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Abstract—Software-defined radios (SDRs) with substantial
cognitive (computing) and networking capabilities provide an
opportunity for observing radio communications in an area
and potentially identifying malicious rogue agents. Assuming a
prevalence of encryption methods, a cognitive network of such
SDRs can be used as a low-cost and flexible scanner/sensor
array for distributed detection of anomalous communications
by focusing on their statistical characteristics. Identifying rogue
agents based on their wireless communications patterns is not a
trivial task, especially when they deliberately try to mask their
activities. We address this problem using a novel framework that
utilizes adversarial learning, non-linear data transformations to
minimize the rogue agent’s attempts at masking their activities,
and game theory to predict the behavior of rogue agents and take
the necessary countermeasures. Adopting One-Class Support
Vector Machines (OCSVMs) as an unsupervised learning method,
we show that under adversarial conditions, selective nonlinear
random projections can be leveraged to increase the attack
resistance of OCSVMs. Experiments with benchmark data sets
and OMNET++ simulations of specific communications scenarios
illustrate the benefits of our framework numerically.

I. INTRODUCTION

In a given populated area (e.g., a city block in an urban
area), a multitude of individuals communicate with each
other using various communication methods. Individuals use
a plethora of devices for communication purposes, and such
devices may utilize infrastructure provided by third parties
such as mobile network providers as well as peer-to-peer
communications. While a majority of parties utilize such
devices for innocuous, day-to-day activities (civilians), there
may be a few malicious individuals (rogue agents) whose
purpose is to cause harm and disrupt the lives of others. The
communications between individuals is increasingly encrypted
at various layers for privacy reasons. It is natural to assume
that rogue agents prefer to conceal their radio communications
among the civilian (background) radio traffic while enjoying
the privacy protection provided by encryption systems.

Recent advances in software-defined radios (SDRs) and
cognitive networking technologies provide an opportunity for
identifying rogue agents by observing radio communications
in an area. A cognitive network of software-defined radios
can be used as a low-cost and flexible scanner/sensor array
for distributed observation of the radio spectrum, focusing

on statistical characteristics of the communication patterns.
The cheap and small-sized SDRs such as RTL-SDR mini
receivers [12] can be deployed in UAVs, vehicles, and even
on individuals, as part of an intelligent defense network,
covering a broad range of the radio spectrum from MHz to
GHz frequencies (Figure 1). The distributed nature of the
proposed SDR network is necessary for identifying potential
rogue agents for further investigation, especially taking into
account the often peer-to-peer nature of such communications.

Fig. 1: A representation of the SDR listeners (blue), civilians
(green) and rogue agents (red) in OMNET++.

Identifying rogue agents based on their wireless commu-
nication patterns is not a trivial task, especially when they
deliberately try to mask their activities. An inherent assump-
tion we make is that communication patterns of the rouge
agents differ from those of regular background traffic to some
degree, otherwise, the detection problem would be infeasible.
We propose to address this problem using a unique anomaly
detection framework that utilizes non-linear data transforma-
tions to minimize the rogue agent’s attempts to mask their
activities, unsupervised adversarial learning for classification,
and game theory to predict the behavior of rogue agents and
take the necessary countermeasures. Unsupervised learning
discovers patterns in data and identifies data points that do



not conform to the learned patterns, i.e., anomalies/outliers.
The above scenario can be posed as an anomaly detection
problem where the learner creates a representation of normal
data (i.e., civilians) using the data captured by the sensors
and attempts to identify anomalies (i.e., rogue agents). Many
machine learning methods, such as One-Class Support Vector
Machines (OCSVM) [17], have been proven to be effective in
anomaly detection applications. Although they are designed
to withstand the effects of random noise in data, their perfor-
mance may degrade significantly when adversaries deliberately
alter the input data.

By distorting the input data used by a learning algorithm,
the adversaries can force a learner to learn a model that
favors the adversary. In the above scenario, if the rogue agents
alter their communication patterns in a targeted manner during
the initial stages of system deployment, they would be able
to inject malicious data points into the dataset that will be
used by the learner to create the anomaly detection model. A
sophisticated adversary has the capacity to conduct an attack in
numerous ways [10]. Therefore, it is not feasible to provide a
general analysis that covers the whole range of attacks, across
different machine learning algorithms. In this work, we focus
on integrity attacks, where the adversary deliberately poisons
the training data used by the learner in order to make them
learn a compromised decision boundary that exaggerates the
region where normal data points (civilians) lie. Subsequently,
during the evaluation phase (i.e., when the sensor network is
used to identify rogue agents), the rogue agents would be able
to make the learner classify them as civilians by making minor
alterations to their regular communication patterns.

The main components of the framework we introduce are
as follows. The learner leverages the theory of low rank kernel
approximation (using non-linear projections) which facilitates
large-scale, data-oriented, multi-agent decisions by reducing
the number of optimization parameters and variables. Recent
work in the literature shows that nonlinear random projections
improve the training and evaluation times of kernel machines,
without significantly compromising the accuracy of the trained
models [7], [15]. In this paper, we show that under adversarial
conditions, selective nonlinear random projections can be
leveraged to increase the attack resistance of unsupervised
classifiers (e.g., OCSVMs) as well. In addition, we design a
security game [1] and model the adversary-learner interaction
as a non-cooperative, two-player, nonzero-sum game with the
strategies and utility functions formulated around a nonlinear
data projection based algorithm that reduces the effects of
integrity attacks against OCSVMs. The equilibrium solutions
obtained from the game can be used to predict the adversary’s
behavior and decide a suitable configuration for the learner [2].

The main contributions of this work are summarized as
follows:

1) We introduce a unique framework that uses unsupervised
learning, low rank kernel approximation in selective
directions and game theory that can be applied in sit-
uations where adversaries try to evade learning systems
by poisoning the training data used by the learners.

2) As part of this framework, we introduce a novel in-
dex to identify suitable directions for nonlinear data
transformations and study the resistance added by such
transformations against an adversarial opponent through
numerical experiments on several benchmark datasets.

3) We pose the problem of finding an appropriate defence
mechanism as a game and find the Nash equilibrium
solution that gives us insights into what the attacker may
do and what precautionary strategy the learner should
take.

4) We show through numerical experiments conducted with
benchmark data sets as well as OMNET++ simulations
that our proposed approach can (i) increase the attack
resistance of OCSVMs under adversarial conditions,
and (ii) give the learner a significant advantage from a
security perspective by adding a layer of unpredictability
through the randomness of the data transformation,
making it very difficult for the adversary to guess the
projection mechanism used by the learner.

II. BACKGROUND AND RELATED WORK

As our proposed approach on adversarial learning for
anomaly detection is based on randomized kernels, in this
section we briefly review these two lines of research.

A. Randomized Kernels for SVMs

To improve the efficiency of kernel machines, [15] embed-
ded a random projection into the kernel formulation. They in-
troduced a novel, data independent method (Random Kitchen
Sinks (RKS)) that approximates a kernel function by mapping
the dataset to a relatively low dimensional randomized fea-
ture space. Instead of relying on the implicit transformation
provided by the kernel trick, Rahimi and Recht explicitly
mapped the data to a low-dimensional Euclidean inner product
space using a randomized feature map z : Rd → Rr.
Subsequently, [13] introduced a transformation method that
has lower time and space complexities compared to RKS.

More recently, the method of [15] has been applied to
other types of kernel machines. [7] introduced Randomized
One-class SVMs (R1SVM), an unsupervised anomaly detec-
tion technique that uses randomized, nonlinear features in
conjunction with a linear kernel. They reported that R1SVM
reduces the training and evaluation times of OCSVMs by
up to two orders of magnitude without compromising the
accuracy of the predictor. Our work differs from these as
we look at random projections as a defense mechanism for
OCSVMs under adversarial conditions. However, to the best
of our knowledge, no existing work adopts Rahimi and Recht’s
method to address adversarial learning for anomaly detection
with OCSVMs.

B. Learning under adversarial conditions

The problem of adversarial learning has inspired a wide
range of research from the machine learning community,
see [3] for a survey. For example, [19] introduced an Adversar-
ial SVM (AD-SVM) model. AD-SVM incorporated additional



constraint conditions to the binary SVM optimization problem
in order to thwart an adversary’s attacks. Their model leads to
unsatisfactory results when the severity of real attacks differs
from the expected attack severity by the model. While we gain
valuable insights regarding attack strategies from this work,
the defense mechanism in our work is significantly different.
Furthermore, our work primarily focuses on unsupervised
learning, whereas [19] uses a binary SVM. [5] introduced a
poisoning attack algorithm that finds the optimal attack point
by maximizing the hinge loss of a binary SVM when tested
on a validation set. They assume that the adversary is aware
of the learning algorithm and knows the training data used by
the user.

In an online setting, [11] analyzed the effects of adver-
sarial injections on centroid anomaly detection. The centroid
anomaly detection algorithm can be considered as a hard
margin OCSVM. In our work we use a batch learning approach
instead of online training and do not assume a fixed training
dataset size. We also do not assume that the initial dataset
consists of purely innocuous data, which is unrealistic in
situations where data is collected from a real world system.

Previously, [16] used OCSVMs in order to detect anoma-
lous secondary users that provide misleading observations in
cognitive radio networks. They utilized anomaly detection in
a scenario where a central node is attempting to determine if a
spectrum is being utilized by a primary user or not, with one
or many malicious users providing false information in order
to force the central node make an incorrect decision. While
their work is in the same application domain, the methodology
and the attack type differ from this work.

Deep Neural Networks (DNNs) have been shown to be
robust to noise in the input [8], but are unable to withstand
carefully crafted adversarial data [9]. While these works are
in the same domain, they are not directly related to our work,
which uses OCSVMs and kernels.

This paper presents a novel framework comprising adversar-
ial learning, anomaly detection using OCSVMs, randomized
kernels, and game-theoretic analysis. To the best of our knowl-
edge, no existing work has explored this unique combination.

III. PROBLEM DEFINITION

We consider an adversarial learning problem for anomaly
detection in the presence of a malicious adversary. The adver-
sary’s ultimate goal is to smuggle specially crafted adversarial
data points past the decision boundary of the learner during
testing, which we identify as false negatives (i.e., anomalies
classified as normal). To succeed in this, the attacker would
inject malicious data during training in order to alter the
decision boundary of the learner in a manner favorable to him.
Subsequently, during the testing phase, it would be easier for
the attacker to craft adversarial data points that still retain
their harmful qualities, but are classified by the learner as
innocuous.

For example, consider the illustrative example of digit ‘9’ as
the normal class and digit ‘7’ as the anomaly class. Intuitively,
an anomaly detection algorithm would attempt to identify the

(a) Anomaly (b) 0.2 (c) 0.5 (d) 0.8

Fig. 2: A digit from anomaly class (‘7’) perturbed by the
adversary using different sattack values to appear like a digit
from the normal class (‘9’).

smallest hypersphere that contains the images of digit ‘9’. The
objective of the adversary in such a situation would be to
maximize the radius of the minimum enclosing hypersphere.
The adversary can achieve this by injecting data points (i.e.,
images) that are in between digit ‘7’ and digit ‘9’ into the
training set. Consider a parameter sattack ∈ [0, 1] that controls
the severity of the attack. An image of digit ‘7’ that closely
resembles a digit ‘9’ (small sattack) would be considered as
a moderate attack, whereas, digit ‘7’ that actually resembles
a ‘7’ (large sattack) would be considered a severe attack. For
example, as Figure 2 shows, when a digit ‘7’ is perturbed with
less severity (e.g., 0.2), it resembles a ‘9’ visually, but as the
attack severity increases, the digit tends to look like a ‘7’ even
though the learner considers it as a ‘9’.

In the context of the SDR application scenario we are
interested in, the rogue agents would be the adversaries who
wish to make the learner classify anomalies (i.e., rogue agents)
as normal data points (i.e., civilians) during the evaluation
phase. To achieve this, they would first poison the training
data used by the learner (i.e., change their habitual communi-
cation patterns to resemble that of civilians to some extent).
Note that the rogue agents would not want to have identical
communication patterns as the civilians as that would require
them to use third party infrastructure as well frequent and
lengthy transmissions. As the learner cannot distinguish the
radio signals of the rogue agents from those of the civilians,
the learner would use the entire dataset collected by the sensors
to train the anomaly detection model (most anomaly detection
algorithms assume that the majority of the training set contains
normal data). This would result in a deformed representation
of the normal data in the learned model. Therefore, during
the evaluation (operational) phase, the rogue agents would be
able to evade the classifier without having to use identical
communication patterns to those of the civilians.

IV. ATTACK MODEL

This section presents the method used for generating ad-
versarial samples for benchmark datasets. In the network
simulation, where we have access to the data generating
system, the adversarial samples are generated by changing the
parameters that define the behavior of the rogue agents.

In the context of OCSVMs, the decision boundary (i.e.,
the separating hyperplane) is located closer to the normal
data cloud and the unperturbed anomalies lie close to the
origin. The adversary would perturb anomalies in order to
shift them closer to the normal data cloud. Since the OCSVM



algorithm considers all the data points in the training set to
be from a single class, these distorted anomalies would shift
the separating hyperplane in the direction of the attack points
(towards the origin).

The adversary is able to orchestrate different attacks by
changing the percentage of distorted anomaly data points in
the training dataset (i.e., pattack) in addition to the severity
of the distortion (i.e., sattack). Figure 3 illustrates the data
distributions when different levels of attack severities are
applied to the anomaly data. As sattack increases, the anomaly
data points are moved closer to the origin, reducing the gap
between the origin and the separating hyperplane.
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Fig. 3: Training data distribution and separating hyperplane
(black line) of a toy problem under different attack severities.
‘o’ (blue) denotes the undistorted data points and ‘x’ (red) de-
notes the data points distorted by the adversary. The OCSVM
is trained using the entire (unlabeled) dataset as normal.

Let X ∈ Rn×d be the training dataset and D ∈ Rn×d be
the perturbations made by the adversary, making X +D the
training dataset that has been distorted (if the ith data point
is not distorted, Di is a vector of zeros). It should be noted
that the learner cannot demarcate D from (X+D), otherwise
the learner would be able to remove the adversarial distortions
during training, making the problem trivial. The adversary has
the freedom to determine D based on the knowledge it pos-
sesses regarding the learning system, although the magnitude
of D is usually bounded due to its limited knowledge about the
learners’ configuration, the increased risk of being discovered,
and computational constraints.

The attack model used is inspired by the restrained attack
model described by [19] where it is assumed that the adversary
has the capability to move any data point in any direction by
adding a non-zero displacement vector κi to xi. It is also
assumed that the adversary does not have any knowledge
about the projection used by the learner. Therefore, all of the
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Fig. 4: Flowchart of the defense framework.

adversary’s actions take place in the input space. The adversary
picks a target xti for each xi to be distorted and moves it
towards the target by some amount. Choosing xti for each xi
optimally requires a significant level of computational effort
and a thorough knowledge about the distribution of the data.
The attacker, similar to [19], uses the centroid of the normal
data cloud in the training set as the target point for all anomaly
data points that it intends to distort. For each attribute j in the
original feature space, the adversary is able to add κij to xij ,
where

κij = (1− sattack)(xtij − xij),
|κij | ≤ |xtij − xij |,∀j ∈ d.

(1)

V. DEFENSE FRAMEWORK

The novel defence framework introduced in this paper has
three main components: (1) a randomized projection that
increases attack resistance due to use of a novel metric, (2)
an unsupervised classifier (OCSVM), and (3) a game-theoretic
model that supports defensive decision-making (Figure 4).

In order to increase the attack resistance of a learning
system, the impact of adversarial inputs should be minimized.
Therefore, at the heart of our framework we use a projection
mechanism that projects data points to lower dimensional
spaces in a manner that conceals the potential distortions of an
adversary. The learner projects the data to a lower dimensional
space using a projection matrix A ∈ Rd×r, comprised of
elements randomly sampled from a normal distribution, i.e.,
(X + D)A. Each ithsample (X + D)i is then non-linearly
transformed using the function

z((X +D)i) =

√
2

r
cos
(√

2γ(X +D)iA+ b
)
, (2)

where γ is a parameter taken from the RBF kernel being ap-
proximated, r is the dimension to which the data is projected,
d is the input space dimension and b is a r-dimensional vector
whose elements are drawn uniformly from [0, 2π] [15].

By randomly drawing projection directions from some dis-
tribution, the learner also introduces a layer of uncertainty to
the adversary-learner problem. For high dimensional datasets,
this method gives the learner considerate flexibility to select
the dimension to which the data is projected, as well as
the direction, which gives a significant advantage from a
security perspective. But this unpredictability can also be seen
as the main caveat of using random projections to reduce
the dimensionality of data. While some random projections
result in better separated volumetric clouds than the original
ones, some projections result in the data from different classes
being overlapped. As the learner cannot demarcate D from the



training data, it is not possible to identify an ideal projection
that conceals the adversarial distortions. Thus, the learner
would have to select a projection that contracts the entire
training set (expecting the adversarial points to be masked by
normal data) and separates the training data from the origin
with the largest margin in the transformed space.

Therefore, motivated by a generalized version of Dunn’s
index [4], we propose a compactness measure to rank suitable
projection directions in a one-class problem. The learner would
draw multiple samples from a normal distribution for the
projection matrix A and rank them using Equation 3. The
projection direction A that gives the highest compactness value
would be considered as the projection that gives the best attack
resistance. The compactness of projection Pi, where µi is
the centroid of the projected training set, 0 is the origin in
the transformed space, and the function d is the Euclidean
distance, can be calculated as

compactness of Pi =
d(0, µi)(∑

x∈Pi
d(x, µi)

)
/n
. (3)

The approach used by the learner to identify suitable projection
directions is formalized in Algorithm 1 in terms of the random
projection parameters A and b, the dimension of the projected
dataset r and the adversary’s data distortion strategy D.

Algorithm 1 Identifying compact projections
1: input X +D,Xtest,r,sample count N
2: A

′
, b
′
← null . transformation parameters

3: for i← 1, N do . nonlinearly transform
4: [(X +D)∗, A, b]← z(X +D)
5: compactness← calculate compactness((X +D)∗) .

calculate compactness. (Equation 3)
6: if compactness > max compactness then
7: max compactness← compactness
8: best transformation← (X +D)∗

9: A
′
← A and b

′
← b

10: end if
11: end for
12: output A

′
, b
′

. Return best transformation parameters

The next component in our framework would be the
anomaly detection algorithm. The anomaly detection prob-
lem is addressed in this paper using the OCSVM algorithm
in [17], which separates the training data from the origin
with a maximal margin in the transformed space. Since the
above transformation approximates the RBF kernel in the
lower dimensional space, a linear kernel can be used on the
transformed data.

A. Game Formulation

In the final component of our framework, we pose the
aforementioned problem as a bimatrix game due to the innate
information asymmetry present. By formulating a game based
on the adversary-learner interaction, the learner can (i) predict
the possible actions of the adversary, and (ii) decide what
actions to take in order to thwart the adversary’s attempts.

The adversary is unaware of the learner’s configuration and
projections used, but it is capable of evaluating the learned

model by sending adversarial samples during testing. Simi-
larly, the learner is unaware of the details of the adversary’s
attack, but it is able to simulate attacks during the training
process. Since the adversary can vary the severity of the attacks
by changing their communication parameters during training,
we select four such communication patterns as the finite set
of actions available for the adversary. If the adversary does
not carry out an attack during training, we consider sattack to
be 0. If the rogue agents closely mimic the civilians during
training (resulting in a small shift of the margin) we consider
sattack to be small. Conversely if rogue agents change their
patterns to ones that are significantly different than those of
the civilians, we consider sattack to be larger. Therefore we
choose different sattack levels (keeping pattack constant) as
the finite set of actions available for the adversary. As the
learner uses the projection based method to detect adversarial
samples, the dimensions to which the data is projected will be
used as the set of actions available for the learner.

xA ∈ {0, 0.3, 0.4, 0.5},
xL ∈ {20%, 40%, 60%, 80%, 100%}.

(4)

A bimatrix game is comprised of two (m×n) matrices, A =
{ai,j} and B = {bi,j} where each pair of entries (ai,j , bi,j)
denotes the outcome of the game corresponding to a particular
pair of decisions made by the players. These entries in the
matrix are populated by the players’ utility functions, UA and
UL. A pair of strategies (ai∗,j∗ , bi∗,j∗) is said to be a non-
cooperative Nash equilibrium outcome of the bimatrix game if
there is no incentive for any unilateral deviation by any one of
the players. While it is possible to have a scenario where there
is no Nash equilibrium solution in pure strategies, there would
always be a Nash equilibrium solution in mixed strategies [14].

Due to the adversary’s ability to evaluate the model during
testing (i.e., calculating the false negative rate (FNR)), we
design UA to reflect his desire to achieve false negatives and
to penalize large adversarial perturbations. This is because if
the adversary greedily perturbs data, it would result in the
distortions becoming quite evident and increase the risk of the
attack being discovered. Similarly, the learner’s utility function
reflects his desire to achieve high classification accuracies.
Note that a linear transformation of either of the utility
functions would not change the outcome of the game, therefore
the scalar values in the following can be modified without
affecting the overall outcome. The utility functions of the two
players are defined as

UA(xA, xL) = 1 + FNR− 1

2
sattack,

UL(xA, xL) = f -score.
(5)

VI. NETWORK SIMULATION

Simulations are preformed using the INET framework for
OMNeT++ (datasets available at [18]). In order to conduct
a realistic simulation, signal attenuation, signal interference,
background noise and limited radio ranges are considered.
The nodes (civilians, rogue agents and listeners) are placed
randomly within the given confined area. The simulation is



conducted for 4 hours, with the civilians and rogue agents
shifting their positions every hour. Refer to Figure 1 for a
simplified representation of how the different individuals are
placed in the simulation environment.

The simulator allows control of the frequencies and bit
rates of the transmitter radios, their communication ranges,
message sending intervals, message lengths, sensitivity of the
receivers, minimum energy detection of receivers among other
parameters. It is assumed that all nodes communicate securely,
therefore the listeners are unable to access the content of the
captured messages. The following features are obtained using
the data captured by the listeners,
• Duration of reception
• Message length
• Inter arrival time (IAT)
• Carrier frequency
• Bandwidth
• Bitrate
Since the objective is to classify transmission sources,

we consider the data received by the three closest listeners
(using the power of the received signal) of each transmission
source. The duration, message length and IAT of the messages
received by each listener is averaged every five minutes, which
results in 108 (12× 3× 3) features in total. Adding the latter
three parameters (fixed for each transmission source) gives the
full feature vector of 111 features.

Using the collected data, we create two training datasets,
trainC , trainD and two test datasets testC and testD. The two
training datasets consist of 95% civilian data points and 5%
rogue agent data points, while the two test datasets consist of
80% civilian data points and 20% rogue agent data points.
In both trainD and testD, the rogue agent data points are
perturbed (i.e., they deliberately changed their communication
patterns to deceive the learner).

We choose 20%, 40%, 60% and 80% of the input dimension
as the dimensions to which the datasets are transformed.
By doing a grid search for parameters, we set ν = 0.13
and γ = 0.009. Identical parameter values are used in the
OCSVM with a RBF kernel in the input space as well as in
the OCSVMs that used kernel approximations in the lower
dimensional spaces. For statistical significance, we conduct
the experiments multiple times using different seeds for the
random number generator. The average results for the f-score
and FNR are shown in Figure 5d and 7d for the different
dimensions.

VII. NUMERICAL EXPERIMENTS ON BENCHMARK
DATASETS

A. Benchmark datasets

We demonstrate the effectiveness of our proposed defense
mechanism on three benchmark datasets: MNIST, CIFAR-
10, and SVHN. MNIST contains 28x28 pixel images of
handwritten digits resulting in a feature vector of length
784 for each data point. The SVHN and CIFAR-10 datasets
consist of 32x32 pixel color images resulting in a feature

TABLE I: Datasets used for training and testing purposes.

Dataset Training size Test size Normal Anomaly

MNIST 2,000 1,200 digit ‘9’ digit ‘8’
CIFAR-10 3,650 1,200 airplane truck
SVHN 4,200 1,200 digit ‘8’ digit ‘0’

vector of length 3072 for each data point. We compare the
performance of OCSVMs and nonlinear random projections,
when an active adversary is conducting a directed attack by
maliciously distorting the data.

Datasets: We generate single-class (unlabeled) datasets
considering one of the original classes as the normal class,
and another class in the dataset as the anomaly class. For each
dataset, we create two test sets (with a normal to anomaly ratio
of 5 : 1): (i) a clean test set (called testC) with unperturbed
anomaly data and normal data, (ii) a distorted test set (testD)
with its anomaly points moved closer to the normal data cloud.
Table I gives the class and number of samples used in each
training and test set.

Experimental setup: Different attack scenarios are simu-
lated (creating trainD) by varying the attack severity sattack
and attack percentage pattack. In anomaly detection problems
we usually do not find a large percentage of attack points
within the training set, therefore we choose 5% for pattack
(percentage of perturbed points in the training set). We specif-
ically choose the values 0.3, 0.4, 0.5 and 0.6 for sattack. For
comparison, we test all the attack scenarios with OCSVMs
using the RBF kernel in the input feature space.

For nonlinear transformations, we choose 20%, 40%, 60%
and 80% of the input dimension as the dimensions to which the
datasets are transformed. The test sets are transformed using
the same parameters that give the highest compactness for
the corresponding distorted training set. The learner then uses
the transformed training set to train a OCSVM with a linear
kernel, and the resulting model is evaluated using the test
sets. The popular SVM implementation, LIBSVM library [6]
is used in our experiments. For these experiments the ν
parameter of the OCSVM is kept fixed across all experiments
conducted for each dataset. Since ν sets a lower bound on the
fraction of outliers, it is crucial to keep its value fixed across
different attack scenarios in order to evaluate the interplay
between the adversarial distortions and the performance. As
RBF kernels are used by the learner in the input space, we use
the same gamma values in the low rank kernel approximation
using Equation 2 in order to have identical kernel parameters
in the input feature space as well as the projected spaces.

Accuracy metric: For comparison purposes, we also train
a OCSVM using an undistorted training set (called trainC).
We report the performance against testC and testD using the
f-score. We observed similar patterns for each dataset across
different experiments, but due to space limitations, graphs and
tables of only some are shown.
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(b) CIFAR-10
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Fig. 5: The performance of OCSVMs under attacks on in-
tegrity when the training takes place in different dimensional
spaces. We compare the f-scores of OCSVMs trained on trainC
and trainD against the two test sets: testc and testD.

VIII. RESULTS AND DISCUSSION

Figures 5a-5d present how the f-score is affected by the
non-linear transformation and the adversary’s distortion. For
each number of dimensions, four results are presented; f-
score when: (i) trained using trainC , and tested with testC ;
(ii) trained with trainC and tested with testD; (iii) trained
with trainD and tested with testC ; and finally (iv) trained with
trainD and tested with testD.

First, the classification performance of OCSVMs trained
on nonlinearly transformed data are comparable to the per-
formance of the OCSVM trained on the input feature space,
although they require far less computation time. Therefore, the
range of the y axes in the graphs have been altered so that the
differences can be observed. In some cases (e.g., SVHN where
the images contain parts of the adjacent digits, making the
data noisy) we see that the f-score in the trainC |testC scenario
can be higher in lower dimensional spaces than the input
dimension OCSVM. We speculate that this occurs because a
clearer separation can occur among data points from different
classes when data is projected to a lower dimensional space,
as shown in [7].

We observe that the f-scores of trainD|testD in all four
datasets, across all the dimensions, are less than the f-scores
of trainC |testD. This indicates that a OCSVM trained on
clean data can identify adversarial samples better than a
OCSVM trained on distorted data. Consequently this shows
that OCSVMs are not immune to integrity attacks by design,
and by carefully crafting adversarial data points, adversaries
can manipulate OCSVMs to learn models that are favorable
to them.

A comparison of the f-score in the trainD|testD scenario
shows that, as the dimension is reduced from the original
dimension, the f-scores increase on average. The increase in
f-score confirms that by projecting data to a lower dimensional
space using a carefully selected direction, we can identify
adversarial samples that would not have been identifiable
in the input space. This is confirmed by Figure 7, which
shows the average false negative rates of the OCSVMs under
different levels of integrity attacks. We find that there is a
significant improvement in detecting adversarial samples under
the proposed approach (e.g., 7.25% on SVHN, 23.25% on
CIFAR-10, and 19.26% on MNIST).

For completeness, we also tested the online centroid
anomaly detection approach proposed by [11] in our problem
scenario using the nearest-out replacement policy. The result-
ing anomaly detection model performed very poorly on the
distorted test sets giving a FNR of 1 in all the test cases. We
believe that this is due to two reasons (1) we do not make the
same assumption as the authors that the initial training dataset
only contains normal data, and (2) a hard margin classifier
would not perform well when the data is noisy and has many
dimensions (such as the benchmark datasets that we use).

The effectiveness of the compactness index for selecting
projection directions can be seen by the difference in FNRs
in Figures 7a-7c. Although random projection directions have
resulted in higher FNRs compared to selective projection
directions, it is possible for a randomly sampled direction
to be one that minimizes the adversarial distortions. But the
probability will be low due to the large number of possible
directions available for high dimensional datasets and would
depend significantly on the distribution of the data clouds. An
alternative approach to finding good directions would be to
train an anomaly detection model on every projected dataset
and test its accuracy on a validation set. But the proposed index
would be able to achieve this with much less computational
burden.

Although it is possible to achieve significantly good results
by reducing the dimensionality of data to as low as 20% of
the original number of dimensions, we expect the performance
to decline when it is reduced below a dataset dependent
threshold. We postulate that the explanation of this effect is the
reduction in distance between classes (in this case perturbed
anomalies and normal data points) with the dimension. As
we reduce the dimension of the transformation, we are able
to reduce the effects of the adversarial datapoints. But at the
same time, there is a significant loss of useful information due
to the dimensionality reduction.

Finally, Figure 6 shows the payoff matrix of the adversary
and learner for the game introduced in Section V-A. By
considering the best responses of both players, we obtain the
Nash equilibrium solution to the game, which is sattack = 0.4
and 40% of the original number of dimensions. Based on this
result, we conclude that it is in the best interest of the learner
to always transform data to 40% of the original number of
dimensions in this particular problem.

In summary, the above experiments demonstrate that, (i)
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Fig. 6: The utility matrix of the game depicting the outcomes.
The adversary is the row player and the learner is the column
player and payoffs are displayed as (adversary utility, learner
utility).
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Fig. 7: The FNR of OCSVMs under an integrity attack (i.e.,
trained on trainD and evaluated using testD).

OCSVMs are vulnerable to adversarial attacks on integrity,
(ii) by projecting a distorted dataset to a lower dimension in
an appropriate direction we can increase the robustness of the
learned model w.r.t. integrity attacks, and (iii) the performance
in the projected spaces, when there are no attacks on integrity,
is comparable to that in the original dimensional space, but
with less computational burden.

IX. CONCLUSIONS AND FUTURE WORK

This paper presents a framework for anomaly detection
in the presence of a sophisticated adversary and analyses
its effectiveness numerically. The framework combines non-
linear data transformations in selective directions using a novel
ranking index that we introduce together with unsupervised
anomaly detection using OCSVMs and game theory. The
results suggest that OCSVMs can be significantly affected
if an adversary can manipulate the data on which they are
trained. For each dataset, with very high probability, there
is at least one dimensionality and projection direction that
results in a OCSVM that is able to identify adversarial samples

that would have been missed by a OCSVM in the original
dimensional space. Therefore, our approach can be utilized to
make a learning system secure by (i) reducing the impact of
possible adversarial perturbations by contracting and moving
the normal data cloud away from the origin in the projected
space, and (ii) making it challenging for an adversary to guess
the underlying details of the learner by making its search space
unbounded by adding a layer of randomness.

Directions for future work include: how to optimally select
the number of dimensions to transform the data to, and formu-
lating different games with randomized and more sophisticated
strategies for the players.
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