
A Deep Adversarial Model for Suffix and Remaining Time Prediction of
Event Sequences

Farbod Taymouri ∗ Marcello La Rosa ∗ Sarah M. Erfani ∗

Abstract

Event suffix and remaining time prediction are sequence to

sequence learning tasks. They have wide applications in dif-

ferent areas such as economics, digital health, business pro-

cess management and IT infrastructure monitoring. Times-

tamped event sequences contain ordered events which carry

at least two attributes: the event’s label and its timestamp.

Suffix and remaining time prediction are about obtaining the

most likely continuation of event labels and the remaining

time until the sequence finishes, respectively. Recent deep

learning-based works for such predictions are prone to poten-

tially large prediction errors because of closed-loop training

(i.e., the next event is conditioned on the ground truth of

previous events) and open-loop inference (i.e., the next event

is conditioned on previously predicted events). In this work,

we propose an encoder-decoder architecture for open-loop

training to advance the suffix and remaining time prediction

of event sequences. To capture the joint temporal dynam-

ics of events, we harness the power of adversarial learning

techniques to boost prediction performance. We consider

four real-life datasets and three baselines in our experiments.

The results show improvements up to four times compared to

the state of the art in suffix and remaining time prediction of

event sequences, specifically in the realm of business process

executions. We also show that the obtained improvements

of adversarial training are superior compared to standard

training under the same experimental setup.1

Keywords— Sequence prediction, deep learning, gen-
erative adversarial network, predictive process monitoring,
process mining

1 Introduction

Timestamped event sequences (event sequences for short)
contain ordered events which carry at least two attributes:
the event’s label and its timestamp. The event label may
indicate the label of a corresponding activity being executed,
e.g. the activity of a business process; the event timestamp
indicates when the event has been recorded, e.g. capturing
when the corresponding process activity has been completed.

∗School of Computing and Information Systems, The
University of Melbourne, Melbourne, Australia. E-mail:

{farbod.taymouri, marcello.larosa, sarah.erfani}@unimelb.edu.au
1The code of our tool can be obtained via https://github.

com/farbodtaymouri/MLMME.

Two common prediction tasks for event sequences are
event suffix and remaining time prediction. Given a prefix,
i.e. a partly-complete event sequence, suffix prediction aims
to predict the most likely continuation of that prefix, while
remaining time prediction aims to predict the sequence’s
remaining time, or the time that it will take to complete
the most likely suffix.

These two prediction tasks have various applications, for
example in economics, digital health, business process man-
agement and IT infrastructure monitoring. For example, in
the latter area, suffix and remaining time prediction help
determine how well a given process execution (a so-called
process case, e.g. an order, a purchase request or a claim)
will be performing with respect to its performance measures
and performance objectives [5]. In IT infrastructure moni-
toring, a cloud system that monitors computation tasks and
allocates resources to them can establish their future needs
several steps ahead and prepare the required resources ear-
lier than needed. Therefore, the overall performance of the
system and quality of services can be improved.

Figure 1: Suffix and remaining time prediction in a
cloud system; Each ei = (ai, ti).

In this paper, we are specifically interested in the
following problems: given an ongoing sequence of events,
called the events prefix, and an event log of completed
sequences, we want to predict the most likely continuation
for that events prefix, by determining the sequence of events
labels called the suffix, and the corresponding remaining
time (total duration time of the events suffix) until the case
finishes. Figure 1 depicts the problem we address in this
paper, where an event ei = (ai, ti) has two components, i.e.,
the label and the timestamp. The sequence’s end is denoted
by [EOS].

Recently, suffix and remaining time prediction of times-
tamped event sequences have received great attention in the
process mining field, where said sequences represent busi-
ness process executions. Various approaches have explored
these two prediction tasks, e.g. [7, 22, 12, 2], chiefly using
machine learning models based on Recurrent Neural Net-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

ar
X

iv
:2

10
2.

07
29

8v
1

 [
cs

.L
G

]
 1

5
Fe

b
20

21

https://github.com/farbodtaymouri/MLMME
https://github.com/farbodtaymouri/MLMME

works (RNNs) with Long-Short-Term Memory (LSTM). By
considering event logs recording completed process execu-
tions (also known as cases), train a machine learning model
to predict the next event given an event prefix. Thus, the
suffix of events is predicted by guessing the next event itera-
tively. These approaches are prone to potentially large pre-
diction errors due to the discrepancy between closed-loop
training (i.e., the next event is conditioned on the ground
truth of previous events) and open-loop inference (i.e., the
next event is conditioned on previous predicted events). In
addition, these approaches are limited in predicting a single
suffix for an input prefix rather than providing a set of can-
didate suffixes. Such a set of predictions can be useful for
further analysis, making recommendations, and monitoring
possible risks in the future [18].

The sequence to sequence learning task has been ad-
dressed in other fields. For example, Nallapati et al. [16, 15]
use RNN-based architecture to learn a mapping between a
document and its summarization. The works in [21, 25, 1]
use RNNs to propose various machine translation architec-
tures that translates a text from a source language to its
counterpart in a target language. Such methods consider
time-independent events. In particular, an event is a word
or a character in a sentence. In contrast, in this paper, an
event is time-dependent, i.e., it has a timestamp that shows
its duration time. Such timestamps are essential since they
help to approximate occurrences of events and predict when
a process execution finishes.

This paper proposes an encoder-decoder framework to
learn a mapping from a set of events prefixes to a set of
events suffixes in an end-to-end way where the events are
time-dependent. It allows one for open-loop training which
reduces suffix and remaining time prediction errors. How-
ever, open-loop training does not capture the joint tempo-
ral dynamics of events in ground truth suffixes. Motivated
by Generative Adversarial Nets (GANs) [9], we harness the
power of adversarial training to learn the joint probability
distribution of events suffixes given events prefixes. As such,
the approach helps to capture the joint temporal relation-
ships among ground truth events’ suffixes in order to improve
the accuracy of suffix and remaining time prediction.

In summary, the contribution of this paper is twofold:

• An encoder-decoder architecture for open-loop training
to reduce suffix and remaining time prediction error;

• An adversarial training method to capture joint tem-
poral dynamics of events across time in order to boost
prediction performance.

We implemented our approach in an open-source library
and used this to conduct a battery of experiments using
four real-life datasets and three baselines from the realm of
process mining.

The rest of this paper is organized as follows. The
related work is provided in Sec. 2. The problem definition
is presented in Sec. 3. Section 4 presents the approach
while the evaluation is discussed in Sec. 5. Finally, Sec. 6
concludes the paper and sketches some ideas for future work.

2 Related Work

In this section we discuss previous approaches for suffix
and remaining time prediction of event sequences, with a
specific focus on works in process mining. Next, we discuss
background work in the area of Generative Adversarial
Networks for temporal data, which underpin our approach.

2.1 Suffix and Remaining Time Prediction of
Business Process Executions In the context of pro-
cess mining, LSTM architecture has been the main tool for
various kinds of sequence prediction tasks. Evermann et al.
[7] use the LSTM architecture for the next event predic-
tion of an ongoing case. It uses embedding techniques to
represent categorical variables. Tax et al. [22] propose a
similar architecture based on LSTMs using a one-hot vec-
tor encoding to represent categorical variables. Suffix pre-
diction is made by next event’s label predictions iteratively
using the arg-max operator, i.e., the most probable activ-
ity, it outperforms [7] in terms of next activity, suffix, and
remaining time predictions. Similarly, Camargo et al. [2]
use embedding techniques similar to [7]. This approach un-
like the work in [22, 7] uses other existing data attributes in
process executions for the prediction tasks. Lin et al. [12]
propose a framework based on two LSTMs. This approach
uses a modulator mechanism that utilizes all available infor-
mation in input log, i.e., both event labels and performance
attributes. The experiments show that this approach out-
performs [7, 22, 17], and [2] on some datasets.

Theis et al. [24] train a fully connected model that
predicts the next event only. The experiments show an im-
provement over [22, 7]. The works in [17, 4] uses a Convo-
lutional Neural Network (CNN) using image-like data struc-
ture for the next event’s label prediction task in a running
process execution. The experiments show an improvement
over RNN-based architectures [22, 7]. Taymouri et al. [23]
propose a GAN architecture by invoking an LSTM for both
the discriminator and the generator. The results showed
that it outperforms previous techniques [22, 7, 2, 17] for the
next activity and timestamp prediction.

2.2 Generative Adversarial Networks for Tem-
poral Data Adversarial learning has received considerable
attention due to its capability of generating the synthetic
samples that are similar to the real one [9]. Recently GANs
have been shown to be effective in improving the tempo-
ral dynamics of autoregressive models for time-series data
[26]. Some works directly employ unsupervised objective
by applying GANs framework to sequential data, mainly by
instantiating recurrent networks for the roles of generator
and discriminator. For example, Esteban et al. [6] propose
Recurrent Conditional GAN (RCGAN) to produce realistic
real-valued multi-dimensional time series for medical appli-
cations. The work in [14] proposes (Continuous RNN-GAN)
adversarial training using LSTM networks for generator and
discriminator to model the whole joint probability of a real-
values sequence that can be used for music production. On
the other hand, the recent work [26], combines the flexibility

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

of the unsupervised paradigm with the supervised training
for various continuous-valued time-series prediction tasks.
Indeed, supervised and adversarial objectives encounter the
network to adhere to the dynamics of the training data dur-
ing training. Experiments show this approach outperforms
baselines in predictive ability of time-series.

While these methods’ motivation is similar to ours
in accounting for various temporal data prediction tasks,
they consider continuous-valued time-series data. Indeed
despite compelling results, little attention has been paid
time-dependent events that are discrete-values.

3 Problem Statement

In this section, we first define the preliminaries, and then we
present the suffix and remaining time prediction formally.

In the suffix and remaining time prediction, the
dataset, i.e., event log, is a set of sequences (process
executions or traces) L = {σ(1), σ(2), . . . , σ(l)}, where
l is the size of dataset. The i-th process execution
σ(i) = 〈e1, e2, . . . , en〉 contains a sequence of n events,
i.e., |σ(i)| = n. An event ej = (aj , tj) has two attributes
where the former is the event’s label, i.e., an activity,
and the latter is the event’s duration time, i.e., the
required execution time. For a given process execution
σ(i)=〈(a1, t1), (a2, t2), . . . , (am, tm)〉, the prefix of events of

length k is defined by σ
(i)
≤k=〈(a1, t1), (a2, t2), . . . , (ak, tk)〉

and its corresponding suffix of events is
σ
(i)
>k=〈(ak+1, tk+1), (ak+2, tk+2), . . . , (am, tm)〉.

Definition 3.1. (Suffix prediction and remaining time
prediction) Suppose that there are pairs sample of se-

quences S = {(σ(i)
≤k, σ

(i)
>k)}i=n

i=1 , where 2 ≤ k < |σ(i)| is
the prefix length and n is the sample size. Given a pre-
fix of events sequence σ≤k=〈(a1, t1), (a2, t2), . . . , (ak, tk)〉,
the output prediction is the sequence of events σ̂>k =
〈(ak+1, tk+1), (ak+2, tk+2), . . . , [EOS]〉, where [EOS] is a
special symbol added to the end of each process execution
to mark the end of the sequence in prepossessing time.
Suffix prediction is the sequence of activities in σ̂>k, i.e.,
〈ak+1, ak+2, . . . , [EOS]〉. The remaining time prediction is
the sum of the predicted duration time t in σ̂>k, i.e.,

∑
ti,

where ti ∈ σ̂>k.

Figure 2: Framework for suffix and remaining time
prediction

4 Proposed Framework

In this section, we will first give an overview of the proposed
framework and then detail each component.

The proposed framework is shown in Fig. 2. Its objec-
tive is to find a mapping between event prefixes and event
suffixes such that the predictions σ̂

(i)
>k get close to the corre-

sponding ground truths σ
(i)
>k, for suffix and remaining time

prediction tasks. To achieve this goal, the proposed ap-
proach exploits both the standard training using Maximum
Likelihood Estimation (MLE), and the adversarial training
inspired by GANs [9]. It has three parts as follows:

• Data prepossessing : It prepares the input data in the
form of events prefixes and suffixes for the suffix and
remaining time prediction tasks.

• Adversarial predictive model : It is made of two neural
networks, i.e., the generator and the discriminator,
where the former provides predictions, i.e., σ̂>k, and the
latter evaluates the predictions using ground truth σ>k.
The generator receives feedback from the ground truths
directly, i.e., supervised loss, and the discriminator’s
output, i.e., adversarial loss.

• Beam search: To have more than one suffix and re-
maining time prediction for an events prefix, we employ
beam search on top of the generator’s outputs to pro-
vide several candidates, i.e., suffix and remaining time
predictions. The number of candidates is determined
by the beam size n.

4.1 Data Preprocessing In the proposed framework
each event ei = (ai, ti) is shown by vector e(i) = (a(i), ti),
where a(i) is the one-hot encoding of activity ai. We denote
the j-th entry of a vector by the corresponding subscript,
e.g., a

(i)
j . With such representation, an events prefix or

an events suffix is shown by a sequence of vectors. For
example, given σ = 〈e(1), e(2), e(3), e(4)〉, σ≤2 = 〈e(1), e(2)〉,
σ>2 = 〈e(3), e(4)〉, and σ≤3 = 〈e(1), e(2), e(3)〉, σ>3 = 〈e(4)〉.

Since e(i) is a vector containing representations for
ei = (ai, ti), we define two functions fa() and ft() which
extract the relevant ai and ti in e(i). These functions can be
applied to sequence of events as well, e.g., fa(σ≤2) = 〈a1, a2〉
and ft(σ>2) = 〈t3, t4〉.

4.2 Adversarial Predictive Model In this part, we
first provide the detail of the proposed encoder-decoder
architecture and its supervised training. Next, we explain
the proposed adversarial training.
Encoder-decoder framework: Figure 3 shows the pro-
posed encoder-decoder architecture in this paper. In this
framework, Long Short-Term Memory (LSTM) [11] is used
for both the encoder and the decoder. Moreover, the de-
coder contains two additional fully connected (FC) layers
that share LSTM cells for predicting an activity and its du-
ration time. In that framework, [SOS] is the symbol for
starting the prediction. In detail, the encoder-decoder ar-
chitecture in Fig. 3, provides σ̂>k as the prediction for the
ground truth σ>k. The encoder maps the events prefix into
a vector and feeds it to the decoder. The decoder iteratively

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

predicts next events. Formally, suppose that y(k+1) is the
output of LSTM for step k + 1, then:

(4.1)
π(k+1) = Softmax(Way

(k+1) + ba)

tk+1 = ReLU(Wty
(k+1) + bt)

Figure 3: Encoder-decoder architecture

where the Softmax function [8] provides π(k+1), i.e., the
predicted probability vector for activities including [EOS],
and tk+1 is the predicted duration time. Wa,Wt,ba, and
bt are the parameters of FCs. Note that the Rectified Linear
Unit (ReLU) in Eq. 4.1 provides a non-negative output.

The Processing block in Fig. 3 creates one-hot encoding
for an activity with the highest probability. It then concate-
nates that vector with the corresponding predicted duration
time tk+1, which results in e(k+1). After that, it is fed as in-
put for the next step prediction, and thus open-loop training
can be achieved.

If the ground truth activity at step k + 1 is a
(k+1)
i ,

i.e., the i-th entry, and the network’s prediction for such
activity is π

(k+1)
i then the corresponding error, also known

as the cross-entropy, is L(k+1) = −a(k+1)
i logπ

(k+1)
i . Thus,

the suffix prediction task’s loss function is the sum of such
errors over all time steps until reaching [EOS]:

(4.2) Lactivity =
∑
j

L(j)

In addition, the error of remaining time prediction is the
squared difference between the ground truth and the pre-
dicted remaining times. Formally:
(4.3) Ltime = (

∑
ft(σ̂>k)−

∑
ft(σ>k))

2

Finally, one can train the proposed encoder-decoder by
minimizing the weighted sum of Eq. 4.2 and 4.3, i.e., the
supervised loss, for the training set:

(4.4) Lsupervised = waLactivity + wtLtime

where wa, and wt are tunable positive weights which, for the
sake of simplicity, we consider wa = wt = 1.
Adversarial Training: The adversarial training in this
paper is motivated by GANs [9]. In this training procedure,
as shown in Fig. 2, we call the encoder-decoder architecture
as the generator and denote it by G(; θg). The discriminator,
denoted by D(; θd), is composed of LSTM followed by a fully
connected layer. The trainable parameters of the generator

and the discriminator are denoted by θg and θd, respectively.
In detail, given a prefix of events, i.e., σ≤k, the generator’s
output is a sequence of events, i.e., G(σ≤k) = σ̂>k.

The adversarial training works as a minmax game
between the generator and the discriminator. It starts by
proposing fake and real instances. A real instance is a
suffix of events in the training set, i.e., σ>k, and a fake
instance is formed from the generator’s output, i.e., σ̂>k.
The training runs as a game between two players, where the
generator’s goal is to maximize the quality of predictions,
i.e., accurate suffix and remaining time prediction, to fool
the discriminator. The discriminator’s goal is to minimize
its error by evaluating the quality of generator’s predictions,
see flow 4. In particular, the discriminator assigns high
probability values to real instances and low probability
values to fake instances. It is an adversarial game since the
generator and the discriminator compete with each other,
i.e., learning from the opponent’s feedback, see flows (4), (5)
in Fig. 2, thus maximizing one objective function minimizes
the other one and vice versa.

The discriminator can send feedback to the generator,
i.e., updating the generator’s parameters via backpropaga-
tion, if its inputs are differentiable [9]; however in our work
both σ>k, i.e., the ground truth, and the generator’s output,
i.e., σ̂>k, contain categorical items, i.e., activity, that have
zero gradients with respect to θg and θd, respectively. Thus,
we get a continuous approximation to such categorical items
using Gumbel-softmax distribution [10, 13]. In particular, if
π(k+1) shows the vector of probability prediction of activi-
ties for step k+1, see Eq. 4.1, the continuous approximation
is the vector α(k+1), with the i-th entry as follow:

(4.5) α
(k+1)
i =

exp((log(π
(k+1)
i) + gi)/τ)∑m

j=1 exp((log(π
(k+1)
j) + gj)/τ)

where gi are i.i.d samples from Gumbel(0,1), m is the
number of activities including [EOS], and τ is a parameter
called temperature. When τ → 0, the entries of α, look
like the one-hot encoding representation, while τ → ∞
the corresponding entries constitute a vector with uniform
probability values.

The Gumbel-softmax part in Fig. 2 creates event
vectors e(i) = (α(i), ti) for the generator’s output using
Eq. 4.5, and for every one-hot vector a(i) in σ>k it
forms a continuous approximation vector by placing a high
probability, e.g., 0.9, on the correct activity, and (1 −
0.9)/(m − 1) on the remaining activities, where m is the
number of activities.

In the minmax game, we want the G’s output, i.e., σ̂>k,
to be as close as possible to ground truth σ>k, such that,
D gets confused in discriminating the mentioned suffixes of
events. Formally, for a pair (σ≤k, σ>k)) and the prediction
G(σ≤k) = σ̂>k, we consider the following adversarial loss
functions for the discriminator and the generator:

L(D;G) = −log(D(σ>k))− log(1−D(σ̂>k))

L(G;D) = − [log(D(σ̂>k))− log(1−D(σ̂>k))]
(4.6)

Equation 4.6 iterates two steps: first, it updates discrimina-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

tor D by lowering L(D;G), keeping G fixed, then it updates
G by lowering L(G;D) keeping D fixed. It can be shown
that the optimization in Eq. 4.6 amounts to minimizing the
distance between two probability distributions that gener-
ate the ground truth event suffixes and the predicted event
suffixes, respectively [20]. Thus, one captures the joint tem-
poral dynamics of events in ground truth events suffixes.

The proposed adversarial training which we call Maxi-
mum Likelihood Min-Max Estimation (MLMME) is shown
in Alg. 1. For each pair of prefix and suffix (σ≤k, σ>k) in
the training set S, we update the parameters of the discrim-
inator and the generator according to Eq. 4.6. Also, the
generator’s parameters are further updated using Eq. 4.4,
i.e., supervised loss. Note that, unlike original GAN [9],
which needs Nash equilibrium to stop training, we consider
a specific number of iterations in Alg. 1. Indeed, the objec-
tive of Eq. 4.6 is to help the supervised training to boost the
generator’s performance in learning joint temporal dynamics
of events across time to advance suffix and remaining time
prediction. After training, we disconnect the discriminator
and use the generator for the prediction tasks.

4.3 Beam Search After training and during inference,
the suffix and remaining time prediction proceeds one step at
a time. At each step, we predict one output, i.e., the activity
ai, and its duration time ti, see Fig. 3. We first compute
a probability distribution over all activities using Eq. 4.1.
We then pick the most likely activity and move to the next
prediction step. This process is 1-best greedy search and
makes us vulnerable to the so-called Garden-Path problem
[19]. In that case, the best predicted suffix consists initially
of less probable activities, which are redeemed by subsequent
activities in the output sequence.

To alleviate this issue, when predicting the first activity
of the decoder output, we keep a beam of the top n, called
beam size, most likely activity choices. They are scored by
their probability. Then, we use each of these activities in
the beam in the conditioning context for the next activity.
Due to this conditioning, we make different predictions for
each. We now multiply the score for the partial prediction,
and the probabilities from its activity predictions. We select
the highest scoring activity pairs for the next time step.
This process continues. At each time step, we accumulate
the output activity probabilities, giving us scores for each
partial prediction. A prediction is complete when the end of
sequence token, i.e., [EOS], is produced. At this point, we
remove the completed prediction, i.e., σ̂>k, from the beam
and reduce beam size by 1. Search terminates, when no
partial predictions are left in the beam.

A Beam search with size n, returns the n most proba-
ble suffix predictions for an input event prefix among those
explored in the search process. The time and space complex-
ities of Beam search with beam size n are O(nb) and O(n),
respectively, where b is the branching factor or the number
of activities in our work.

5 Experiments

In this section, we will first introduce the datasets, baselines,
and experimental settings. Next, we compare our results
to those of baselines for suffix and remaining time predic-
tion. Note that, since all the baselines use 1-best greedy
search for suffix and remaining time prediction, we adopt
the same strategy for the comparison. First, we show that
the proposed method outperforms baselines. Next, we inves-
tigate the strength of the proposed adversarial training. In
particular, using various beam sizes, we show the efficiency
of the proposed adversarial training method, i.e., MLMME,
against the standard training method, i.e., MLE, for the suf-
fix and remaining time prediction tasks.

5.1 Datasets We evaluate the performance of the pro-
posed technique for suffix and remaining time prediction on
four real-life datasets that are publicly available. No pre-
possessing are applied to datasets. All detests were used
in baselines [22, 23, 12]. Table 1 shows some characteris-
tics of the datasets. For each dataset, #Sequence shows
the number of sequences, i.e., process executions, #Events
is the number of events, #Activity represents the number
of unique activities, Sequence-Length provides the length of
shortest and longest sequences, and the last column shows
the average and maximum cycle time, i.e., the time from
starting a process execution until it ends. In details:

• Helpdesk:2 It contains sequences from a ticketing
management process of the help desk of an Italian
software company. All traces start with the insertion
of a new ticket into the ticketing management system.
Each case ends when the issue is resolved and the ticket
is closed in management system.

• BPI123: It contains sequences of a loan application
process at a Dutch financial institute through an on-line
system from 2011/10/01 to 2012/03/14. This process
includes three sub-processes from which one of them is
denoted as W and used already in [22, 23]. As such, we
extract it from this dataset, i.e., BPI12(W).

• BPI17:4 It contains sequences of a loan application
process at the same Dutch financial institute in BPI12
but for 2016 and their subsequent handling up to
February 2nd, 2017.

2https://data.4tu.nl/articles/dataset/Dataset_

belonging_to_the_help_desk_log_of_an_Italian_Company/

12675977
3https://data.4tu.nl/articles/dataset/BPI_Challenge_

2012/12689204
4https://data.4tu.nl/articles/dataset/BPI_Challenge_

2017/12696884

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://data.4tu.nl/articles/dataset/Dataset_belonging_to_the_help_desk_log_of_an_Italian_Company/12675977
https://data.4tu.nl/articles/dataset/Dataset_belonging_to_the_help_desk_log_of_an_Italian_Company/12675977
https://data.4tu.nl/articles/dataset/Dataset_belonging_to_the_help_desk_log_of_an_Italian_Company/12675977
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884

Dataset #Sequence #Events #Activity Sequence Length Avg. - Max Cycle Time (day)

Helpdesk 3,804 13,087 9 1-14 8.79 - 55.9
BPI12 13,087 262,200 23 3-96 8.6 - 91.4

BPI12(W) 9,658 72,413 6 1-74 11.4 - 91

BPI17 31,509 1,202,267 24 7-54 21.8 - 169.1

Table 1: Descriptive statistics of the datasets

For each dataset, we consider temporal splitting into
three sets by 7:1:2 ratio. We use the first 70% of the
sequences for training, the middle 10% of sequences for
validation and the remaining 20% sequences for evaluating
the performance of the model after training.

5.2 Experimental Setup The proposed approach is
implemented in Python 3.7, Pytorch 1.2, and CUDA 10.1 on
a Linux server using two NVIDIA P100 GPUs with 64 GB
RAM. For the encoder, the decoder, and the discriminator
we use a five layer LSTM with 200 neurons in each layer.
In addition, the discriminator is equipped with a fully
connected layer. In detail:

• We consider 500 iterations using the proposed adver-
sarial training, i.e., MLMME. To speed-up the training
convergence, we used a probabilistic teacher forcing ra-
tio of 0.1, which accordingly allows the decoder to use
the ground truth from a prior time step as input [8];

• For each dataset, i.e., event log, a training instance is a
pair of prefix and suffix events (σ≤k, σ>k)), where the
prefix length, i.e., k, is equal to or greater than 2;

• We apply early stopping if we observe no more improve-
ment on the validation set for 30 iterations;

• We use RMSprop as an optimization algorithm for the
proposed framework with learning rate 5e− 5. To avoid
gradient explosion, we clip the gradient norm of each
layer to 1; and

• We exponentially anneal the temperature τ of the
Gumbel-Softmax distribution from 0.9 to 0 in Eq. 4.5
to stabilize the training.

Baselines: We consider three baselines according to their
competitive performances, i.e., [22, 12, 23]. Taymouri et al.
[23] predicts the next event only. However, we developed a
script for event suffix prediction by feeding the outputs of
events back as the input of the predictive model repeatedly
to obtain suffix and remaining time prediction. The recent
work by Lin et al. [12] predicts all the categorical attributes
(and not only the activity label) of the future events, but
not their associated timestamps In addition, the toolbox of
this technique is not publicly available so we compare with
the reported results in the respective paper. For [22, 23], we
used the best parameter settings for training, as discussed
in the respective papers.
Evaluation measures: To evaluate the performance of
suffix prediction, we use Damerau-Levenstein distance (DL)
[3]. This metric measures the quality of the predicted suffix
by adding swapping operation to the set of operations used
by Levenstein distance. For example, for two sequences
〈a1, a2, a3〉 and 〈a1, a3, a2〉, it assigns a cost of 1.0 for

swapping a2 and a3. Given two activity sequences s1 =
fa(σ1) and s2 = fa(σ2) we consider the following similarity:

(5.7) SDL(s1, s2) = 1−
DL(s1, s2)

Max(len(s1), len(s2))
Where len(s) is the length of s, i.e., the number of elements
in s. The metric in Eq. 5.7 is also employed by baselines
[22, 12]. SDL ∈ [0, 1], and it is 1.0 when two sequences are
the same and 0.0 when two sequences contain completely
different elements. Also, we compute the absolute error
(AE) between the ground truth remaining time and the
predicted remaining time for each predicted and ground
truth sequences. Next, we averaging these numbers for test
instances, and report Mean Absolute Error (MAE).

5.3 Experimental Results We first discuss the re-
sults on the two prediction tasks in terms of accuracy. Next,
we study the effects of adversarial training on the results.
Finally, we discuss the time complexity of the approach.

5.3.1 Suffix and Remaining Time Prediction
Table 2 shows the performance of the proposed approach
against two baselines [23, 22] for 4 real-life logs. The first
part of this table shows the predicted suffixes’ quality ac-
cording to the SDL metric, i.e., Eq. 5.7. One sees that the
proposed method in this paper outperforms baselines and
provides more accurate suffix predictions. The results wit-
ness the proposed approach can learn the complex dynamics
of event across time much better than baselines. In particu-
lar, we got 4 percentage points improvement for the Helpesk
dataset; 5 percentage points improvement for BPI12(W);
and 11 and 4 percentage points improvement for BPI12 and
BPI17, respectively. Similarly, Table 4 shows our approach
outperforms Lin et al. [12]. The experimental settings of this
baseline is different than baselines [22, 23] in which prefixes
containing at least 5 events (at least 4 events for Helpdesk)
are considered for suffix predictions and evaluation. Thus,
the average SDL metric increases since short prefixes could
incur inaccurate suffix predictions.

The second part of Table 2 represents the performance
of our technique for remaining time predictions according
to MAE values versus baselines [23, 22]. These results
show the improvements are several times more accurate than
baselines, and they become more recognizable for detests
containing longer sequences. In particular, for BPI12(W)
we got at least 250% and 400% improvement compared to
Taymouri et al. [23] and Tax et al. [22], respectively. One
sees the approach in this paper by learning the complex
dynamics of events across time can predict the remaining
time of process executions more accurately at least several
weeks for large datasets, e.g., see MAE values for BPI12.

Statistical test: To show that the improvements in

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Average SDL MAE (day)

Approach Helpdesk BPI12(W) BPI12 BPI17 Helpdesk BPI12(W) BPI12 BPI17

Ours 0.8411 0.2662 0.3326 0.3361 6.21 12.12 13.62 13.95

Taymouri et al. [23] 0.8089 0.2125 0.2266 0.2881 6.30 34.56 169.23 80.81
Tax et al. [22] 0.7670 0.0632 0.1652 0.3152 6.32 50.11 380.10 170.02

Table 2: Average SDL for the suffix prediction (the larger, the better), and MAE for predicting remaining time.

P-value for the SDL comparison P-value for A.E. comparison

Approach Helpdesk BPI12(W) BPI12 BPI17 Helpdesk BPI12(W) BPI12 BPI17

Taymouri et al. [23] 0.61e-9 0.25e-6 0.14e-12 0.11e-6 0.0351 0.0 0.0 0.0

Tax et al. [22] 1.2e-17 0.0 0.0 0.71e-4 0.0203 0.0 0.0 0.0

Table 3: P-values of paired t-tests for comparing our approach with baselines.

Average SDL

Approach Helpdesk BPI12 BPI17

Ours 0.8852 0.4107 0.3668
Lin et al. [12] 0.8740 0.2810 0.3010

Table 4: Average SDL for the suffix prediction using
experimental settings in [12].

suffix and remaining time prediction are obtained systemat-
ically, we apply paired t-tests. In detail, we pair the SDL
values of our approach with the corresponding SDL values
provided by each baseline [23, 22]. By the same token, we
pair the remaining time absolute errors provided by our tech-
nique with the corresponding values presented by each base-
lines. Moreover, we consider an upper-tailed t-test for paired
SDL values where the null hypothesis states the average of
differences is zero, and the alternative hypothesis states the
average of differences is larger than zero, i.e., our approach is
more accurate by providing larger SDL values. Likewise, we
use another a lower-tailed test for paired remaining time ab-
solute errors where the null hypothesis states the average re-
maining time absolute errors is zero, whereas the alternative
hypothesis states the average differences is less than zero,
i.e., our approach provides smaller absolute errors. Table 3
shows the results of statistical tests between the approach
in this paper and each baseline, i.e., [23, 22], for datasets
used in this paper. One sees that all the reported p-values
are less than 0.05, meaning that the obtained improvements
for suffix and remaining time predictions by our technique
are statistically significant compared to baselines. We were
unable to conduct such a statistical analysis for Lin et al.
[12] due to the toolbox’s unavailability.

5.3.2 Effects of Adversarial Training This section
details the effects of the proposed adversarial training, i.e.,
MLMME, for suffix and remaining time prediction. To show
that considering both the adversarial loss and supervised
loss in Eq. 4.4 and Eq. 4.6, respectively, better capture
the events temporal dynamics for suffix and remaining time
prediction, we conduct the following experiment. Using
the same experimental setup as outlined in the previous
section we train another encoder-decoder network using

only the MLE method, i.e., considering supervised loss
in Eq. 4.4. Next, we compare its performance against
the model that is trained using MLMME to figure out
which one provides more accurate suffix and remaining time
prediction. In particular, to better shed light on each
model’s performance, we consider the suffix and remaining
time prediction tasks using a beam search with various beam
size n ∈ {1, 3, 5, 7, 10, 15}. Given a trained model, the beam
search with beam size n retrieves the n best suffixes for each
prefix, i.e., the n most probable suffixes that the model can
predict. Therefore, one can measure the largest SDL values
and the corresponding remaining time absolute errors among
the beam size candidates for a given prefix. Finally, if a
model provides the larger average SDL value for the whole
event prefixes, then it has captured the temporal dynamics
of events across time more accurately.

Figure 4 shows the average SDL values of suffix pre-
diction for various beam sizes and different datasets. One
sees that the trained model using the MLMME can better
learn the temporal dynamics of events across time. There-
fore, it provides more accurate suffix predictions for a given
prefix. Besides, by increasing the beam size it presents more
accurate candidates for suffix predictions that can be used
for recommendations or further analysis. Also, from Fig. 4,
the proposed adversarial training method excels for datasets
containing long process executions, i.e., sequences, and hav-
ing a large number of activities, e.g., see the SDL curves
for datasets BPI12, BPI17. On the other hand, for datasets
containing small number of activities, e.g., see Helpdesk and
BPI12(W), the MLE training method shows a competitive
performance for small beam sizes.

Figure 5 represents the MAE values for the remaining
time prediction for various beam sizes. One sees that the
model with adversarial training, i.e., MLMME, provides
smaller MAE values compared to the standard training,
i.e., MLE. The effects of adversarial training become more
effective for datasets containing long sequences and a large
number of activities, e.g., BPI12, BPI17. On the other
hand, the MLE method provides smaller MAE values for
beam size equals to 1 for two datasets, i.e., BPI12(W) and
Helpdesk. However, we will show that these differences are
not statistically significant.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 4: Average SDL values for various beam sizes between the conventional training, i.e., MLE, and the
adversarial training, i.e., MLMME.

Figure 5: MAE values for various beam sizes between the conventional training, i.e., MLE, and the adversarial
training, i.e., MLMME.

P-value for the SDL comparison P-value for A.E. comparison

Beam Size Helpdesk BPI12(W) BPI12 BPI17 Helpdesk BPI12(W) BPI12 BPI17

n=1 0.1132 0.2304 0.14e-12 1.32e-10 0.2601 0.0910 0.0 0.0
n=3 0.2302 2.64e-6 0.0 8.77e-131 0.0230 2.07e-6 0.0 0.0
n=5 6.36e-7 3.31e-114 0.0 0.0 0.0345 0.0 0.0 0.0

n=7 1.42e-15 2.71e-73 0.0 0.0 0.0381 0.0 0.0 0.0
n=10 1.17e-24 1.50e-48 0.0 0.0 0.0225 0.0 0.0 0.0
n=15 6.85e-17 4.15e-52 0.0 0.0 0.0265 0.0 0.0 0.0

Table 5: P-values of paired t-test for comparing the performance of standard training, i.e., MLE, versus the
adversarial training, i.e., MLMME.

It must be noted that for a given prefix and beam
size n, the predicted suffix with the largest SDL value
among the n candidates does not necessarily have the lowest
remaining time error prediction. This is because the beam
search objective is to find more accurate suffix predictions
by considering the activity probabilities among the best n
predicted suffixes, and it does not take into account the
corresponding duration times associated with each activity.
For example, in Fig. 5 and 4 for two detests Helpdesk and
BPI17, the average SDL values are decreased for larger beam
sizes. However, MAE values are increased.

Statistical test: This section examines whether the
superiority of adversarial training in suffix and remaining
time prediction is statistically significant. Similar to the
analysis in Sec. 5.3.1, we employ several paired t-tests.
In particular, for each beam size n ∈ {1, 3, 5, 7, 10, 15}, we
pair the corresponding suffix and remaining time predictions
provided by two models, i.e., the one trained by MLMME
and the one trained using MLE. We consider the following
hypotheses for comparing the paired SDL values:

(5.8) H0 : µd = 0, H1 : µd > 0

Where µd is the average d = SDL(MLMME)−SDL(MLE) be-
tween the paired predicted suffixes. Similarly, the following
hypotheses are considered for paired remaining time abso-

lute errors:

(5.9) H0 : µd = 0, H1 : µd < 0

Where µd is the average d = AE(MLMME) − AE(MLE)

between the paired remaining time absolute errors.
Table 5 shows the results of applying paired t-tests. One

sees that the superiority of the model trained using MLMME
for suffix and remaining time prediction is statistically sig-
nificant for large datasets BPI12 and BPI17, for all beam
sizes. For BPI12(W) and n = 1, we did not find statistically
significant differences in suffix and remaining time predic-
tion. However, for n > 1, the improvements obtained by the
adversarial training are statistically significant. Similarly,
for Helpdesk and n ≥ 5, the positive effects of adversarial
training are statistically significant.

Average time per iteration (sec.)

Approach Helpdesk BPI12(W) BPI12 BPI17

MLE 1.48 104.32 225.79 158.41
MLMME 4.22 282.85 671.57 418.82

Table 6: The average execution time per iteration for
the proposed training (MLMME) and standard training
(MLE).

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

5.3.3 Time Complexity Table 6 shows the average
execution time per iteration to train the proposed encoder-
decoder architecture, see Fig. 3, using the presented ad-
versarial training method, i.e., MLMME, and the standard
training method, i.e., MLE. These measurements are ob-
tained by averaging the recorded execution time in each it-
eration of training. Although the MLMME method provides
more accurate predictions than MLE, one sees it is slower
up to 3 times mostly due to the extra updates that the dis-
criminator needs in each iteration of Alg. 1.

6 Conclusion

This paper put forward a novel open-loop adversarial train-
ing and an encoder-decoder architecture for the suffix and
the remaining time prediction to the realm of sequential tem-
poral data. We adopted the Beam search on top of our ar-
chitecture to provide the n most probable suffix predictions
for a prefix of events, which can be used for further anal-
ysis. Comprehensive experiments with statistical tests on
four real-world datasets against three baselines show that:
i) the approach learns temporal dynamics of sequences more
accurately than the baselines; and ii) the proposed training
method MLMME boosts a model’s performance to capture
the temporal relationships of events in sequential data. Deep
models are vulnerable to adversarial attacks. Thus, as future
work, we plan to build more robust predictive models. An-
other avenue is to explore other applications beyond business
process management.

Acknowledgments This research is funded by the Aus-
tralian Research Council (DP180102839). We appreciate the
reviewers comments towards improving our manuscript.

References

[1] D. Bahdanau, K. Cho, and Y. Bengio, Neural
machine translation by jointly learning to align and
translate, CoRR, abs/1409.0473 (2015).

[2] M. Camargo, M. Dumas, and O. G. Rojas, Learn-
ing Accurate LSTM Models of Business Processes, in
BPM, 2019.

[3] F. J. Damerau, A technique for computer detection
and correction of spelling errors, Commun. ACM, 7
(1964), p. 171–176.

[4] N. Di Mauro, A. Appice, and T. M. A. Basile,
Activity prediction of business process instances with
inception cnn models, in Advances in Artificial Intelli-
gence, Springer, 2019, pp. 348–361.

[5] M. Dumas, M. L. Rosa, J. Mendling, and H. A.
Reijers, Fundamentals of Business Process Manage-
ment, Second Edition, Springer, 2018.

[6] C. Esteban, S. L. Hyland, and G. Rätsch, Real-
valued (medical) time series generation with recurrent
conditional gans, ArXiv, abs/1706.02633 (2017).

[7] J. Evermann, J.-R. Rehse, and P. Fettke, Pre-
dicting process behaviour using deep learning, DSS, 100
(2017).

[8] I. Goodfellow, Y. Bengio, and A. Courville,
Deep Learning, MIT Press, 2016.

[9] I. Goodfellow, J. P.-A., M. M., B. Xu, D. W.-F.,
S. Ozair, A. Courville, and Y. Bengio, Generative
adversarial nets, in Proc. of NIPS, ACM, 2014.

[10] E. Gumbel and E. U. NBS, Statistical Theory of Ex-
treme Values and Some Practical Applications, Applied
mathematics series, 1954.

[11] S. Hochreiter and J. Schmidhuber, Long short-
term memory, Neural Computation, (1997).

[12] L. Lin, L. Wen, and J. Wang, Mm-pred: A deep
predictive model for multi-attribute event sequence, in
Proc. of SDM, SIAM, 2019.

[13] C. J. Maddison, D. Tarlow, and T. Minka, A*
sampling, in NIPS, 2014, pp. 3086–3094.

[14] O. Mogren, C-RNN-GAN: continuous recurrent
neural networks with adversarial training, CoRR,
abs/1611.09904 (2016).

[15] R. Nallapati, F. Zhai, and B. Zhou, Summarun-
ner: A recurrent neural network based sequence model
for extractive summarization of documents, ArXiv,
abs/1611.04230 (2017).

[16] R. Nallapati, B. Zhou, C. D. Santos, Çaglar
Gülçehre, and B. Xiang, Abstractive text summa-
rization using sequence-to-sequence rnns and beyond,
in CoNLL, 2016.

[17] V. Pasquadibisceglie, A. Appice, G. Castellano,
and D. Malerba, Using convolutional neural networks
for predictive process analytics, in ICPM, IEEE, 2019.

[18] R. Poll, A. Polyvyanyy, M. Rosemann,
M. Roglinger, and L. Rupprecht, Process forecast-
ing: Towards proactive business process management,
in BPM, Springer, 2018.

[19] B. L. Pritchett, Garden path phenomena and the
grammatical basis of language processing, Language, 64
(1988), pp. 539–576.

[20] C. Sonderby, J. Caballero, L. Theis, W. Shi, and
F. Huszar, Amortised map inference for image super-
resolution, in ICLR, 2017.

[21] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence
to sequence learning with neural networks, NIPS’14,
Cambridge, MA, USA, 2014, MIT Press, p. 3104–3112.

[22] N. Tax, I. Verenich, M. La Rosa, and M. Dumas,
Predictive business process monitoring with lstm neural
networks, in Proc. of CAiSE, LNCS, Springer, 2017.

[23] F. Taymouri, M. L. Rosa, S. M. Erfani, Z. D. Bo-
zorgi, and I. Verenich, Predictive business process
monitoring via generative adversarial nets: The case of
next event prediction, Springer, 2020.

[24] J. Theis and H. Darabi, Decay replay mining to
predict next process events, IEEE Access, 7 (2019),
pp. 119787–119803.

[25] A. Vaswani, S. Bengio, E. Brevdo, F. Chollet,
A. N. Gomez, S. Gouws, L. Jones, L. Kaiser,
N. Kalchbrenner, N. Parmar, R. Sepassi,
N. Shazeer, and J. Uszkoreit, Tensor2tensor for
neural machine translation, in AMTA, 2018.

[26] J. Yoon, D. Jarrett, and M. van der Schaar,
Time-series generative adversarial networks, in NIPS
32, 2019, pp. 5508–5518.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

	1 Introduction
	2 Related Work
	2.1 Suffix and Remaining Time Prediction of Business Process Executions
	2.2 Generative Adversarial Networks for Temporal Data

	3 Problem Statement
	4 Proposed Framework
	4.1 Data Preprocessing
	4.2 Adversarial Predictive Model
	4.3 Beam Search

	5 Experiments
	5.1 Datasets
	5.2 Experimental Setup
	5.3 Experimental Results
	5.3.1 Suffix and Remaining Time Prediction
	5.3.2 Effects of Adversarial Training
	5.3.3 Time Complexity

	6 Conclusion

