments** and **Forums**.

Comments and **Forums** are the sparsest in terms of LE density per document, just below **Twitter-1/2**. The cause for this is that **Comments** documents tend to refer to the

Table 1: Composition of the datasets (“LE token %” = the percentage of tokens that are contained in LEs)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Sentences</th>
<th>Tokens</th>
<th>LEs</th>
<th>LE token %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter-1</td>
<td>500</td>
<td>4646</td>
<td>40</td>
<td>1.9</td>
</tr>
<tr>
<td>Twitter-2</td>
<td>500</td>
<td>4382</td>
<td>31</td>
<td>2.1</td>
</tr>
<tr>
<td>Comments</td>
<td>500</td>
<td>5219</td>
<td>29</td>
<td>1.7</td>
</tr>
<tr>
<td>Forums</td>
<td>500</td>
<td>7548</td>
<td>43</td>
<td>1.7</td>
</tr>
<tr>
<td>Blogs</td>
<td>500</td>
<td>9030</td>
<td>97</td>
<td>3.7</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>500</td>
<td>10632</td>
<td>183</td>
<td>6.2</td>
</tr>
<tr>
<td>BNC</td>
<td>500</td>
<td>9782</td>
<td>126</td>
<td>4.3</td>
</tr>
</tbody>
</table>

11 http://unlock.edina.ac.uk/texts/introduction
13 http://www.ordnancesurvey.co.uk/
that achieves competitive results over this dataset: StanfordNER, UnlockText and TwitterNLP achieve very low recall, and lower precision even than the other methods, culminating in a very low F-score. The reason for GeoLocator’s robustness over this data appears to be its heavy use of gazetteers, allowing it to deal with the highly localised, largely Melbourne-specific place references in TellUsWhere. In fact, the analysis of Tytk and Baldwin [43] would suggest that only 62.4% of the LEs in the data are “formal” (the remainder being informal LEs such as at home or at uni), making the result of $F = .46$ even more impressive.

5.4 Error Analysis

We next turn to error analysis of the respective geoparsers, to better understand the causes of error and identify possible areas for future research on robust LE identification. Below, we identify common causes of errors, and discuss their impact on the different geoparsers as well as possible solutions to each issue. In general, there is of course a lot of scope for system combination, particularly given the large spread of precision and recall between the different systems.

5.4.1 Improperly Capitalised Formal LEs

English NE recognisers trained on edited text make use of capitalisation information to detect NEs, but social media data is notoriously unreliable when it comes to capitalisation [40]. An example of an uncapitalised formal place reference is shown in Example (1) (from Twitter-2):

(1) are you on your way to leeds right now?

Here, only LER and GeoLocator are able to recognise the improperly capitalised LE, even though it is correctly spelt and a clear-cut case of an LE.

One possible solution to this issue is to add message-level features to capture the “informativeness” of capitalisation in the message (i.e. if the message is all lower-case, it suggests that the user may not be making use of capitalisation). TwitterNLP actually incorporates such a feature, but fails to recognise the NE in this case. Another possible solution would be to retrain all of the systems over case-folded training data, and remove all capitalisation from the input; this approach has been shown to be effective for POS tagging over Twitter data [11]. An alternative approach would be to attempt to normalise the casing in each message prior to geoparsing [26, 45].

5.4.2 Acronyms

Acronyms are widely used in social media messages, particularly in Twitter, due to the 140-character limit [1]. An example of such usage is presented in Example (2) (from Forums):

Table 2: Chunk-level precision (P), recall (R) and F-score (F) of the geoparsers over the manually-annotated subset of the different datasets (the best-performing system in each column is boldfaced)

<table>
<thead>
<tr>
<th>Geoparser</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>LER</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
</tr>
<tr>
<td>Re-StanfordNER</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
</tr>
<tr>
<td>GeoLocator</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
</tr>
<tr>
<td>StanfordNER</td>
<td>.54</td>
<td>.33</td>
<td>.41</td>
</tr>
<tr>
<td>UnlockText</td>
<td>.29</td>
<td>.27</td>
<td>.30</td>
</tr>
<tr>
<td>TwitterNLP</td>
<td>.48</td>
<td>.28</td>
<td>.35</td>
</tr>
</tbody>
</table>

Table 3: Performance on TellUsWhere

<table>
<thead>
<tr>
<th>Geoparser</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>LER</td>
<td>.77</td>
<td>.77</td>
<td>.77</td>
</tr>
<tr>
<td>Re-StanfordNER</td>
<td>.72</td>
<td>.52</td>
<td>.62</td>
</tr>
<tr>
<td>GeoLocator</td>
<td>.52</td>
<td>.41</td>
<td>.46</td>
</tr>
<tr>
<td>StanfordNER</td>
<td>.34</td>
<td>.02</td>
<td>.04</td>
</tr>
<tr>
<td>UnlockText</td>
<td>.33</td>
<td>.01</td>
<td>.03</td>
</tr>
<tr>
<td>TwitterNLP</td>
<td>.33</td>
<td>.03</td>
<td>.06</td>
</tr>
</tbody>
</table>
(2) Most people can only afford 1 hour a week indoor since the cost is high [in NYC] for indoor time.

Here, NYC stands for New York City, and the LE in NYC is only identified by LER, GeoLocator and TwitterNLP, despite it being a relatively common and indeed “official” acronym for the city.

Cases such as NYC can be handled through the use of gazetteers that include place name abbreviations, as can be seen by the success of GeoLocator to identify the mention. Deabbreviation [41, 34] may also be effective for dealing with acronyms, in particular when dealing with vernacular acronyms.

5.4.3 Informal LEs

While much work has been focused on the task of recognizing formal place references [48, 30, 40], people tend to use informal place references (e.g. my bedroom, home, the wall), particularly in social media posts. Example (3) from BLOGS contains two informal LEs:

(3) I’m eyeing a new one on ebay which is much narrower and will fit [in the corner] [between the bed and wall] inshaa Allah.

Only LER is able to correctly recognize the two LEs in this case. The other five geoparsers either incorrectly mark irrelevant words as LEs or are unable to identify any at all: UnlockText, for example, identifies Alah as an LE.

The approach taken by LER (training over data rich with informal LEs, the incorporation of semantic class features, etc.) was directly targeted at better capturing informal LEs, and appears to be successful in terms of its recall, but has obvious limitations in terms of precision. To better balance precision and recall, possible approaches are: (a) training over data that is more representative of the relative frequency of LEs in general text; and (b) using domain adaptation techniques [5, 10] to adapt models trained over TellUsWhere to other sources.

5.4.4 Complex LEs

A similar, yet more challenging, example is shown in Example (4) (from WIKIPEDIA), where we have complex LEs (in the English county of Suffolk) and also expressions which can potentially be locative but are used attributively (a small village) and complex prepositions (close to):

(4) Snape is a small village [in the English county of Suffolk], [on the River Alde] [close to Aldeburgh].

Here, LER and Re-StanfordNER correctly recognise the first two LEs, but aren’t able to identify the complex preposition, and incorrectly identify Snape and a small village as LEs, as does GeoLocator. StanfordNER, UnlockText and TwitterNLP, on the other hand, can detect the formal LEs Aldeburgh and River Alde but are unable to detect the complex LE in the English county of Suffolk, as the English county is not a NE.

Also relevant are coordinated LEs, possibly involving a mix of informal and formal place names, such as near Downtown, Chinatown and Comisky Park in Example (5) from BLOGS:

(5) I am located [in the South Side of Chicago], [near Downtown, Chinatown and Comisky Park]

Only LER and Re-StanfordNER are able to identify this LE; GeoLocator and StanfordNER are only capable of recognising Comisky Park and Chinatown respectively while UnlockText and TwitterNLP fail to spot any NEs.

The solution here would appear to be full syntactic parsing, which has been found to be very difficult for social media text [3], although very recent work on dependency parsing over social media text suggests that the task may be within reach of NLP [21].

5.4.5 Temporal Expressions

As pointed out by Khan [19], temporal expressions can be the cause of false positives for geoparsers. For example, in the moment in Example (6) (from BLOGS) is incorrectly analysed as an LE by both LER and Re-StanfordNER, and, in general for these two systems, informal temporal expressions are a common cause of false positives.

(6) Knowing what it means to live in the moment.

GeoLocator is less susceptible to false positives, but there are cases where it systematically mistakes temporal expressions for LEs, e.g. when the message starts with on, followed by a full-formed date (e.g. on 13 June 1986 or on June 16 2007).

One possible solution to this problem, at least for formal temporal expressions, would be to add temporal analysis to the processing pipeline [8]. Indeed, part of the reason the NE recognisers don’t suffer from this issue is that they tend to have an explicit representation of temporal expressions, which suppresses false positives.

6. CONCLUSIONS

In this research, we set out to investigate the distribution of LEs in various social media text types and evaluate the performance of six geoparsers at LE identification over such text. To this end, we manually annotated 3500 randomly-selected sentences from corpora collected from popular social media sites and a balanced corpus of English. Based on this data, we found that WIKIPEDIA is much richer in LEs than the other data sources, with around one token in 16 forming part of an LE. FORUMS had the smallest proportion of LEs, at around one quarter the frequency of WIKIPEDIA. We then empirically evaluated the geoparsers over this annotated data, and found a wide spread in terms of the precision and recall achieved by the different systems, with StanfordNER being the best system overall, at a modest F-score of around .31. As such, the identification of LEs is still very much an open research task. We further carried out error analysis to better understand the causes of errors, based on which, we suggested directions for future research in this area.

7. ACKNOWLEDGMENTS

We thank Yi Lin and Li Wang for their assistance with this research. This research was supported in part by funding from the Australian Research Council.

8. REFERENCES

