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11.  THE STABILITY OF SLOPES 

 

 

11.1 INTRODUCTION 

 

 The quantitative determination of the stability of slopes is necessary in a number of 

engineering activities, such as: 

 

(a) the design of earth dams and embankments, 

(b) the analysis of stability of natural slopes, 

(c) analysis of the stability of excavated slopes, 

(d) analysis of deepseated failure of foundations and retaining walls. 

 

 Quite a number of techniques are available for these analyses and in this chapter the 

more widely used techniques are discussed.  Extensive reviews of stability analyses have been 

provided by Chowdhury (1978) and by Schuster and Krizek (1978).  In order to provide some 

basic understanding of the nature of the calculations involved in slope stability analyses the case 

of stability of an infinitely long slope is initially introduced. 

 

11.2 FACTORS OF SAFETY 

 

 The factor of safety is commonly thought of as the ratio of the maximum load or stress 

that a soil can sustain to the actual load or stress that is applied.  Referring to Fig. 11.1 the factor 

of safety F, with respect to strength, may be expressed as follows: 

 

  F = 
τ ff
τ

 (11.1) 

 

where τff is the maximum shear stress that the soil can sustain at the value of normal stress of σn, 

τ is the actual shear stress applied to the soil. 

 

 Equation 11.1 may be expressed in a slightly different form as follows: 

 

  τ = 
c

F
 + 

σn tan φ

F
 (11.2) 

 

 Two other factors of safety which are occasionally used are the factor of safety with 

respect to cohesion, Fc, and the factor of safety with respect to friction, Fφ.  The factor of safety 

with respect to cohesion may be defined as the ratio between the actual cohesion and the cohesion 

required for stability when the frictional component of strength is fully mobilised. 
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 This may be expressed as follows: 

 

  τ = 
c

Fc
 + σn tan φ (11.3) 

 

 The factor of safety with respect to friction, Fφ, may be defined as the ratio of the tangent 

of the angle of shearing resistance of the soil to the tangent of the mobilised angle of shearing 

resistance of the soil when the cohesive component of strength is fully mobilised.  One way in 

which this may be expressed is as follows: 

 

  τ = c + 
σn tan φ

Fφ
 (11.4) 

 

 A further factor of safety which is sometimes used is FH, the factor of safety with respect 

to height.  This is defined as the ratio between the maximum height of a slope to the actual height 

of a slope and may be expressed as follows: 

 

  FH = 
Hmax

H
 (11.5) 

 

 The factors of safety Fc, Fφ, FH are only occasionally used in slope stability analyses.  

The factor of safety with respect to strength (F) as expressed in equation (11.2), is the one which 

is almost universally used in calculations. 

 

 

 

  Fig. 11.1  Definition Diagram for Factor of Safety 
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Fig. 11.2 Culmann Aproach to Slope Stability 

 

11.3 CULMANN METHOD 

 

 A technique for the calculation of slope stability based upon the assumption of a plane 

surface of failure through the toe of the slope has been proposed by Culmann (see Taylor, 1948).  

In Fig. 11.2 the line QS represents a plane potential failure surface.  The forces acting on the 

wedge QRS are indicated on the figure as the weight of the wedge W, the mobilised cohesive 

force Cm and the mobilised frictional force P.  φm is the mobilised angle of shearing resistance.  

These three forces are placed in equilibrium to yield the following expression: 

 

 
cm

ρgH
 = 

cos (i + φm - 2θ) - cos (i - φm)

4 cos φm sin i
 (11.6) 

 

where the symbols are indicated in Fig. 11.2.  The term on the left hand side of this equation is 

known as the stability number.  Since QS is an arbitrarily selected trial plane inclined at an angle 

θ to the horizontal, it is necessary to find the most dangerous plane along which sliding is most 

likely.  This is done by setting the first derivative with respect to θ of the expression above equal 

to zero.  This results in determination of the critical inclination θcrit given by the following 

expression: 

 

  θcrit = 
1

2
 (i + φm) 

Substitution of θcrit into equation (11.6) yields the maximum value of the stability number, 
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cm

ρgH
 = 

1 - cos (i - φm)

4 cos φm sin i
 (11.7) 

 

 The factor of safety with respect to strength may be determined from equation (11.7) by a 

trial and error process similar to that described in section 11.7. 

 

 This method of slope stability analysis is not widely used since it has been found that 

plane surfaces of sliding are observed only with very steep slopes, and for relatively flat slopes the 

surfaces of sliding are almost always curved. 

 

 EXAMPLE 
 

 Referring to Fig. 4.2 

 

 H = 16m 

 tan i = 2/3 

 tan θ = 1/3 

 c = 10kPa 

 φ = 35˚ 

 

and the weight of the soil wedge QRS is 3.5MN/m.  Calculate the factor of safety (F) against 

sliding along the potential failure surface QS. 

 

 For this problem, equation (11.7) is not applicable since the angle (θ) has been specified 

and this may not necessarily be equal to the critical value (θcrit).  Equation (11.6) can be used and 

substitution into this equation of the given information yields the following expression 

 

  
cm

291.67
 = 

cos (φm - 3.18˚) - cos (33.69˚ - φm)

2.219 cos φm
 (11.8) 

 

If equation (11.2) is rewritten as 

 

  τ = cm + σn tan φm 

 

it is seen that the factor of safety (F) may be expressed as 

 

  F = c/cm = tan φ/tan φm (11.9) 

 

By using equations (11.7) and (11.9) and using successive approximation the values of φm and cm 

may be determined. 
 

  φm = 15.30˚ and cm = 3.91 kPa 
 

which leads to a factor of safety (F) of 2.56. 
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 An alternative and possibly simpler technique that may be used for this problem is to 

express the factor of safety (F) in terms of forces instead of stresses. 

 

 F = 
maximum forces tending to resist sliding down the plane QS

forces tending to cause sliding down the plane QS
 

 

  = 
C + N tan φ

T
                                                                            (11.10) 

 

where  C = cohesive force acting on plane QS 

 

  = c x length QS x 1 

 

 N = resolved part of W acting normal to plane QS 

 

  = W cos θ 

 

 T = resolved part of W acting down the plane QS 

 

  = W sin θ 

 

 ∴ F  = 
10 x 50.6 x 1 + 3500 x 0.949 x 0.700

3500 x 0.316
 

 

  = 2.56 

 

11.4 THE φφφφ = 0 METHOD OF SLOPE STABILITY ANALYSIS 

 

 Since the surfaces of sliding for many slope failures have been observed to follow 

approximately the arc of a circle, most of the commonly used analytical techniques for calculation 

of slope stability involve the assumption of a circular failure arc.  Most of the techniques 

discussed in this chapter are based upon this assumption.  For composite failure surfaces, analyses 

have been developed by Morgenstern and Price (1965) and by Janbu (1973). 

 

 The problem is illustrated in the upper part of Fig. 11.3.  The forces acting on the sliding 

wedge of soil are the weight W, normal stresses which act around the failure surface and resisting 

shear stresses τ which also act around the failure surface.  The factor of safety F may be defined 

for this situation as follows: 
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 F = 
sum of moments of maximum resisting forces

sum of moments of moving forces
 

  = 
τmax x arc length x R

Wd
  (11.11) 

 

 

In this equation the moments have been taken about the centre of the circle, part of which forms 

the failure surface so that the normal stresses do not enter into the calculation. 

 

 It will be noted that in equation (11.11) the maximum shear stress (τmax) has been 

assumed to be a constant.  If this shear stress varies with the position along the sliding surface, it 

would be necessary to integrate the shear stress around the arc for use in equation (11.11). 

 

 In the special case where the slope is formed of a saturated clay the angle of shearing 

resistance (φu) will be zero for the short term case.  The maximum resisting shear stress around 

the failure arc will then be equal to the undrained cohesion (cu).  If the undrained cohesion is a 

constant around the failure surface then equation (11.11) may be rewritten as follows: 

 

  F = 
cu R x arc length

Wd
   (4.12) 

 

This total stress analysis is commonly referred to as the φu = 0 method.  This method has been 

widely and successfully used in practice for the evaluation of the short term stability of saturated 

clay slopes.  For example, Ireland (1954) has demonstrated the validity of this technique in the 

analysis of the short term stability of a slope excavated in saturated soil. 

 

 For the case where the angle of shearing resistance is not equal to zero the situation is not 

as straightforward as described above because of the necessity to determine the frictional 

component of the resisting shear stresses.  For this case the forces acting on the block are shown 

in the lower part of Fig. 11.3.  These forces (derived from effective stresses) are: 

 

(a) the mobilised cohesion force (C'm), for which the line of action is known and the 

magnitude of which can be expressed in terms of the effective cohesion (c') and the 

factor of safety (F), 

 

(b) the effective normal force (N'), the magnitude and line of action of which are unknown 

since it depends upon the distribution of the normal effective stress around the circular 

arc, 
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Fig. 11.3  Forces Involved in Calculations for Stability of Slopes 

 

 

 

                          

 

 

Fig. 11.4 



11-8 

(c) Rφ which is the frictional force acting around the arc.  This force is normal to the force 

N', has a magnitude equal to N' tan φ'/F where φ' is the effective angle of shearing 

resistance, but the line of action of this force Rφ is unknown.  U, the pore pressure force, 

is known from seepage or other considerations. 

 

 This means that there are four unknowns altogether, the factor of safety F, the magnitude 

of N', the direction of N', and rφ to locate the line of action of the frictional force Rφ.  Since there 

are only three equations of static equilibrium, this problem is indeterminate to the first degree.  In 

order to solve the problem some assumption has to be made to remove one of the unknowns.  One 

commonly made assumption involves the distribution of the normal effective stress around the 

failure arc.  This will enable the direction of the effective normal force N' to be evaluated. 

 

 EXAMPLE 

 

 Evaluate the short term stability for the dam shown in Fig. 11.4.  The embankment 

consists of a saturated soil for which the angle of shearing resistance φu = 0 and the undrained 

cohesion cu = 70kN/m2.  The calculation is to be carried out for the reservoir depth of 18m and 

for the case where the reservoir has been completely emptied. 

 

 In the calculations, the forces Ww and U will have moments about the centre of the circle 

and therefore must be evaluated. 

 

Evaluating the forces (per m) acting on the block: 

 

W = 720 x 9.81 = 7060kN = 7.06MN 

 

Ww = 
1

2 x 36 x 18 x 1.0 x 9.81 = 3180kN = 3.18MN 

 

U = 
1

2 x 18 x 1.0 x 9.81 x 18 = 1590kN = 1.59MN 

 

maximum cohesive force C = cu x arc length 

 

    = 70 x 41.2 x 1.32 

 

    = 3.8MN 

 

When moments are taken about the centre of the circle, there will be no moments due to the 

normal stresses and pore pressures acting around the arc; so these stresses can be ignored. 
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Factor of Safety F = 
Σ moments of maximum resisting forces

Σ moments of moving forces
 

   = 
3.8 x 41.2

7.06 x 14.8 + 3.18 x 2 - 1.59 x 34
 

   = 
156.6

104.5 + 6.4 - 54.0
 

   = 2.75 

 

On occasions the force U is considered as a resisting force, in which case, 

 

  F = 
156.6 + 54.0

104.5 + 6.4
 

   = 1.90 

 

This illustrates that a different answer can be obtained depending upon the precise definition of 

the factor of safety.  The former calculation yielding a value of F of 2.75 is the more usual one 

that is performed. 

 

When the water is removed, 

 

  F = 
156.6

104.5
 

   = 1.50 

 

so the slope will still be stable. 

 

 

 

11.5 ORDINARY METHOD OF SLICES 

 

 In cases where the effective angle of shearing resistance is not constant over the failure 

surface, such as in zoned earth dams where the failure surface might pass through several 

different materials, the friction circle method cannot be used.  A 'slices' method, is more 

appropriate in this situation.  With a method of slices the sliding wedge PQS as shown in  

Fig. 11.5 is subdivided  
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Fig. 11.5 Illustration of Ordinary Method of Slices 

 

vertically into slices.  The factor of safety is determined by examining the contributions to the 

moving and resisting forces provided by each slice. 

 

 The forces acting on a typical slice are shown in Fig. 11.5.  These forces are the weight 

of the slice W, the normal and tangential forces acting on the lower boundary of the slice and the 

side forces indicated by X and E which act on the sides of the slice.  With the Ordinary Method of 

Slices sometimes known as the Fellenius Method or the Swedish Circle Method (Fellenius 

(1936), and May and Brahtz (1936)), a number of simplifying assumptions are made in order to 

render the problem determinate. 

 

Firstly it is assumed that the side forces X and E may be neglected and secondly, that the normal 

force N, may be determined simply by resolving the weight W of the slice in a direction normal to 

the arc, at the mid point of the slice, as shown in the lower part of Fig. 11.5. 

 

  N = W cos α 

 

where α is the angle of inclination of the potential failure arc to the horizontal at the mid point of 

the slice 
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Effective normal force N'  = N - U 

 

   = W cos α - u ∆X sec α 

 

total maximum resisting force Tmax = Σ(c' + σ' tan φ')∆X sec α 

 

   = Σ (c' ∆X sec α + N' tan φ') 

 

   = Σ (c' ∆X sec α + tan φ' (W cos α - u∆X sec α)) 

 

Factor of Safety = 
sum of moments of maximum resisting forces

sum of moments of moving forces
 

 

  = 
Σ Tmax R

Σ Wd
 

 

  = 
Σ Tmax R

Σ W R sin α
 

 

  = 
Σ Tmax

Σ W sin α
 

 

  = 
Σ maximum resisting forces around the arc

Σ moving forces around the arc
 

 

          F = 
Σ (c' ∆X sec α + tan φ' (W cos α - u ∆X sec α))

Σ W sin α
 

 

     (11.13) 

 

 This procedure would then be followed for a number of trial failure surfaces until the 

lowest factor of safety is found. 

 

 Some difficulties may be experienced with equation (11.13).  Negative values of the 

effective normal force N' may be encountered for large values of the angle α when pore pressures 

are present.  This method is widely used by dam constructing authorities even though it has been 

demonstrated by Whitman and Moore (1963) and this method of analysis is unsound and yields 

factors of safety which are smaller than the correct values. 
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EXAMPLE 

 

 Using the Ordinary Method of Slices, determine the factor of safety for the slope 

undergoing seepage and for the failure surface shown in Fig. 11.6.  The soil properties are as 

follows: 

 

  total density = 2Mg/m3 

  effective cohesion c' = 30kN/m2 

  effective friction angle φ' = 30˚ 

 

 

 

 

 

 

Fig. 11.6 
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Fig. 11.7  Stresses and Forces Acting on a Typical Slice 

 

 

 The sliding wedge has been subdivided into six slices as shown in Fig. 11.7.  The 

weights of the slices have been determined and the average pore pressures acting on the bases of 

the slices have been determined from the flownet which is drawn in Fig. 11.6.  The effective 

normal force N' may be determined either graphically as shown in Fig. 11.5 or mathematically as 

shown in Table 11.1.  The remaining calculations for this problem are set out in Table 11.1. 

 

 

 

11.6 BISHOP METHOD OF SLICES 
 

 A slices method of slope stability analysis which involves a different procedure and 

gives different answers compared with the Ordinary Method of Slices has been proposed by 

Bishop (1955).  With this method, the analysis is carried out in terms of stresses instead of forces 

which were used with the Ordinary Method of Slices.  The stresses and forces which act on a 

typical slice and which are taken into account in the analysis are shown in Fig. 11.8.  The major 

difference between the Bishop Method and the Ordinary Method of Slices is that resolution of 

forces takes place  
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Fig. 11.8  Stresses and Forces Acting on a Typical Slice 

 

 

 

TABLE 11.1 

 

CALCULATIONS FOR ORDINARY METHOD OF SLICES 

 

 

Slice Slice 

Width 

(∆x) 

m 

Sin αααα Weight 

of Slice 

(W) 

kN 

Pore 

Pressure 

Force (U) 

kN 

W sin αααα 

kN 

W cos αααα 

(N) 

kN 

N - U 

(N') 

kN 

N' tan φφφφ' 

kN 

c' ∆X 

sec αααα 

kN 

1 

2 

3 

4 

5 

6 

8 

8 

8 

8 

8 

6 

- .111 

.049 

.242 

.436 

.630 

.775 

450 

1118 

1590 

1742 

1590 

570 

0 

150 

370 

450 

340 

20 

- 50 

54 

384 

760 

1000 

442 

447 

1117 

1542 

1568 

1235 

360 

447 

967 

1172 

1118 

895 

340 

258 

558 

676 

645 

516 

196 

243 

243 

246 

270 

318 

315 

Totals     2590   2849 1635 
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                                                 F     =     
Σ (c' ∆X sec α + N' tan φ')

S W sin α
 

 

                                                         =   
1635 + 2849

2590
 

 

                                                          =  1.73 

 

in the vertical direction instead of a direction normal to the arc (a direction which is different for 

each slice).  This means that with the Bishop Method the side forces E acting on the sides of the 

slices will not enter into the analysis.  In the simplified Bishop Method which is described here, it 

is assumed that the shear side forces X may be neglected without introducing serious error into 

the analysis.  A more rigorous method in which the side forces X are taken into account is found 

to yield answers only slightly different from that obtained from the simplified Bishop Method.  

The simplified analysis is as follows: 

 

  τ = 
1

F
 (c' + σ' tan φ') 

 

To find σ' resolve forces in the vertical direction to obtain 

 

 

  W - 
1

F
 (c' + σ' tan φ') ∆X tan α - (σ' + u)∆X = 0 

 

 

  ∴ σ' = 

W - u ∆X - 
1

F
 c' ∆X tan α

∆X (1 +(tan ø' tan α)/F)
  

          

 

 Now F  = 
Σ maximum resisting forces around arc

Σ moving forces around arc
 

 

 

   = 
Σ (c' + σ' tan φ') ∆X sec α

Σ W sin α
 

 

 

   = 

[ ]

∑

∑








∆−+∆

α

φ
α

sin

1
tan)( ''

W

M
XuWXc

 (11.14) 
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 where Mα = cos α + 
sin α tan φ'

F
 (4.15) 

 

 The factor of safety F appears on both sides of equation (11.14).  Fortunately the solution 

converges rapidly, only two or three trials for F being necessary in solving the equation.  A plot of 

Mα as given by equation (11.15) is presented in Fig. 11.9 to assist in the solution of equation 

(11.14).   

 

 

Fig. 11.9  Graph for Evaluating Mαααα 

 

 

 To facilitate the analyses of slope stability for a large number of potential failure surfaces 

and for a variety of conditions, use is made of computer programs. 

 

 The Bishop Method yields factors of safety which are higher than those obtained with the 

Ordinary Method of Slices.  Further, the two methods do not lead to the same critical circle.  It 

has also been found that the disagreement increases as the central angle of the critical circle 

increases.  Analyses by more refined methods involving consideration of the forces acting on the 

sides of slices show that the simplified Bishop Method yields answers for factors of safety which 

are very close to the correct answer. 
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EXAMPLE 

 

 Using the simplified Bishop Method, determine the factor of safety for the problem 

illustrated in Figs. 11.6 and 11.7.  This is the same problem that has been solved in this chapter by 

means of friction circle method and by means of the Ordinary Method of Slices. 

 

The sliding wedge has been subdivided into the same six slices that were used for the solution by 

means of the Ordinary Method of Slices.  The evaluation of the factor of safety by means of the 

Bishop Method is carried out in tabular form as shown in Table 11.2. 

 

 

 

TABLE 11.2 

  CALCULATIONS FOR BISHOP METHOD OF SLICES 

 

                               

 

 

                                  F(1)       =       
4852

2590
   =   1.88 

 

  

1 

 

2 

 

3 

 

4 

 

5 

              

              6 

 

 

 

 

Slice 

 

Slice 

Width  

 

Weight 

of Slice 

(W) 

 

Pore 

Pressure 

u  

 

W sin αααα 

 

c ∆X +  

(W - u 

∆X) 

 

Mαααα 

 

col. (5)

col. (6)
 - kN 

 (∆X) 

m 

kN kN/m2 kN tan φφφφ') kN trial (1) 

F = 2.0 

trial (2) 

F = 1.85 

trial (1) 

F = 2.0 

trial (2) 

F = 1.85 

1 

2 

3 

4 

5 

6 

8 

8 

8 

8 

8 

6 

450 

1118 

1590 

1742 

1590 

570 

0 

18.7 

45.1 

50.0 

32.4 

2.0 

-50 

54 

384 

760 

1000 

442 

500 

799 

950 

1015 

1010 

502 

.96 

1.01 

1.03 

1.02 

.97 

.86 

.96 

1.01 

1.03 

1.03 

.98 

.87 

520 

790 

920 

995 

1042 

585 

520 

790 

920 

985 

1030 

576 

 

Totals    2590    4852 4821 



11-18 

                                   F(2)      =        
4821

2590
   =  1.86 

 

                                    ∴  Factor of Safety  =  1.86 

 

 

 

Fig. 11.10 Variation of Safety Factor with Time for Soil Beneath a Fill 

(After Bishop and Bjerrum, 1960) 

 

11.7 SHORT TERM AND LONG TERM STABILITY 

 

 In carrying our slope stability analyses for design purposes it is wise to check both short 

term and long term conditions.  For the short term conditions an effective stress analysis could be 

used, but this will require an estimate of the pore pressures that will be developed.  Alternatively a 

total stress analysis could be used, but this would only be applicable in cases where the pore 

pressure changes are entirely dependent upon stress changes.  For long term conditions an 

effective stress analysis is normally carried out, since the pore pressures are usually independent 

of stress changes.  For this analysis estimates of the pore pressures, for example, by means of 

flownets, are required. 

 

 In examining the stability of a foundation soil following embankment construction, the 

short term case is often more critical that the long term case.  As discussed by Bishop and 

Bjerrum (1960), this is illustrated in Fig. 11.10 with an examination of the stress changes at a 

typical point P beneath the embankment. 
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 In this case the pore pressure at point P at the end of construction is determined largely 

by the stress changes produced by the embankment.  The pore pressure for the long term case, on 

the other hand, is determined by the ground water conditions.  In this idealized example the factor 

of safety is considered as the ratio between the soil strength and the applied shear stress.  It is seen 

that in this case the minimum factor of safety is obtained at the end of construction, that is, for 

short term conditions.  As time elapses and the construction pore pressure dissipate the factor of 

safety increases as illustrated in the sketch. 

 

 On the other hand Fig. 11.11 illustrates the stress changes at a typical point P beneath an 

excavated slope.  Here the pore pressures at the end of excavation are determined by the stress 

changes produced by the process of excavation.  The long term pore pressures, as in the previous 

example are determined by the ground water conditions.  In this case, it is seen that the soil 

strength decreases with time and the factor of safety also decreases with time, which makes the 

long term stability condition the critical one to be examined. 

 

 

Fig. 11.11  Variation of Safety Factor with Time for Excavation of a Slope 

(after Bishop & Bjerrum, 1960) 
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