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Abstract—Anomalous event detection in videos is an important
and challenging task. This paper proposes a deep representation
approach to the problem, which extracts and represents features
in an unsupervised way. This algorithm can detect anomalous
activity like standing statically and loitering among a crowd
of people. Our proposed framework is a two-channel scheme
by using feature channels extracted from the appearance and
foreground of the original video. Two hybrid deep learning
architectures SDAE-DBN-PSVM (a four-layer Stacked Denoising
Auto-encoder with three-layer Deep Belief Nets and Plane-based
one class SVM) are implemented for these two channels to
learn the high-level feature representation automatically and
produce two anomaly scores. Finally, a fusion scheme is proposed
for combining anomaly scores and detecting anomalous events.
Experimental results on a large real-world dataset (MCG) and
two benchmark datasets (UCSD and Subway) demonstrate the
effectiveness of this approach. Furthermore, quantitative analyses
of the effects of the amount of training data and the illumination
conditions of the video on the accuracy of anomaly detection are
presented.

Index Terms—anomalous event detection, deep representation,
stacked denoising auto-encoder, deep belief nets, video surveil-
lance

I. INTRODUCTION

Abnormal event/behavior monitoring in crowded scenarios
is an important and challenging topic for pattern recognition.
Anomalous event detection usually follows learning the ordi-
nary crowd movement at first, followed by differentiating the
small amount of anomalies from these normal patterns [1].

There are several methods created to solve this task. A
very popular category is trajectory based approaches [2]–[4].
Authors encoded the pedestrians’ tracks using a hyperspherical
clustering based approach, in order to find the abnormal
loitering behavior [3]. In [4], the authors extracted features
from trajectories based on Multiple-scale Histogram Optical
Flow for joint model building. However, the joint sparsity
model can only handle linearly connected objects. Another cat-
egory is motion representation based methods [5]–[8]. In [6],

authors used Social Force Model to describe the pedestrian
movement pattern. In [5], a model called mixture dynamic
textures (MDT) is built based on motion representation for
abnormal event detection. Researchers proposed a spatio-
temporal graph model called Markov Random Field (MRF),
which can distinguish abnormal and normal activities by
capturing the combination of optical flow and the Probabilistic
Principal Component Analyzers Mixture [8]. However, it is
still difficult to handle practical issues like complex shape
changes, occlusion and overlapping by using these existing
approaches.

Deep learning based methods are also quite popular. In [9],
Xu et al. used a Stacked Denoising Auto-encoder (SDAE)
based deep learning architecture to capture and learn features
in an automatic way. However, it only uses short-term appear-
ance and motion information, which cannot fully characterize
activities in videos involving complex contexts. Recently, the
authors of [10], [11] used high level deep learning models to
solve this task. In [10], fully convolutional neural networks
(FCNs) with temporal data, and in [11], Convolutional Neural
Networks (CNN) are used for learning features. However,
using these high level deep learning models has high com-
putational complexity. Although there are some existing deep
learning based approaches for anomaly detection, most of them
are aimed at ordinary anomalous object detection. Further, they
cannot guarantee high speed, low computational complexity or
both.

Therefore, in this paper, we propose a novel multi-task
hybrid deep learning framework, in order to not only per-
form short-term anomalous object detection, but also achieve
long-term anomalous motion/behavior detection, as well as
guaranteeing high accuracy and efficiency. Our architecture
is comprised of a stacked denoising auto-encoder (SDAE),
deep belief network (DBN) and plane-based one class SVM
(PSVM) (refer to Fig. 1). The DBN-PSVM combination helps
achieve higher detection accuracy by means of dimensionality
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reduction to obtain a few high level representative features via
the DBN before applying the PSVM.

Our main contributions are listed as follows:
• A novel SDAE-DBN-PSVM framework is proposed that

can achieve long-term spatio-temporal anomalous mo-
tion/behavior detection, which can guarantee high accu-
racy and efficiency at the same time.

• To evaluate this deep learning architecture, we conduct
experiment and evaluation on a couple of real-world
video sequences from the Melbourne Cricket Ground
(MCG), which is a large sports stadium in Melbourne.
We used the video data of six cameras named C1 to
C6. Sample frames from the MCG video are shown in
Fig. 2. C1 is installed at the top of venue, and C2-
C6 are installed at different place of corridors that it
can give diverse perspectives in video data. We detect
anomalous behaviors such as standing or loitering, which
are important categories of movement anomalies in the
MCG dataset.

• In order to compare with other existing methods, we also
test on two benchmark datasets: UCSD and Subway, then
compare with existing methods.

• Furthermore, we conduct quantitative analyses by varying
the amount of training data and the illumination con-
ditions of video in the MCG dataset, which assess the
robustness of detection to changing numbers of frames
and the brightness conditions.

The rest of the paper is organized as follows. The proposed
deep learning architecture is demonstrate in Section II, fol-
lowed by introducing the detailed components and schemes
in Sections III and IV. In Section V evaluation results are
discussed, and finally we conclude in Section VI.

II. METHODOLOGY

Our proposed architecture for anomalous event detection is
illustrated in Fig. 1. This method considers the context and
scenario properties of a video, which can depict the activity
of moving objects, and use an unsupervised approach. Instead
of using hand-crafted features, we first learn a deep model of
crowd features [12]. For this, we use two separate scenario
level motion feature channels that are extracted from the
appearance and foreground of the original video sequences
to identify the activity tracks of objects. The obtained mo-
tion features are then used with our proposed deep learning
architecture to detect anomalous behavior in an unsupervised
manner.

Our deep learning architecture consists of three stacked
components: SADE, DBN and PSVM. The SDAE is first used
to automatically extract and learn the high level features from
each channel. The denoising capability of the SADE helps
to obtain robust features that are less sensitive to corruption
in the input. Next, these features are fed to the DBN-PSVM
component. The DBNs help reduce the data dimensionality
for decreasing the computational complexity. The output of the
DBN is then fed to the PSVM, which identifies the anomalous
events in the data and provides an anomaly score. It has been

shown that the DBN-PSVM architecture greatly improves the
computational complexity as well as the accuracy of detecting
anomalies in the data [13]. Here we use it with the SDAE to
effectively detect the abnormal activities in video sequences.
Finally, the anomalous scores from both the channels are
combined using late fusion to detect the anomalies. Next, we
describe each of the components of our architecture in detail.

III. SPATIO-TEMPORAL CROWD FEATURES

We use two branches to learn a feature representation from
(1) the original image sequence/video, as well as from (2)
the foreground image sequence, which is extracted using a
Gaussian Mixture Model. For these two branches, we use
two separate scene-level motion feature channels to extract
the movement tracks of objects, which are called continuous
motion maps. These are then used with our deep learning
architecture for extracting high-level features.

A. Motion Channels

The usual inputs of a Stacked Denoising Auto-encoder are
the image patches that have been selected randomly from
different frames [9]. In our work, we use a scene-independent
motion channel to represent (1) the original image sequence
and (2) the foreground sequence (i.e., the foreground that is
extracted from the image sequence). The reason why we use
this motion channel is that our application environment is quite
crowded, and widely-used features like optical flow cannot
reliably represent motion patterns. However, some scene-
independent properties can depict crowd behavior for groups
at the scene-level. We use collectiveness [14] as a property
to indicate the degree to which individuals act in unison in
a collective motion. This approach is suitable for detecting
people loitering in the normal-speed flow of people, which is
the most common form of anomalous behavior observed in
the MCG dataset.

B. KLT Manifold Collectiveness

The collectiveness descriptor is demonstrated by the
Kanade-Lucas-Tomasi (KLT) tracklets [14]. In our experi-
ment, we set the time window of each tracklet to be 30
frames, and the nearest neighbour number K in the KNN
graph of the tracklet set is set to 10. The descriptor and
computation algorithm proposed in [14] are used to extract
crowd collectiveness for every tracklet from the whole frame.
This algorithm combines similar paths from the crowd on a
collective manifold. The process is briefly described below.

Consider the manifold collectiveness motions of a crowd
and example images of real human movement (refer to Fig.
3). We can see that the collectiveness degree of some regions
is low in Fig. 3.b, which can indicate people who are loitering.

First, regularity (1) is defined to measure the crowdedness
relations between individuals and their neighbors:

ωt (i, j) = max (Ct (i, j) , 0) (1)

where i is the current individual, j is the neighbor around
i. Ct(i, j) is the tracklet relevance between i and j at time
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Fig. 1. Overview of the proposed deep learning framework. Original video and foreground video sequence are taken as the input of two branches of channel,
then movement tracks are extracted to produce continuous motion maps. Training and testing on a hybrid deep learning model SDAE-DBN-PSVM, then
follows to achieve anomalous event detection.

(a) (b)                                  (c)

(d) (e)                                  (f)

Fig. 2. Sample frames of different cameras from MCG dataset. (a) view of
C1, (b) view of C2, (c) view of C3, (d) view of C4 (e) view of C5, (f) view
of C6.

(a)                                                            (b)

(c)                                                            (d)

Fig. 3. Sample motion structure and frames showing the different degrees
of crowd collectiveness. (a) Collectiveness with high coherence. (b) Collec-
tiveness with low coherence. (c) Individuals in the crowd moving coherently
indicate high collectiveness, (d) randomly moving individuals demonstrate
low collectiveness.

t, which is computed using KNN. N is defined empirically
to represent the interaction relationship among individuals.
Each individual in this union has a fixed number of neighbors.
Therefore, ωt (i, j) ∈ [0, 1] is used for measuring each object’s
behavior similarity among its neighborhood.

Next, we measure the behavior consistency among pairwise
individuals on the collective manifold. Because the consistency
of two objects with a long distance between them cannot be
predicted accurately, a collective manifold based approach is
proposed using pair similarity [15]. By depicting the relevance
of the network by a graph, crowd consistency can be measured
in a more accurate way.

Let γn = {p0 → p1 → ... → pn}(p0 = i, pn = j) denote
a path from node p0 to node pn, on the weighted adjacency
matrix between object i and j. The similarity on this path γn
is described in (2). Let the set Pn denote all paths with length
n between i and j, then the n-path regularity υn(i, j) can be
defined as shown in (3),

υγn =

n∏
k=0

ωt (pk, pk+1) (2)

υn (i, j) =
∑
γn∈ρn

υγn (i, j) (3)

At this stage, we can now define individual collectiveness
and crowd collectiveness. Since individual collectiveness can-
not be directly and accurately summarized on different scales,
a regularization function should be generated to summarize all
of the path regularities.

After generating a suitable regularization function, individ-
ual collectiveness can be calculated as

φ (i) =

∞∑
k=1

zkφk (i) = [Ze]i (4)

where z is the regularization factor, and zk is the weight for
k-path regularity. φk is the collection of all paths’ integrated
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individual collectiveness, where {k = 1 . . .∞}. The crowd
collectiveness is calculated by the average value of all of
individual collectiveness,

Φ =
1

|C|

|C|∑
i=1

φ (i) =
1

|C|
eT
(

(I − zW )
−1 − I

)
e (5)

where e is a vector with all values as 1, and W is associated
with crowd set C and is the graph’s weighted adjacency
matrix.

C. Continuous Motion Maps

After extracting the collectiveness at a scene-level, we
produce two types of continuous motion maps as the input
to our deep model. For the first type of motion map, in order
to address pixel-level anomalous event detection, we divide
each collectiveness map into several blocks. Then, for each
block, we average the descriptor map of that block. Therefore,
each frame produces one vector in the continuous motion map
matrix, and each row corresponds to a block. This continuous
motion map is the input of the SDAE for loitering detection
at the pixel-level. For the other type of motion map, we
average the descriptor map per frame across the temporal
domain to output a continuous motion map at the frame-level
for anomalous event detection. Furthermore, one frame can
produce hundreds of tracklets, but the coverage of the tracklets
over time is sparse. Therefore, interpolation is used to output
the complete and continuous feature map.

IV. DEEP LEARNING ARCHITECTURE

Given the complexity of the continuous motion matrix from
the previous section, we propose a deep learning architecture,
which is an unsupervised hybrid architecture called SDAE-
DBN-PSVM (as referred to Fig.4) that includes a Stacked
Denoising Autoencoder (SDAE), Deep belief net (DBN) and
Plane-based one-class SVM (PSVM) [13], [16], [17], that can
effectively learn and separate the normal and anomalous data.
We have experimented using the SDAE with one-class SVM
as in [9], but it failed to achieve high accuracy. Hence, we
add the DBN with PSVM in this paper, to achieve a better
performance. The two separate motion channels form the input
for the deep learning framework. At first, SDAEs are used to
learn the feature representation from the continuous motion
maps. Then, these motion channels are used to train two-
layer DBNs with PSVM for producing anomaly scores. The
anomaly scores from the two branches are then combined
by a late fusion scheme, which is used for anomalous event
detection. Our proposed approach is described in detail below.

A. Stacked Denoising Autoencoder (SDAE)

A SDAE can be used to learn useful representations in a
deep network [17]. It can also help increase the performance of
PSVM when it is used for learning higher level representations
in an unsupervised way.

In the pre-training stage of SADE, a single denoising auto-
encoder is learned. After training the mapping function, the
output is utilized as the input of the next layer, followed

Encoder

Decoder

Fig. 4. Our SDAE-DBN-PSVM deep learning architecture.

by stacking the denoising autoencoder for the multi-layer
feedforward neural network implementation.

The next stage is fine-tuning which starts with the training
data ψl =

{
xli
}N l

i=1
, where N l denotes the number of training

data examples, and l denotes the continuous motion maps from
the original image sequence or the subtracted foreground of the
image sequence. The objective function used for fine-tuning
is based on 2N + 1 layers as follows:

J
(
ψl
)

=

N l∑
i

∥∥xli − x̂li∥∥22 +λF

N∑
i=1

(
∥∥W l

i

∥∥2
F

+
∥∥∥W ′li∥∥∥2

F
) (6)

where W denotes the weights, and λF sets the balance of
these two terms. Sparsity constraints are applied on hidden
units’ outputs to find a suitable data representation.

Stochastic gradient descent (SGD) is used to make conver-
gence in a quicker manner. Further, the input data is split into
small patches during the fine-tuning. After the whole process
is completed, the output is used as the input of the next stage
DBN with a PSVM for anomaly scoring.

B. Deep Belief Nets (DBN)

DBN is a generative model with multiple layers, which
is trained to address output data from the previous SDAE
layer, so the following PSVM can separate the normal and
anomalous data. The aim of using DBNs is to reduce the data’s
dimensionality, so that the low-dimensional set of features can
help speed up our whole propsed architecture [18].

In this paper, DBNs are trained from Restricted Boltzmann
Machine (RBM) in a layer-wise manner [13]. An RBM has
visible units v that represent observations, and hidden units
g for feature representation. n-dimensional input vectors are
mapped to the f -dimensional feature space using the DBN,
such that f corresponds to |g|, where f < n. Training an
RBM aims to minimize the energy function E = (v, g) that
finds the value of the parameter θ. A possible method is to
maximize the log-likelihood of v in E = (v, g) using the
gradient:

∂ log ρ(v)

∂θ
= Eρ(g|v)

[
∂E(v, g)

∂θ

]
− Eρ(v|g)

[
∂E(g, v)

∂θ

]
(7)

where p = (v, g) is the combination of visible and hidden
vectors, and it is calculated by p(v, g) = e−E(v,g)

z .
To train a stacked RBM, we first train a single RBM,

followed by training other RBNs and stacking each one on
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the previous ones. In this paper, we use a three-layer model.
After we obtain the stacked RBMs, we initialize the weights
of the resulting DBNs in a bottom-up way.

C. Plane-based One-class SVM (PSVM)
Followed by DBN, a Plane-based one-class SVM (PSVM)

is used in our architecture for anomaly scoring. The PSVM
finds a hyperplane in a higher dimensional feature space that
separates the normal data from the anomalies. Although there
are other one-class SVMs available, such as Spherical [19]
and Ellipsoidal [20] based schemes, PSVM is computational
simpler. Furthermore, DBNs are used in front of the PSVM
as a feature reduction stage, which can help overcome the
limitation of directly using SVM, so that the hybrid model
can be used for complex and high-dimensional datasets.

In this scheme, the data vectors xi ∈ Rd(i = 1, 2, ..., l)
are implicitly projected to a higher dimensional feature space.
Next, by solving a quadratic optimization formulation, it finds
a hyper-plane that can separate the normal points from the
anomalies [16]:

min
$,ξ,ρ

1

2
‖$‖2 +

1

τ l

l∑
i=1

ξi, ($.ϕ (xi)) + ξi ≥ ρ (8)

where $ denotes the weight vector, ξi are the slack variables,
which allow some of the data vectors to fall on the other side
of the plane, τ ∈ [0, 1] is the regularization parameter that
controls the fraction of outliers and ρ is the pre-defined offset.

By introducing a kernel function ϕ, the data are mapped
to a higher dimensional feature space. We use a RBF (radial
basis function) kernel in this work:

k (x, y) = e
−‖x− y‖2

2σ2
(9)

where σ is the spread of the kernel. After training, the
anomaly score for an unseen test point xt can be found as
δ = ω.ϕ(xt)− ρ.

The parameter τ provides an upper bound and a lower bound
on the fraction of outliers and the support vectors, respectively.
In our work, we use a heuristic based unsupervised approach
for selecting this parameter efficiently as detailed in [16].

D. Anomalous Event Detection
In order to combine the anomaly scores from the two

branches, we use a simple fusion scheme as the last stage.
We set the weight vector to A = [a0, aF ], where a0 is the
weight for the original data branch, aF is the weight for
the foreground branch, and a0 + aF = 1. We determined
the weights heuristically to give the highest accuracy in the
training data in this work. Further, we have observed that the
weight selection has a small impact on the final outcome.
However, one can use a more sphisticated optimisation based
approach to find these weights based on the data as detailed
in [9].

After obtaining the anomaly score δi = (ω.ϕ(x))− ρ from
each channel i; i = 1, 2, the combined anomaly score δc is
obtained as follows:

δc = a0δ1 + aF δ2 (10)

TABLE I
DETAILS OF THE MCG DATASET.

Date Camera Time Resolution
16-Sep-2011 C2, C5, C6 00:18:01 640× 480
23-Sep-2011 C2, C5, C6 00:22:01 640× 480
24-Sep-2011 C5, C6 00:14:01 640× 480
01-Oct-2011 C6 05:15:01 640× 480

We conduct experiments and evaluation analysis datasets at
the frame-level as well as the pixel-level. So we assign Ψ = 1
if a frame or a pixel is detected as normal (Ψ = 1, δc < η),
Ψ = 0 if it is detected as abnormal. We have experimentally
analysed its impact on the detection accuracy in our evaluation.
Through changing the threshold η, we could derive the ROC
curve in the next section.

V. RESULTS AND DISCUSSION

A. Experimental Setup and Datasets

Experimental Setup. The proposed approach is imple-
mented on Visual Studio 2013 and Matlab 2013b. The code for
calculating the continuous motion maps is written in Matlab.
The experimental laptop is on Windows 10 Intel i7 with
Geforce GTX 1060 NVIDIA graphics card.

Datasets. Table I gives details of the MCG datasets.
In the following section, we evaluate our framework on the

MCG dataset at first, and then in the second experiment, we
test on two benchmark datasets UCSD and Subway, and then
compare with other state-of-the-art (SOTA) methods. Finally,
we conduct experiments on different cameras and different
episodes of the MCG datasets for episode evaluation, to see
whether the brightness conditions and pre-training time affect
the detection performance.

B. Quantitative Evaluation on MCG Dataset

Parameter Setting. For the first layer of SDAEs, the
number of neurons is set to be 1000, followed by reducing
by half each time in the rest of layers. We use four layers
in the encoder part, so the numbers of neurons are defined
as: 1000 → 500 → 250 → 125. For the decoder part, it is
symmetric to the encoder. In the training phase, the parameter
of adding Gaussian noise is set to 0.0001 and the learning rate
is set to λF = 0.0001. In the parameters of the DBN, the pre-
training learning rate is set to 0.001−0.01 and fine tuning rate
is 0.11. The number of epochs is 10 and 20 for pre-training
and fine tuning, respectively. The parameters of the PSVMs
are tuned based on the Quick Model Selection approach
as in [16]. γ(2−15, 2−13, ..., 23) and C(2−5, 2−3, ..., 215) are
used for the RBF kernel and PSVM, and selected using cross
validation. In terms of fusion scheme weights, we have used
a systematic search for the parameter value A = [a0, aF ],
and our experimental results showed little change, so we
choose [0.6, 0.4] as the fusion scheme weights with the highest
accuracy.

Frame-level based Anomalous Event Detection. A frame
is labeled as abnormal if there is at least one anomalous
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Fig. 5. ROC Curve for MCG datasets 16-Sep-Camera 2, 16-Sep-Camera 5, 16-Sep-Camera 6 and Example Detection Results, (a) Detection at Frame-level,
(b) Detection at Pixel-level, (c) Example Detection results of C2, C5 and C6.

TABLE II
AUC AND EER RESULT AT FRAME-LEVEL AND PIXEL-LEVEL ON MCG

16-SEP-CAMERA2, 16-SEP-CAMERA5 AND 16-SEP-CAMERA6
DATASETS.

Date Frame-level Pixel-level
AUC EER AUC EER

16-Sep-C2 85.4% 20.0% 67.6% 35.0%
16-Sep-C5 70.1% 35.0% 64.1% 40.2%
16-Sep-C6 79.1% 23.0% 70.4% 30.7%

object [21]. So abnormal event detection at the frame-level is
to detect these frames. In this subsection, we analyzed MCG
datasets 16-Sep-2011-C2, 16-Sep-2011-C5 and 16-Sep-2011-
C6. The detection result is demonstrated using a ROC curve
through changing the threshold η, where the x-axis denotes
the false positive rate (FPR) and the y-axis is the true positive
rate (TPR). The FPR is those frames that are normal in the
ground truth but detected as abnormal, TPR is those frames
that are anomalous for both ground truth and detection result.
The ROC curves for the MCG datasets are shown in Fig. 5.a.

Then, we utilize Area Under the ROC Curve (AUC) and
Equal Error Rate (EER) for quantitative evaluation. EER
denotes the value when the false positive rate is equal to the
false negative rate. In Table II, we report the AUC and EER
of testing on MCG dataset 16-Sep-2011-Camera 2, Camera 5
and Camera 6 at the frame-level.

We can see the results of 16Sep-C2 and 16Sep-C6 are quite
competitive. However, the result of 16Sep-C5 is not as good
as the other two. The reason is the scene in Camera 5 is quite
complex (quite dark, blurred and crowded).

Pixel-level based Anomalous Event Detection. In terms
of pixel-level detection, if the detected part is more than 40%
of the real abnormal pixels, this detection will be identified
as a true positive. On the other hand, if at least one pixel
in a normal frame is detected as anomalous, it is identified
as a false positive. The results of these three cameras are
shown as ROC curves in Fig. 5.b, and the AUC and EER
is reported in Table II. We can see that the behavior is similar
to the frame-level detection. Note that this feature extraction

(a) (b)
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Fig. 6. ROC Curve for UCSD Ped1 dataset, (a) Detection at Frame-level, (b)
Detection at Pixel-level.

approach is mainly based on the lighting conditions. If the
lighting condition is good enough, our approach can achieve
very good performance, but the results can deteriorate in some
dark and blurry scenes. Therefore, an important direction for
future research is to find methods that can reduce the impact
of changes in brightness.

C. Quantitative Analysis on UCSD and Subway Datasets

In this subsection, we apply our architecture on two bench-
mark datasets: UCSD Pedestrian dataset 1 (UCSD Ped1) [5]
and Subway [22] datasets. The UCSD Ped1 dataset [5] is
obtained from a surveillance camera on a pedestrian walkway
that contains 34 video sequences in training dataset (the
scenarios in the category are all normal) and 36 videos
in test dataset (which contains abnormal events). Subway
dataset [22] is a subway station scene, where anomalous
behavior corresponds to moving in the wrong direction. This
has two sequences containing entrances (144249 frames) and
exit (64900 frames).

In terms of parameter settings, we change the number of
neurons of the encoder part to be 1024 → 512 → 256 →
128, the parameter of adding Gaussian noise is changed to be
0.0003, and the learning rate is fixed to be λF = 0.001. The
parameter set of DBN and PSVM are the same as the MCG
experiment. A = [a0, aF ] is also set to [0.6, 0.4].

For the UCSD Ped1 dataset, we evaluate the performance at
both frame-level and pixel-level. The results are demonstrated

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-19570.pdf- 6 -



TABLE III
SOTA APPROACHES COMPARISON IN TERMS OF AUC AND EER.

FRAME-LEVEL AND PIXEL-LEVEL DETECTION RESULTS ON UCSD
DATASET.

Method Frame-level Pixel-level
AUC EER AUC EER

SRC [23] 86.0% 19.0% 45.3% 54.0%
150 FPS [24] 91.8% 15.0% 63.8% 43.0%
MPPCA [8] 67.0% 40.0% 19.0% 44.1%

SF- MPPCA [5] 76.9% 32.0% 21.3% 71.0%
Adam [22] 64.9% 38.0% 19.7% 76.0%
MDT [5] 81.8% 25.0% 44.1% 58.0%
SF [25] 76.8% 31.0% 21.3% 71.0%

H-MDT [21] - 17.8% 66.2% 35.2%
AMDN [9] 92.1% 16.0% 67.2% 40.1%
TCP [11] 95.7% 8.9% 63.4% 41.4%

LSTMs [26] 92.8% 11.5% 71.7% 36.3%
Our Method 94.3% 10.0% 70.3% 34.0%

TABLE IV
SOTA APPROACHES COMPARISON IN TERMS OF AUC AND EER.

FRAME-LEVEL DETECTION ON SUBWAY DATASET.

Method Entrance Exit
AUC EER AUC EER

SRC [23] 83.3% 24.4% 80.2% 26.4%
Saligrama [27] - - 88.4% 17.9%

MDT [5] 90.8% 16.7% 90.2% 16.4%
FCNs [10] 90.1% 17.4% 89.7% 16.2%

Our Method 90.5% 16.9% 90.8% 15.4%

as ROC curves in Fig. 6. For the Subway dataset, it is tested
on a frame-level. Table III and IV show a comparison of our
proposed method with other state-of-the-art (SOTA) methods
on the UCSD and Subway dataset, respectively. In terms of
the UCSD Ped1 dataset, our approach has better performance
than most previous methods, and it is comparable with the best
baseline [11]. For the Subway dataset, our method outperforms
all the competing approaches. Some visualized results are
demonstrated in Fig. 7.a (UCSD Ped1 dataset) and Fig. 7.b
(Subway dataset).

Fig. 7. Examples of anomalous detection on the (a) UCSD dataset, (b)
Subway dataset.

TABLE V
MCG DATASET: ACCURACY OF TRAINING 1000 FRAMES FROM

16-SEP-C2, 1000 FRAMES FROM A MIXTURE WITH 16-SEP-C2 AND
23-SEP-C2, AND 2000 FRAMES FROM A MIXTURE WITH 16-SEP-C2

AND 23-SEP-C2.

Datasets Frames Accuracy
16-Sep-C2 1000 85.4%

16-Sep-C2 and 23-Sep-C2 500 (each) 84.7%
16-Sep-C2 and 23-Sep-C2 1000 (each) 85.1%

D. Episode Evaluation on MCG Dataset

We also conducted two experiments on the MCG dataset
using different cameras and different episodes in order to test:
1) How does the accuracy change as a result of increasing the
amount of training data? 2) How does the accuracy change as
a result of increasing the number of episodes in the training
data? 3) What is the effect of different episodes? 4) What
can we do to decrease the impact of changing illumination
conditions and crowdedness? In the following experiments, we
use a fixed threshold, and report the accuracy of frame-level
based detection.

Different Episodes from the Same Camera. We aim to
analyze how the accuracy changes by increasing the amount of
training data and number of episodes. We train the model using
1000 frames from 16-Sep-C2 at first, then, using a mixture
dataset with 500 frames from 16-Sep-C2 and 500 frames from
23-Sep-C2 (16-Sep-C2 and 23-Sep-C2 are different episodes
from Camera 2). After that, we use 1000 frames from 16-Sep-
C2 and 1000 frames from 23-Sep-C2 as the training data. We
only change the training and keep the same testing data. The
results are given in Table V.

As shown in Table V, the obtained accuracy of training using
1000 frames from 16-Sep-C2 is slightly higher than using 500
frames from 16-Sep-C2 and 500 frames from 23-Sep-C2. It
shows that although accuracy is influenced by using different
episodes with different influence weights, our architecture can
handle this change. By comparing the accuracy of the latter
two cases, each episode that provides 500 frames has similar
performance compared with the case where each one provides
1000 frames. Therefore, accuracy is insensitive to different
numbers of pre-training frames. In general, our architecture
can guarantee detection performance using a small amount
pre-training frames, so it decreases training speed and com-
putational complexity.

Different Episodes from Different Cameras. We conduct
a quantitative analysis of how the individual episodes actually
influence accuracy, and how to decrease the impact of some
episodes with darker and blurred scenes. Therefore, we train:

1) Sequence1: 16-Sep-C2 and 23-Sep-C2 (Mixture episode),
each episode provides 1000 frames. We observe the accuracy
and the relative change compared with training 1000 frames
from 16-Sep-C2 (Single episode). The scenario condition of
these two episodes are similar.

2) Sequence2: 16-Sep-C5, 23-Sep-C5 and 24-Sep-C5, each
episode provides 1000 frames. We observe the accuracy and
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TABLE VI
MCG DATASET: QUANTITATIVE ANALYSIS OF USING DIFFERENT

EPISODES AS TRAINING DATA.

Datasets Mixture Single Relative
Episode Episode Change

Sequence1 85.1% 85.4% - 0.4%
Sequence2 74.2% 70.7% 4.7%
Sequence3 74.6% 70.7% 5.2%

the relative change compared with training 1000 frames from
16-Sep-C5.

3) Sequence3: 16-Sep-C5, 23-Sep-C5, 24-Sep-C5 and 01-
Oct-C5, each episode provides 1000 frames. We observe the
accuracy and the relative change compared with training 1000
frames from 16-Sep-C5. The conditions of episode 16-Sep-C5
are different from 23-Sep-C5, 24-Sep-C5 and 01-Oct-C5, as
16-Sep-C5 is dark and blurred.

For sequence1, we use the rest of 16-Sep-C2 video as test
data. For sequence2 and sequence3, the rest of the 16-Sep-C5
video is used as test data. The results are reported in Table
VI. Table VI shows that the impact of using more training
data is less than the impact of using episodes with different
illumination conditions and video quality. Further, the episode
with better conditions can balance out the influence of an
episode with bad conditions.

VI. CONCLUSIONS

This paper presents a novel framework for anomalous
activity detection. This method is based on the context and
scenario properties of video, which can depict the activity of
moving objects. An approach is proposed to estimate crowd
features using deep learning in order to build continuous
motion maps, which are then used as the input to a SDAE
in order to learn the feature representation automatically. We
then combine this with a hybrid model DBN-PSVM and a
fusion scheme to perform the final abnormal event detection.
Experimental results on a real-world dataset from a major
sports stadium demonstrate that this framework can perform
frame-level and pixel-level anomalous behavior detection like
standing or loitering among a crowd of people. We also test
on two benchmark datasets and compare with other state-
of-the-art methods. It shows that our approach outperforms
these baseline methods. Furthermore, we have provided a
quantitative analysis of the impact of the number, duration
and lighting conditions of different training episodes on the
accuracy of abnormal event detection.
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