
Heterogeneous Task Co-location in Containerized

Cloud Computing Environments

Zhiheng Zhong, Jiabo He, Maria A. Rodriguez, Sarah Erfani, Ramamohanarao Kotagiri, and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory

School of Computing and Information Systems

The University of Melbourne, Australia

Abstract—Although cloud computing became a mainstream
industrial computing paradigm, low resource utilization remains
a common problem that most warehouse-scale datacenters suffer
from. This leads to a significant waste of hardware resources,
infrastructure investment, and energy consumption. As the diver-
sity in application workloads grows into an essential characteris-
tic in modern datacenters, task co-location of different workloads
to the same compute cluster has gained immense popularity
as a heuristic solution for resource utilization optimization.
Although the existing co-location methodologies manage to im-
prove resource efficiency to a certain degree, application QoS
is usually sacrificed as a trade-off when dealing with resource
interference between different applications. This paper proposes
a containerized task co-location (CTCL) scheduler to improve
resource utilization and minimize task eviction rate. Our CTCL
scheduler (1) applies an elastic task co-location strategy to
improve resource utilization; and (2) supports a dynamic task
rescheduling mechanism to prevent severe QoS degradation
from frequent task evictions. We evaluate our approach in
terms of resource efficiency and rescheduling cost through the
ContainerCloudSim simulator. Our experiments with the Alibaba
2018 workload traces demonstrate that CTCL could improve
overall resource efficiency and reduce rescheduling rate by 38%
and 99% respectively.

Index Terms—Cluster Management, Container Orchestration,
Resource Co-location, Resource Heterogeneity, Workload Char-
acterization

I. INTRODUCTION

Cloud computing has become a common industrial com-

puting paradigm, providing convenient service delivery to end-

users with quality assurance and cost-efficiency. However, low

resource utilization appears as a critical concern in resource ef-

ficiency and energy consumption as cloud datacenters grow in

scale [1]. Earlier studies have observed that mainstream Cloud

Service Providers such as Google, Amazon, and Alibaba, are

commonly suffering from poor resource utilization of 40%

or under [2]–[4]. With the diversity in application workloads

growing into a key feature in modern datacenters, task co-

location of different workloads on shared compute resources

enjoys a significant rise in popularity for resource utilization

improvement and energy saving.

Within cloud computing environments, software systems

such as YARN [5] and Swarm [6] support the resource

management and job scheduling of compute clusters formed

using a set of cloud resources that are dynamically provisioned

for application deployments. Unlike traditional cluster man-

agement methodologies where different types of applications

are assigned to strictly separate compute clusters, modern

Cloud-based Cluster Management Systems (CMS) manage to

co-locate tasks from workloads to the same cluster for better

resource efficiency and cost saving. CMS drives the online

task scheduling process, including task placement, resource

allocation, performance monitoring, and task migration. Each

incoming task might differ in multi-dimensional resource

demands (e.g., CPU, memory, storage, network bandwidth,

etc.). A representative heterogeneous workload in large-scale

CMS is usually divided into two classes [4]: (1) long-running,

latency-critical, and user-facing applications prioritized with

QoS (Quality of Service) and low-latency assurance; (2) batch-

processing jobs assigned to the resource slack left by long-

running applications through co-location. For instance, Google

Borg manages to save 20-30% physical resources through cell

sharing [7], where the idle resources initially assigned to long-

running services could be reclaimed for task allocation of

lower-priority batch jobs.

However, the performance interference between different

applications brought by co-location techniques is still a crucial

bottleneck of resource efficiency and QoS assurance. The

more heterogeneous applications are allocated to the same

compute node, the more each application will suffer from

resource contention and performance interference from each

other [8]. The highly dynamic and uncertain nature of hetero-

geneous workloads significantly complicates the orchestration

process in terms of balancing the trade-off between resource

utilization and QoS requirements. Whenever the prioritized

long-running applications experience any critical workload

spikes, the co-located batch jobs could be potentially differed,

evicted, or rescheduled as a victim of performance interfer-

ence and resource overloading caused by poor co-location

decisions. Though task eviction and rescheduling, where tasks

are terminated and moved back to the application queue, are

designed as a complementary mechanism to alleviate potential

performance interference, QoS degradation in lower-priory

applications remains an inevitable side effect. To minimize

rescheduling rate, CMS should improve the efficiency and

accuracy of initial task placement decisions. Detailed workload

behaviours of co-located applications should be evaluated

during task allocation.

To address these issues, container technologies are widely

accepted in task co-location with strong resource and perfor-

mance isolation. As a lightweight application virtualization

79

2020 IEEE 23rd International Symposium on Real-Time Distributed Computing (ISORC)

2375-5261/20/$31.00 ©2020 IEEE
DOI 10.1109/ISORC49007.2020.00021

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2021 at 02:55:29 UTC from IEEE Xplore. Restrictions apply.

technology, containers provide a logical packing mechanism

for application abstraction that packages software and de-

pendencies together. Compared to virtual machines (VM)

which support resource virtualization at the hardware level,

containers offer a virtual runtime environment based on a

single operating system (OS) kernel and emulate an OS instead

of booting an entire OS for each application. Hence, container-

ized compute clusters enjoy higher environmental consistency,

resource isolation, portability, and scalability in contrast with

VM-based clusters [9]. These features lead to the continuously

rising popularity and adoption of this technology. For example,

Borg develops its co-location strategies through leveraging

resource isolation offered by Linux cgroups-based containers

[10], while Alibaba designs a two-level CMS architecture on

top of Fuxi and Sigma schedulers under a semi-containerized

environment [11].

For further improvement of the task co-location process in

an interference-aware manner, workload characterization of

containerized applications plays an important role in identify-

ing their resource consumption patterns and thereby avoiding

potential interference between applications by making better

task placement decisions [12]. Tasks with similar resource

usage patterns (e.g., CPU and memory) could be classified

into the same class through an off-the-shelf algorithm such as

K-means++ [13]. We aim to apply workload characterization

techniques under the context of online task scheduling without

a priori knowledge of incoming tasks.

To ensure application QoS requirements, CMS should be

aware of workload behaviours before making co-location

decisions. Hence, it is necessary to build a proper workload

characterization solution that could accurately predict the

resource usage of higher-priority applications and accordingly

manage the co-location of batch jobs. As for task rescheduling,

CMS should also dynamically adjust resource configurations

according to runtime performance metrics instead of assuming

a static resource demand and task duration. To meet these

requirements, we propose the containerized task co-location

(CTCL) scheduler and make the following two key contribu-

tions:

1) It applies an elastic task co-location strategy to improve

resource utilization and alleviate performance interfer-

ence;

2) It supports a dynamic task rescheduling mechanism

to prevent severe QoS degradation from frequent task

evictions.

The rest of the paper is organized as follows: Section

II introduces the background and related work of workload

characterization and task co-location in modern CMS. Section

III formalizes the problem definitions, while the orchestration

algorithms in CTCL are described in Section IV. In Section

V, we present the experimental configurations and evaluation

results of the proposed approach. Finally, conclusions and

future work are given in Section VI.

II. BACKGROUND AND RELATED WORK

A. Workload Characterization

Experience studies: Considering the diversity and dynam-

icity of heterogeneous workloads undertaken by modern data-

centers, workload characterization is an essential step for CMS

to optimize initial task placement decisions and dynamically

adjust configurations at runtime for improving resource utiliza-

tion [14]. Previous studies manage to characterize workload

behaviours at the infrastructure level in different ways, such

as building resource usage patterns for VMs/physical machines

[15]–[17]. Within a compute cluster deployed with heteroge-

neous workloads that differ in behaviour patterns, machine-

level resource utilization profiling could be limited in accuracy.

Continuous monitoring of application-level metrics should

be considered for further behaviour identification and QoS

management [18]. There are also multiple works focusing on

workload modeling at a single-application level using various

approaches such as Signal Processing [19], Neural Network,

and Linear Regression [20]. However, their solutions are built

on the assumption of a priori knowledge of application models

and cannot manage the scale of workloads in existing cloud

datacenters, which need to accommodate tens of thousands of

potentially unknown applications on a daily basis.

Cluster trace analysis: To better understand the nature

and characteristics of workloads from real cloud environments,

cluster traces from leading Cloud Service Providers have been

analyzed in various studies. Google cluster traces have been

widely referenced for analysis of application-level workload

behaviours in warehouse-scale datacenters, regarding task

placement constraint, resource demand, priority, lifetime, and

heterogeneity of server configurations, etc [21]–[23]. Further-

more, there have been studies with reference to heterogeneous

workload categorization and behaviour identification through

many algorithms, among which K-means is popular for an-

alyzing workload characteristics and task classification [12].

However, most of them only apply K-means for workload

characterization based on offline analysis. In order to manage

the container orchestration process, it is imperative to update

workload characterization for containerized applications dy-

namically and accurately. In this work, we utilize K-means++

for task classification, since it improves both accuracy and

speed compared with K-means [13], [24]. Although there

are some improvements for K-means++, it owns competitive

performance with most of its derivatives [25].

B. Task Co-location in Cloud-based Cluster Management Sys-

tems

As summarized in Table I, a series of works have been

proposed to manage the co-location process of heterogeneous

workloads in modern CMS. A centralized scheduler model

is commonly utilized by monolithic CMS to manage task

assignment and rescheduling decisions such as Borg [7]. Borg

leverages the resource isolation provided by containerized ap-

plications to minimize performance interference. By contrast,

Mesos builds a two-level CMS architecture that supports re-

source sharing across different frameworks through negotiation

80

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2021 at 02:55:29 UTC from IEEE Xplore. Restrictions apply.

TABLE I
A COMPARISON OF RELATED WORKS WITH OURS.

CMS Policy Preemption Rescheduling
Resource

Reclamation
Workload

Characterization
Load

Prediction
Heterogeneous

Autoscaling

Borg [7] � � � � � �

Mesos [26] � � � � � �

Omega [27] � � � � � �

Apollo [28] � � � � � �

Alibaba [4] � � � � � �

Kubernetes [18] � � � � � �

Paragon [29] � � � � � �

CTCL � � � � � �

between framework-specific schedulers and the master process

[26]. Omega manages to minimize task scheduling time by

maintaining multiple shared-state schedulers, each of which

keeps a global view of the underlying compute cluster [27].

Similarly, Apollo supports distributed schedulers in a loosely

coordinated manner [28]. Alibaba proposes a hybrid CMS

architecture of two levels and shared-state scheduling, where

Sigma [4] handles containerized long-running services and

Fuxi [30] allocates non-containerized batch jobs directly on

the physical machine layer. Besides, a global controller tracks

the status of the whole cluster and coordinates co-location

decisions.

These state-of-the-art works commonly adopt heuristic

methods in task scheduling to improve resource utilization,

such as overprovisioning, overbooking, and overcommitment

[31], without a robust workload characterization solution. This

usually limits the accuracy of co-location decisions, due to lack

of consideration of detailed workload behaviours at runtime.

Task preemption and rescheduling are thereby utilized as

complementary mechanisms to alleviate potential performance

interference from poor co-location arrangements. Nonetheless,

most of the existing rescheduling algorithms are implemented

under the assumption of a static resource demand, which

might lead to task misplacement and severe QoS degradation.

Frequent reallocation of lower-priority tasks has become a

critical threat in QoS management. The quality of the initial

task placement during co-location could significantly impact

resource utilization, rescheduling costs, and overall system

performance.

To address these issues, Delimitrou et al. [29] introduced

the Paragon QoS-aware scheduler by applying an offline

training algorithm for workload classification based on his-

torical log analysis at large scale. However, their 1-minute

profiling mechanism can not accurately identify workloads

with significant performance deviations over long periods of

time, which may lead to sub-optimal scheduling decisions.

Moreover, Paragon does not consider latency-critical or multi-

priority applications in its workload scenarios. In other words,

it is not capable of providing QoS assurance to higher-priority

applications against unexpected performance interference. To

avoid inefficient resource allocation caused by inaccurate ini-

tial task configuration, Kubernetes [18] supports dynamic task

configuration adjustment through vertical autoscaling, task

redeployment, and on-demand node provisioning. However,

not all types of workloads could tolerate redeployment. In this

work, we propose an interference-aware scheduler for efficient

task co-location with a dynamic rescheduling algorithm with-

out assuming a fixed resource demand or task duration.

III. PROBLEM FORMALIZATION

This section enumerates our assumptions for container-

based applications and resources, followed by the problem

definition.

A. Assumptions

CTCL acts as a CMS scheduler of a containerized compute

cluster like YARN [5] or SWARM [6], deployed on top of

physical machines, where containerized applications could

be submitted by multiple users simultaneously with specific

configurations of requested resources.

Workload: We consider a heterogeneous workload model

mainly consisting of the following two types of containerized

applications:

1) Long-running services that undertake latency-critical

requests and require high availability, QoS assurance,

and low latency, such as search engines, web servers,

and databases. These jobs usually request/reserve more

compute resources than they actually need in case of

any unexpected workload spikes.

2) Transient batch jobs that have a limited lifetime with

looser performance requirements. These jobs are con-

figured with lower priorities in task scheduling and are

more tolerant to short-term performance fluctuations.

The actual resource utilization of batch jobs could

potentially exceed its requested volume at runtime [4].

The two most typical application workloads referenced in

the existing CMS are originally from Borg and Alibaba. Our

motivation is to build a robust task scheduling mechanism in

terms of resource utilization optimization and task reschedul-

ing rate reduction.

Resource: Containerized applications are assumed to be

deployed directly on physical machines within the compute

cluster, which saves the platform virtualization cost compared

with VM-based CMS solutions.

1) The datacenter provides heterogeneous physical ma-

chines that differ in multiple dimensions: sizes (CPU,

81

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2021 at 02:55:29 UTC from IEEE Xplore. Restrictions apply.

RAM, disk), processor type, performance, and capabil-

ities. These compute nodes share the same geographic

location and datacenter network, while the internal com-

munication cost between nodes is low.

2) An application could have different execution times and

performance on different machine types. For instance,

a memory-intensive task could run faster in a high-

memory machine, while a network-intensive task may

have specific requirements regarding bandwidth and

network latency.

3) Compute instances could be scaled up/down through

autoscaling of extra instances and brownout techniques

[32], [33]. It may take a few minutes to boot up a new

instance and merge it into the current cluster. Such a

time gap is referenced as instance acquisition lag in our

work [34], [35]. By contrast, scaling down a running

instance only takes a few seconds.

B. Problem Definition

To manage the task co-location process of heterogeneous

workloads in an interference-aware manner, it is a basic

requirement to rapidly and precisely categorize incoming

applications based on their resource consumption (e.g., CPU

and memory). In such a way, we can evaluate potential per-

formance interference between co-located applications. There-

fore, our primary goal is to implement an online task co-

location algorithm for warehouse-scale datacenters without a

priori information of submitted tasks.

Workload characterization: Instead of modeling each

incoming workload through long-term behaviour monitor-

ing, our approach starts from characterization of historical

workload traces in the compute cluster. The new workload

model could thereby be expressed as a combination of known

application classes. The K-means++ algorithm [13] is adopted

for task classification among the historical traces, with ref-

erence to workload dimensions such as CPU usage, memory

consumption, disk storage, and network bandwidth.

Behaviour identification: For each newly deployed task

S, its behaviour pattern B is identified through empirical

observation of its resource utilization trace within a config-

urable period p. We calculate the distances between every

center given by K-means++ algorithm and the new utilization

trace of the underlying task in p, while the closest center

is regarded as its class for workload characterization. This

process has time complexity of O(dk). The resource utilization

is then accordingly estimated based on B at runtime. The

new task traces will be periodically integrated into the dataset

for reclustering by K-means++ in a cycle l, with the existing

centers as initial ones. The time overhead of reclustering is

still O(ndki), where n is the size of the new dataset and i

is usually smaller than that from scratch. Within the cycle l,

a new trace is classified into the closest center under limited

empirical observation time p. The shorter p is, the higher the

chance of misestimation will be. Hence, there is a trade-off

between the accuracy for classifying the new trace and the

length of observation time. As batch jobs are usually short

and unpredictable in behaviour [4], [7], the scope of workload

characterization and behaviour identification in our work is

limited to long-running services.

Scheduling: Each incoming task Si submitted at time

point t is configured with multi-dimensional resource demands

Di. The scheduling algorithm decides the best-fit resource

allocation to compute node Pv for Si:

Schedulet = {Si −→ Pv} (1)

During the scheduling process of each new long-running

service, the available resource volume Av on each node Pv is

evaluated based on its capacity Cv and the resource allocation

Ri of each active task aki already deployed on Pv:

Av = Cv −
∑

aki∈Sv

Ri (2)

As for each incoming batch job, it is allowed to use the

idle resources Ii left by each existing long-running service

Li in addition to Av in Equation 2. Ii is predicted based on

its corresponding workload characterization class Bi within a

configurable time interval l:

Ii = Ri −max
l

(Bi) (3)

A′

v = Av +

Lv∑

Li

Ii (4)

To ensure successful deployment of task Si, it will only

be allocated to a node with at least its required amount of

resources Di available, while the amount of resources in the

above equations is evaluated as a vector of multi-dimensional

task confirmations such as CPU, memory, and storage.

Scaling: It is decided by the scaling mechanism how many

physical machines Nv of each machine type Pv should be

scaled up/down at time point t in response to the workload

fluctuation within the cluster:

Scalingt = {Pv, Nv} (5)

During the evaluation process of autoscaling, each instance

type with n-dimensional resource configurations is associated

with a resource efficiency score defined by its normalized used

constraining resource nc [36]. nc is decided by the usage of

each resource type ri and its corresponding weight wi within

the constraining scope:

nc =
n∑

i=1

ri ∗ wi (6)

Rescheduling: If multiple tasks are competing for the same

bottleneck resources simultaneously in compute node Pv at

time point t, the rescheduling algorithm will decide a portion

of its lower-priority tasks Sv to be evicted and placed to other

available instances:

Reschedulingt = {Pv, Sv} (7)

The rescheduling cost Ti of task Si is defined by the task

progress loss (task duration before eviction) pl and task

82

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2021 at 02:55:29 UTC from IEEE Xplore. Restrictions apply.

reallocation (redeployment to another available node) time ra:

Ti = pl + ra (8)

If a task is rescheduled multiple times n, the total cost is:

TSn
=

n∑

i

Ti (9)

Rescheduling is designed as a complementary method to han-

dle resource overloading and performance interference in re-

sponse to potential resource mismatch in initial task allocation

caused by: (1) misestimation in workload characterization of

long-running services; (2) large gap between the requested and

actual resource usage of batch jobs. Therefore, the resource

configuration Ri of a task Si should be adjusted to Uij during

rescheduling, according to its maximum resource usage Ui

during its task duration t instead of the original resource

demand:

R′

i = max
j∈t

(Uij) (10)

The available resource volume for each rescheduled task

is also evaluated through Equation (4), while the time in-

terval in resource usage prediction is set to its maximum

task duration max(t). These configuration adjustments are

implemented to ensure that the rescheduled task is assigned

with enough resources within its duration and thereby prevent

multi-rescheduling cases.

Overall, our primary goal is to find the maximum resource

utilization rate Ut and minimum cluster size Zt at time

point t with St existing tasks and Pt machines through the

aforementioned methods:

max(Ut) = max(

∑St

i Ui

Zt

) (11)

min(Zt) = min(

Pt∑

i

Zi) (12)

IV. CONTAINER ORCHESTRATION ALGORITHMS

This section introduces the orchestration algorithms for task

placement and cluster size adjustment.

A. Scheduling Algorithm

The efficient initial placement of a task is a key concern

in terms of resource utilization, QoS assurance, and overall

system performance [14]. Every new task is kept in a pending

queue by default. CTCL periodically picks tasks from the

queue and allocates them to nodes with enough requested

resources through a configurable scheduling cycle sc. For each

pending task, a two-phase selection process is designed to

determine where it will be deployed:

1) Filtering: The first decision made by the scheduler is to

select the nodes with enough available resources defined

by Equation (2) or (4), depending on its application type.

2) Ranking: As there is usually more than one node se-

lected during the filtering phase, these nodes are then

scored and ranked by a configurable set of priority

methods. To minimize the chance of task rescheduling

caused by potential resource overloading or performance

interference between co-located applications, the Least

Requested Priority (LRP) algorithm (shown in Algo-

rithm 1) is utilized as the default priority method during

ranking. The node with the lowest resource utilization

is most preferred for task allocation in LRP. Compared

with other prevalent approximation algorithms for online

bin packing such as First Fit Decreasing (FFD) or Best

Fit Decreasing (BFD), LRP has the effect of spreading

tasks across nodes for load balance and application

protection against possible resource shortage.

Algorithm 1 Least Request Priority

Input: Pending task p and node group ng

Output: Scheduling plan S

1: select n, min(n.utilization) from ng

2: where n.availableResource ≥ p.resourceDemand

3: if n �= NULL then

4: S = {p → n}
5: return S

6: else

7: return NULL

8: end if

For a pending task Tp, the available resource volume R

at node P with Te existing tasks is evaluated under time

complexity of O(Te).

B. Rescheduling Algorithm

When a node suffers from severe resource overloading and

performance interference, the Shortest Runtime Rescheduling

(SRR) algorithm (shown in Algorithm 2) is referenced for

decision making of a portion of its active batch jobs to be

evicted and reallocated to other available nodes. SRR is chosen

to minimize the QoS degradation during the rescheduling

process. To reduce the task progress loss and overall cost as

described in Equation (8), the rescheduling process starts from

the active job with the shortest current lifetime (most recently

deployed) until the utilization of the underlying node drops

under a configurable threshold T , where the overall resource

utilization is defined as a vector of multiple resources such as

CPU, memory, and network bandwidth. The task reallocation

process uses the same LRP algorithm, where the resource

demand of the underlying task is updated to its maximum

resource usage before eviction, instead of assuming a fixed

resource demand as given in its original task specification.

C. Scaling Algorithm

If no scheduling plan can be produced due to insuffi-

cient resources, autoscaling will be invoked accordingly. The

Greedy Autoscaling (GA) algorithm (shown in Algorithm 3) is

implemented to find a combination of heterogeneous machines

with the highest efficiency scores in terms of the requested

resource volume by iterating through the available instance

flavours multiple times. On the other hand, if a node stays

83

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2021 at 02:55:29 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Shortest Runtime Rescheduling

Input: Overloaded node o, node group ng, and overloading

threshold T

1: batches ← active batch jobs on o sorted by o.runtime

in ascending order

2: av ← ng − o

3: for (batch in batches) do

4: evict(batch)

5: LRP(batch,av)

6: if (o.resourceUtilization < T) then

7: break

8: end if

9: end for

idle with no tasks deployed on it for a configurable period (five

minutes by default), it will be scaled down to avoid resource

wastage.

Algorithm 3 Greedy Autoscaling

Input: Pending tasks pts in descending order of resource

demands and available instance flavours f

Output: Instance combination ic

1: while (pts.size > 0) do

2: fi ← flavour with the highest resource efficiency score

max(scoref)
3: for (p in pts) do

4: if (fi.availableReource >= p.resourceDemand)

then

5: bind(fi, p)

6: pts.remove(p)

7: end if

8: end for

9: ic.append(fi)

10: end while

11: return ic

For scaled instance v, the node provisioning time Tv is the

sum of flavour scoring time Ts, task binding time Tb, and

instance acquisition lag L:

Tv = Ts + Tb + L (13)

Assuming n instances are concurrently scaled up in response

to p pending tasks, the overall time overhead Ta of autoscaling

is:

Ta = max
i∈n

(Ti) (14)

V. PERFORMANCE EVALUATION

We evaluated the proposed approach through Container-

CloudSim [9] simulation toolkit using Alibaba cluster work-

load by comparing the performance with the original traces

and Kubernetes [18] scheduling policies.

A. Workload

We use the Alibaba 2018 cluster traces [37] to replay

the heterogeneous workload, which provides detailed config-

urations and runtime information of over 9K long-running

services and 4M batch jobs on 4K physical machines in eight

days. All the physical machines in Alibaba traces (AT) are

homogeneous with 96 CPU and one unit of memory (nor-

malized for confidential reasons). Unlike Google traces, AT

provide a clear specification of task configurations, including

the initial resource demand, duration, and node allocation. Be-

sides, AT record the runtime resource consumption throughout

the lifecycle of each task, including CPU, memory, network,

IO, and MPKI. To monitor the potential resource mismatch

and inaccurate scheduling decisions, AT also keep track of

tasks that are evicted and rescheduled due to performance

interference. Therefore, we can simulate the lifecycle of each

task and machine by periodically updating their resource

usage.

Fig. 1. Resource reservation of long-running services.

Fig. 2. Batch instance arrival rate.

Fig. 1 depicts the resource reservation of long-running

services in each machine (sorted in ascending order) in terms

of resource demands and average utilization. It is quite com-

mon for long-running services to reserve extra resources for

handling unexpected workload spikes with QoS assurance.

In most machines, the total CPU request is almost equal to

or exceeding the CPU capacity of 96 cores, as Sigma [1]

allows a certain level of resource overbooking. Nonetheless,

the actual CPU utilization of these tasks is very low (9.5%

on average). By contrast, they enjoy higher average memory

usage of 80.6%. Overall, long-running services are memory-

intensive and CPU-inactive.

Each batch task in AT consists of duplicate instances with

the same application logic and resource demand. As shown in

Fig. 2, the arrival rate of batch instances follows a nocturnal

84

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2021 at 02:55:29 UTC from IEEE Xplore. Restrictions apply.

pattern where it is higher during nighttime. Note that the

workload density on the eighth day is quite low with almost

no batches submitted. As addressed in [4], batch jobs in AT

are usually short (seconds to minutes) and unpredictable in re-

source utilization. Most batch jobs actually use more resources

at runtime than requested. Therefore, the high throughput and

unpredictability of batch jobs could lead to potential resource

mismatch in task co-location and frequent task reschedul-

ing. Our experiments demonstrate how these issues could

be addressed under different scheduling policies. To scale

the workload size to fit with the experiment environment,

we randomly choose 25% of the machines in AT and the

application workloads deployed on them in a consistent period

of eight days. Although AT provide multi-dimensional task

configurations, some metrics (e.g., disk storage and network

traffic) show low demands with little variation over time.

Therefore, we only consider CPU and memory usage within

the scope of our experiments.

B. Simulation

Considering the large scale of AT, we choose to evaluate

the performance of the proposed approach through Con-

tainerCloudSim [9] simulator with our scheduling policies

implemented as an extension. It is a toolkit designed for

simulation of containerized cloud computing environments

where container orchestration strategies could be evaluated

in a repeatable and scalable manner, such as task placement,

rescheduling, and resource overbooking. ContainerCloudSim

is built on top of CloudSim [38] simulator, which provides a

generic simulation framework for modeling cloud computing

infrastructures and applications.

We first replay the workload traces following the origi-

nal application deployment decisions as a baseline in our

evaluation. Since the memory capacity of each homogeneous

machine in AT is normalized to one unit for confidential

reasons, we reference the following instance types belonging

to Alibaba Bare Metal Instance Family [39] in our simulation

environment. ecs.ebmg5s.24xlarge is assumed to be the

default instance type used in AT.

TABLE II
INSTANCE CONFIGURATIONS.

Instance type CPU Memory (normalized) Bandwidth

ecs.ebmc5s.24xlarge 96 0.5 30 Gbit/s
ecs.ebmg5s.24xlarge 96 1 30 Gbit/s
ecs.ebmr5s.24xlarge 96 2 30 Gbit/s

The Kubernetes (K8s) scheduling policies are also included

in our evaluation as a benchmark with their algorithms im-

plemented in ContainerCloudSim. The default K8s scheduler

utilizes a similar LRP algorithm to manage initial task place-

ment decisions, where all types of jobs are treated equally re-

gardless of their specific characteristics. To prevent inaccurate

resource allocation during scheduling, K8s develops a vertical

application autoscaling mechanism [40] where applications’

configurations are dynamically adjusted according to their

resource utilization at runtime. If a task actually utilizes far

more resources in its deployed node, it will be rescheduled

to other available nodes. For any pending tasks failing to be

scheduled due to cluster-level resource shortage, K8s Cluster

Autoscaler (CA) could scale up a homogeneous instance per

time on an on-demand basis. ecs.ebmg5s.24xlarge is also

configured as the default instance type in K8s.

The proposed scheduler CTCL manages to replay the work-

load traces with heterogeneous compute resources (all the

instance types in Table II) with the simulation parameters

summarized in Table III. As the workload traces in AT are

preprocessed in a 15-minute window during task classification,

the prediction time interval is set to 15 minutes. The instance

acquisition lag is generated under a normal distribution be-

tween 4 to 7 minutes, while the overall resource utilization

threshold in rescheduling is set to the same figure of 80% as

AT. Since AT follow a daily pattern, the reclustering cycle

is defined as 24h. To evaluate how the accuracy of task

placement and resource efficiency could be impacted by the

length of empirical observation time (EOT) before behaviour

identification, we use different observation times (12, 24h) in

our experiments. Based on the average cluster-level resource

utilization of AT addressed in [4], the weights of CPU and

memory are configured as 0.38 and 0.62 respectively during

the evaluation process of scheduling and autoscaling.

TABLE III
SIMULATION PARAMETERS.

Parameter Value

Decision making time of task placement 20ms
Container startup time 300ms

Task eviction time 2ms
Time interval in utilization prediction 15min

Instance acquisition lag 4-7min
Reclustering cycle 24h

Empirical observation time 12, 24h
Resource utilization threshold in rescheduling 80%

Weight of CPU 0.38
weight of memory 0.62

C. Results

This section describes our experimental results in terms of

workload characterization and resource efficiency.

Workload characterization: The historical workload traces

in AT are recorded within a consistent period of 8 days with

various lengths. We preprocess them by dividing each day into

96 uniform intervals ([0, 15min, 30min, · · · , 1385min]), with

the closest utilization rates regarded as those at that time. In

the end, every trace is summarized using 96 elements with

each selected from the highest utilization in 8 days. We run

K-means++ with 10 different center seeds and select the best

one in order to guarantee the stability of clustering in every

cycle l. The hyperparameter k is selected in the range of

[10, 15, 20, 25, 30], since workload characterization using K-

means++ is not trivially sensitive to k. When k = 20 for

workload characterization of both CPU and memory utilization

85

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2021 at 02:55:29 UTC from IEEE Xplore. Restrictions apply.

on AT, the clustering results perform the best in the following

evaluation of resource efficiency and task rescheduling rate.

As shown in Fig. 3, the CPU utilization of most workload

classes follows a diurnal pattern where it is obviously higher

during daytime (9:00 - 21:00). On the other hand, Fig. 4

depicts that the memory usage is relatively stable without

dramatic fluctuation over time, as most long-running services

are memory-intensive.

0%

20%

40%

60%

80%

100% c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13
c14
c15
c16
c17
c18
c19
c20

0 h 6 h 12 h 18 h 24 h

Fig. 3. Clustering results of CPU utilization (k = 20).

0%

20%

40%

60%

80%

100% c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13
c14
c15
c16
c17
c18
c19
c20

0 h 6 h 12 h 18 h 24 h

Fig. 4. Clustering results of memory utilization (k = 20).

Resource efficiency: The workload traces are repeated

for ten iterations under each scheduling policy to calculate

the average values of any significant figures for verification

of the results with higher validity. Hence, all test results

shown are mean values over ten runs. Each scheduling policy

is primarily evaluated based on CPU utilization, memory

utilization, and cluster size (number of active nodes). Figs.

5-7 depict these metrics under different scheduling policies,

including the original AT, K8s, and CTCL. A summary of

the overall resource efficiency is given in Table IV. As there

is no significant variation in these metrics under different

workload characterization classes, class-20 (k = 20) with

different empirical observation times (12h and 24h) is chosen

as the best-performance case included in these figures.

As depicted in Table IV, CTCL outperforms the other

scheduling policies in terms of resource efficiency. Compared

with AT, CTCL improves the average CPU and memory uti-

lization by at least 62% and 12% respectively through efficient

task co-location and heterogeneous autoscaling. Based on the

workload characterization results of long-running services,

Fig. 5. Overall CPU utilization of the cluster within 8 days.

Fig. 6. Overall memory utilization of the cluster within 8 days.

CTCL estimates the resource slack left by them through work-

load prediction and thereby manages co-location of batch jobs

more accurately. Although K8s achieves better overall perfor-

mance compared with AT through dynamic task configuration

adjustment, its Cluster Autoscaler only utilizes homogeneous

machines during autoscaling, ignoring the characteristics of

pending tasks. This becomes a bottleneck in resource effi-

ciency management, which could lead to potential resource

fragmentation. Fig.5 proves that the CPU utilization of K8s

(41% average) is only slightly higher than AT (39% average).

By contrast, CTCL manages autoscaling more efficiently using

heterogeneous machines, according to their resource efficiency

scores. As shown in Fig. 7, it can also scale down the idle

machines to prevent resource wasting when workload density

drops down. Therefore, the average cluster size of CTCL is

40% and 37% smaller than AT and K8s respectively.

Since CTCL needs an empirical observation period to

collect resource usage metrics for accurate behaviour iden-

tification, the idle resources reserved by long-running service

Fig. 7. Changing cluster size within 8 days.

TABLE IV
OVERALL RESOURCE EFFICIENCY.

Algorithm Average CPU Average Memory Maximum

utilization (%) utilization (%) cluster size

AT 39 78 952
K8s 41 83 933

CTCL (20c-12h) 63 90 808
CTCL (20c-24h) 65 87 777

86

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2021 at 02:55:29 UTC from IEEE Xplore. Restrictions apply.

could be left unused then. As shown in Fig. 6, the memory

utilization in each CTCL experiment (with EOT in (12h,24h))

is actually lower than AT and K8s during the initial EOT. Only

after the first round of behaviour identification, task allocation

is allowed by CTCL scheduler. Hence, we can observe ob-

vious utilization improvement after the initial EOT. There is

also a trade-off between resource efficiency and classification

accuracy decided by the length of EOT. Compared with 20c-

12h, the utilization of 20c-24h is much lower in the first two

days as a result of longer EOT. During the rest six days, 20c-

24h slightly outperforms 20c-12h in utilization through more

accurate behaviour identification and workload prediction. The

similar patterns can also be observed in CPU utilization and

cluster size adjustment. Therefore, a proper configuration of

EOT should balance these metrics to improve the overall

performance.

TABLE V
BATCH INSTANCE RESCHEDULING RATE.

Algorithm Rescheduled Multi-rescheduled Rescheduling

instance instance cost (s)

AT 210503 42366 214
K8s 30422 0 175

CTCL (10c-12h) 2735 0 183
CTCL (15c-12h) 2420 0 185
CTCL (20c-12h) 1968 0 168
CTCL (25c-12h) 2003 0 186
CTCL (30c-12h) 1972 0 180
CTCL (10c-24h) 2316 0 179
CTCL (15c-24h) 2221 0 171
CTCL (20c-24h) 1894 0 170
CTCL (25c-24h) 1931 0 180
CTCL (30c-24h) 1900 0 172

The rescheduling rates of all the evaluated solutions are

presented in Table V. AT suffer from the highest rescheduling

rate and cost, while over 20% of the rescheduled batch

instances are reallocated multiple times. As Fuxi manages task

co-location of batch instances through incremental scheduling

[30], a misplaced instance with an inaccurate resource demand

could be potentially rescheduled multiple times. Frequent

rescheduling operations could result in low resource efficiency

and application QoS degradation. Compared to AT, K8s re-

duces the rescheduling rate by 86%. Its vertical application

autoscaling mechanism efficiently improves rescheduling ef-

ficiency and prevents multi-rescheduled cases. By contrast,

CTCL reduces the rescheduling rate and cost in AT by 99%

and 21% respectively in the best case (20c-24h). It manages to

produce precise task co-location decisions through application-

level workload prediction, while its rescheduling algorithm

efficiently reduces the cost without multi-rescheduling. Under

the same workload characterization class, the rescheduling

rate is relatively lower under longer EOT, where behaviour

identification is more accurate. On the other hand, class-20

(k = 20) enjoys the best performance among all the workload

characterization classes under the same EOT. Overall, task

rescheduling rate is regarded as one of the key metrics in

evaluation of the accuracy of task co-location decisions. It

shows how confident the algorithm is in resource usage

prediction and performance interference management.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the containerized task co-location

(CTCL) scheduler for efficient task co-location of heteroge-

neous workloads under the context of a Cloud-based Cluster

Management System. By employing an off-the-shelf algo-

rithm such as K-means++ in workload characterization and

behaviour identification, CTCL manages to make accurate task

co-location decisions in an interference-aware manner. The

experiments with Alibaba workload traces have shown that

CTCL achieves significant resource utilization improvement

and rescheduling rate reduction compared with the origi-

nal traces and Kubernetes scheduling policies. Overall, our

findings can be applied to large-scale cluster management

for resource efficiency optimization, cost saving, and QoS

assurance.

As future work, we plan to improve the scalability of

our workload characterization approach under fast-growing

workloads at an extreme scale through the dynamic incremen-

tal K-means++ clustering algorithm. Furthermore, an energy

consumption model could be developed in CTCL for managing

overall energy efficiency. Another possible direction would

be implementing our scheduling policies in real-world CMS

under the context of virtual cluster management, where the ma-

jor concern is minimizing cloud resource rental costs through

efficient task packing. Finally, we will extend CTCL to support

task co-location under other workload management scenarios,

such as network-intensive applications competing for shared

network resources with potential performance interference.

ACKNOWLEDGMENTS

This work is supported by Melbourne Research Scholarship,

China Scholarship Council, and Australia Research Council

Discovery Project.

REFERENCES

[1] C. Lu, K. Ye, G. Xu, C. Xu, and T. Bai, “Imbalance in the cloud:
An analysis on alibaba cluster trace,” in Proceedings of 2017 IEEE

International Conference on Big Data. IEEE, 2017, pp. 2884–2892.

[2] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace anal-
ysis,” in Proceedings of 2012 ACM Symposium on Cloud Computing.
ACM, 2012, pp. 7:1–7:13.

[3] H. Liu, “A measurement study of server utilization in public clouds,”
in Proceedings of 2011 IEEE International Conference on Dependable,

Autonomic and Secure Computing. IEEE, 2011, pp. 435–442.

[4] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, and Y. Bao, “Who
limits the resource efficiency of my datacenter: An analysis of alibaba
datacenter traces,” in Proceedings of 2019 International Symposium on

Quality of Service. ACM, 2019, pp. 39:1–39:10.

[5] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of 2013 Annual

Symposium on Cloud Computing. ACM, 2013, pp. 5:1–5:16.

[6] N. Naik, “Building a virtual system of systems using docker swarm in
multiple clouds,” in Proceedings of 2016 IEEE International Symposium

on Systems Engineering. IEEE, 2016, pp. 1–3.

87

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2021 at 02:55:29 UTC from IEEE Xplore. Restrictions apply.

[7] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,”
in Proceedings of 2015 European Conference on Computer Systems.
ACM, 2015, p. 18.

[8] S. Chen, C. Delimitrou, and J. F. Martı́nez, “Parties: Qos-aware resource
partitioning for multiple interactive services,” in Proceedings of 2019

International Conference on Architectural Support for Programming

Languages and Operating Systems. ACM, 2019, pp. 107–120.

[9] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “Contain-
ercloudsim: An environment for modeling and simulation of containers
in cloud data centers,” Software: Practice and Experience, vol. 47, no. 4,
pp. 505–521, 2017.

[10] A. M. Joy, “Performance comparison between linux containers and
virtual machines,” in Proceedings of 2015 International Conference on

Advances in Computer Engineering and Applications. IEEE, 2015, pp.
342–346.

[11] Q. Liu and Z. Yu, “The elasticity and plasticity in semi-containerized
co-locating cloud workload: A view from alibaba trace,” in Proceedings

of 2018 ACM Symposium on Cloud Computing. ACM, 2018, pp. 347–
360.

[12] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards
characterizing cloud backend workloads: insights from google compute
clusters,” ACM SIGMETRICS Performance Evaluation Review, vol. 37,
no. 4, pp. 34–41, 2010.

[13] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of 2007 ACM-SIAM Symposium on Discrete

algorithms. SIAM Press, 2007, pp. 1027–1035.

[14] C. T. Joseph and K. Chandrasekaran, “Straddling the crevasse: A
review of microservice software architecture foundations and recent
advancements,” Software: Practice and Experience, vol. 49, no. 10, pp.
1448–1484, 2019.

[15] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload characteriza-
tion and prediction in the cloud: A multiple time series approach,”
in Proceedings of 2012 IEEE Network Operations and Management

Symposium. IEEE, 2012, pp. 1287–1294.

[16] R. Birke, L. Y. Chen, and E. Smirni, “Data centers in the cloud: A large
scale performance study,” in Proceedings of 2012 IEEE International

Conference on Cloud Computing. IEEE, 2012, pp. 336–343.

[17] I. Cano, S. Aiyar, and A. Krishnamurthy, “Characterizing private clouds:
A large-scale empirical analysis of enterprise clusters,” in Proceedings

of 2016 ACM Symposium on Cloud Computing. ACM, 2016, pp. 29–41.

[18] V. Medel, O. Rana, J. Bañares, and U. Arronategui, “Modelling per-
formance resource management in kubernetes,” in Proceedings of 2016

IEEE/ACM International Conference on Utility and Cloud Computing.
IEEE, 2016, pp. 257–262.

[19] Zhenhuan Gong, Xiaohui Gu, and J. Wilkes, “Press: Predictive elastic
resource scaling for cloud systems,” in Proceedings of 2010 Interna-

tional Conference on Network and Service Management. IEEE, 2010,
pp. 9–16.

[20] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models
for adaptive resource provisioning in the cloud,” Future Gener. Comput.

Syst., vol. 28, no. 1, pp. 155–162, 2012.

[21] O. A. Abdul-Rahman and K. Aida, “Towards understanding the usage
behavior of google cloud users: The mice and elephants phenomenon,”
in Proceedings of 2014 IEEE International Conference on Cloud Com-

puting Technology and Science. IEEE, 2014, pp. 272–277.

[22] P. Garraghan, P. Townend, and J. Xu, “An analysis of the server
characteristics and resource utilization in google cloud,” in Proceedings

of 2013 IEEE International Conference on Cloud Engineering. IEEE,
2013, pp. 124–131.

[23] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R.
Das, “Modeling and synthesizing task placement constraints in google
compute clusters,” in Proceedings of 2011 ACM Symposium on Cloud

Computing. ACM, 2011, pp. 3:1–3:14.

[24] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study
of efficient initialization methods for the k-means clustering algorithm,”
Expert systems with applications, vol. 40, no. 1, pp. 200–210, 2013.

[25] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii,
“Scalable k-means++,” Proceedings of the VLDB Endowment, vol. 5,
no. 7, pp. 622–633, 2012.

[26] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-
grained resource sharing in the data center,” in Proceedings of 2011

USENIX Conference on Networked Systems Design and Implementation.
USENIX Association, 2011, pp. 295–308.

[27] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,” in
Proceedings of 2013 ACM European Conference on Computer Systems.
ACM, 2013, pp. 351–364.

[28] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and
L. Zhou, “Apollo: scalable and coordinated scheduling for cloud-scale
computing,” in Proceedings of 2014 USENIX Symposium on Operating

Systems Design and Implementation. USENIX Association, 2014, pp.
285–300.

[29] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling
for heterogeneous datacenters,” in Proceedings of 2013 International

Conference on Architectural Support for Programming Languages and

Operating Systems. ACM, 2013, pp. 77–88.
[30] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu, “Fuxi: A fault-

tolerant resource management and job scheduling system at internet
scale,” Proc. VLDB Endow., vol. 7, no. 13, pp. 1393–1404, 2014.

[31] C. Jiang, G. Han, J. Lin, G. Jia, W. Shi, and J. Wan, “Characteristics of
co-allocated online services and batch jobs in internet data centers: A
case study from alibaba cloud,” IEEE Access, vol. 7, pp. 22 495–22 508,
2019.

[32] M. Xu, A. N. Toosi, and R. Buyya, “ibrownout: An integrated approach
for managing energy and brownout in container-based clouds,” IEEE

Transactions on Sustainable Computing, vol. 4, no. 1, pp. 53–66, 2019.
[33] A. Nadjaran Toosi, C. Qu, M. D. de Assuno, and R. Buyya, “Renewable-

aware geographical load balancing of web applications for sustainable
data centers,” J. Netw. Comput. Appl., vol. 83, no. C, pp. 155–168, 2017.

[34] C. G. Kominos, N. Seyvet, and K. Vandikas, “Bare-metal, virtual ma-
chines and containers in openstack,” in Proceedings of 2017 Conference

on Innovations in Clouds, Internet and Networks. IEEE, 2017, pp.
36–43.

[35] Y. Omote, T. Shinagawa, and K. Kato, “Improving agility and elasticity
in bare-metal clouds,” in Proceedings of 2015 International Conference

on Architectural Support for Programming Languages and Operating

Systems. ACM, 2015, pp. 145–159.
[36] A. Chung, J. W. Park, and G. R. Ganger, “Stratus: Cost-aware container

scheduling in the public cloud,” in Proceedings of 2018 ACM Symposium

on Cloud Computing. ACM, 2018, pp. 121–134.
[37] Alibaba, “Alibaba Cluster Trace Program,” https://github.com/alibaba/

clusterdata/, 2018.
[38] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,

“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-

ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.
[39] Alibaba, “Alibaba Instance Families,” https://www.alibabacloud.com/

help/doc-detail/25378.htm, 2019.
[40] Kubernetes, “Kubernetes Vertical Pod Autoscaler,” https://github.com/

kubernetes /autoscaler /blob /master /vertical - pod- autoscaler /pkg /apis /
autoscaling.k8s.io/v1beta2/types.go, 2019.

88

Authorized licensed use limited to: University of Melbourne. Downloaded on April 30,2021 at 02:55:29 UTC from IEEE Xplore. Restrictions apply.

