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Abstract—Multiagent reinforcement learning has shown suc-
cess in guiding the agents’ behaviour in systems that have real-
world significance. In these frameworks, agents learn how to
interact with the environment and other agents while satisfying
their objectives. Unfortunately, the level of complexity of real-
world problems requires a significant investment of computa-
tional resources before multiagent reinforcement learning meth-
ods are able to deliver results. However, by incorporating a priori
domain knowledge, more computationally-efficient algorithms
can be developed. In this paper, for the first time, we present
a Domain-Aware Multiagent Actor-Critic (DAMAC) algorithm,
which integrates domain knowledge with the centralised learning
and decentralised execution multiagent reinforcement learning
approach using domain-specific solvers. Our experiments show
that our algorithm achieves substantial high reward and reduces
the training time by two orders of magnitude as compared to
other multiagent reinforcement learning algorithms. This enables
the adoption of this powerful framework in more resource-
constrained scenarios.

Index Terms—Multiagent reinforcement learning, domain
knowledge

I. INTRODUCTION

The ability of Multiagent Reinforcement Learning
(MARL) to solve real-world problems has been a topic
of considerable research interest in areas such as robotics,
autonomous vehicle fleets, traffic light control, smart grids,
and communication and sensor networks [1]. However, the
adoption of MARL, and even single-agent reinforcement
learning (RL), has been stymied by their need for signifi-
cant investments of computational resources, which inherently
limits their applicability [2]. To enhance the ability of RL
to solve complex and resource-constrained problems of real-
world significance, it is important that such RL frameworks
are developed that are computationally-efficient. This paper
addresses this problem and proposes a MARL algorithm that
leverages domain knowledge to improve its sample-efficiency.

Problem domains involving multiple agents add more chal-
lenges to learning, as they require balancing the demands
of a non-stationary environment and complex credit assign-
ment among multiple agents, while managing the risks of
overgeneralisation [3]. One approach for resolving some of
these challenges is to use multiagent Model-free Reinforce-
ment Learning methods, which translate agents observations
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to policies without involving the environment. A popular
implementation is the centralised training and decentralised
execution actor-critic algorithm [4], [5], in which a group of
centralised critics (or a single centralised critic) are trained
together, with each critic having access to information from all
agents. In doing so, the non-stationary nature of the changing
policies of the agents can be managed and addressed. However,
at the execution time, agents make decisions based upon only
the information that they have access to, allowing them to
independently interact with the environment.

It must be noted that the model-free approaches induce large
number of samples that results in increased computational
time and resource usage. Current avenues for improving the
computational performance of MARL include Model-based
Reinforcement Learning [6], in which agents learn and lever-
age an environment model; Transfer Learning [7], in which
agents’ knowledge is reused to perform similar tasks; and
Imitation Learning [8], in which agents receive information
from humans and experts, and learn a policy by following
expert’s decisions. However, each of these approaches has
been successful in single-agent settings with limited work in
multiagent domains. Moreover, transfer and imitation learning
techniques require access to information from an oracle that
may not be available within the domain context.

Reward Shaping [9] is an effective technique to improve
RL computational efficiency by transforming a priori knowl-
edge based on human knowledge and rules into additional
numeric rewards. Our approach extends reward shaping in a
novel way by using domain-specific solvers to determine the
reward shaping function and also incorporating this function
while optimising policy. This avoids the need of manually de-
signing the reward function and shows how the incorporation
of incomplete but expert available knowledge can help reduce
the training time. We demonstrate the value of this approach
through a case study of constrained navigation scenarios, in
which multiple agents have to collaboratively navigate to reach
assigned targets. In such environments, domain knowledge of
the environmental layout and any obstacles and bottlenecks
therein is often available, making it a perfect example to show
the power of using domain knowledge.

By embedding approximate navigational information from
a discretised representation of the environment within MARL
training, our method aims to improve the computational



performance. The information is obtained when each agent
constructs its own initial domain comprehension under the
assumption that there are no other agents present within the
domain. This encourages exploration of promising states that
leads to lower the computational cost of random exploration.
MARL then learns how best to modify this single-agent infor-
mation, to account both for the presence of other agents, and
the differences between the actual continuous-space problem
domain and the coarse discretisation. This technique provides
adaptability and significantly decreases the overall problem
complexity, which in turn allows complex real-world scenarios
to be addressed by reinforcement learning.

The constrained navigation environments used for our ex-
periments can act as a digital twin for Industry 4.0 applications
including smart factory and other smart manufacturing frame-
works [10], [11]. The modeling of such complex environments
in not an easy task and using flexible but computationally
intensive RL is not practical. Through the use of our novel
way of incorporating domain knowledge in RL, we show
the ability to significantly decrease the computational cost of
training agents in such environments while taking advantage of
the flexibility and adaptability of RL. Moreover, this method
of utilising domain knowledge is not limited to a single
domain and the a priori knowledge from any domain can be
incorporated to learn an optimal policy for that domain. We
believe that this work will provide an opportunity to explore
the use of available knowledge in various domains to devise
flexible and computationally-efficient algorithms.

Our paper makes the following contributions:

• We propose Domain-Aware Multiagent Actor-Critic
(DAMAC), which incorporates domain knowledge in
a novel fashion in the training process of multiagent
reinforcement learning. Our approach can be easily in-
corporated into any centralised training, decentralised
execution based MARL algorithm.

• New multiagent navigational scenarios are used to
demonstrate the effectiveness of our technique, which
by extensive experiments, outperforms other published
MARL algorithms in terms of faster convergence and
high reward gains.

II. RELATED WORK

One of the common approaches of solving MARL problems
is the centralised learning and decentralised execution
actor-critic approach that includes popular methods such as
Multiagent Deep Deterministic Policy Gradient (MADDPG)
[4], Counterfactual Multiagent Policy Gradients (COMA) [5],
and Multiagent Attention Critic (MAAC) [12]. The main focus
of our algorithm is to take advantage of domain knowledge by
combining it with the adaptive but inefficient MARL frame-
work to improve its efficiency. In the following, we review
recent research to improve MARL computational efficiency.

Model-based RL. Model-based approaches have estab-
lished research in the single-agent setting presented in the
paper [13]. Model-based Multi-Agent Reinforcement Learning

with Cooperative Prioritized Sweeping [14] performs sample-
efficient multiagent learning by using knowledge about the
problem structure in the form of a dynamic decision network
to learn the model environment that in turn is used to learn the
optimal policy. Model Predictive Control (MPC) Guided Re-
inforcement Learning Control Scheme [15] combines model-
based MPC with RL to improve efficiency. Unlike these
model-based approaches, DAMAC does not learn the model
or use model-based techniques rather leverages available in-
complete knowledge and approximate model to improve the
performance of the MARL algorithm.

Transfer learning and imitation learning. The survey [16]
covers various techniques of transfer learning in multiagent
setting. Another interesting approach is Protean Learning [17]
that extends reinforcement learning to adapt to situations that
are unknown prior to learning. The application of imitation
learning is learning a policy from expert demonstrations but
its application is limited on multiagent setting [8]. Moreover,
objectives of these learning techniques are to accelerate the
learning process but unlike our approach of using available
knowledge, they are focused on transferring information from
learning agents or experts to other learning agents.

Leveraging domain knowledge. Several approaches cur-
rently exist for incorporating domain knowledge within model-
free RL including [18], which designs the policy network
architecture using hand-designed modular network compo-
nents for a single-agent RL ’reacher’ task to improve the
learning efficiency. Alternatively, a role-oriented multiagent
reinforcement learning framework (ROMA) [19] combines
domain knowledge dependent role assignment with flexible
MARL, in order to enable agents with similar responsibilities
to share their learning, resulting in improved efficiency. Unlike
our approach, these techniques are either focused on single-
agent scenarios or use a different way to leverage domain
knowledge.

Reward shaping. Reward shaping modifies the reward
function in the RL problem using a reward shaping function
that incorporates domain knowledge. Potential-based reward
shaping (PBRS) [9] is the first and the most popular approach
to shape the reward. Important works of multiagent reward
shaping include [20], [21], and recent works focus on either
learning a reward function or learning to optimise the weight
factors of reward functions [22]–[25]. Our method does not
use PBRS or learns the reward rather shapes the reward by
adding the utility function that is calculated using discretised
but single-agent expert domain knowledge that ensures the
optimal policy.

III. PROBLEM STATEMENT AND BACKGROUND

In this section, we formally introduce the problem and
the necessary notation. We will then provide details of our
approach in the next section.

Problem Statement. Current MARL approaches involving
deep neural networks suffer from high sample complexity that
limits their application on complex real-world problems. Sev-
eral techniques have been proposed to minimise the computa-



tional time required to reach the maximum achievable reward
in MARL—as we discussed in the preceding sections—with
those that incorporate domain knowledge showing particular
promise. We approach this problem by constructing a single-
agent solution using a low-fidelity algorithm, and using infor-
mation derived from this to bias the MARL training process.
Such an approach is advantageous in that it can be readily and
rapidly applied to a range of navigation problems in a fashion
that yields strong convergence results.

Notation. The multiagent learning setup can be interpreted
as Markov or Stochastic Games [26], where a partially observ-
able Markov Game is represented by a collection of states X ,
a set of actions U = U1, U2, ..., UN for each of N agents, a set
of each agent’s private observations O = O1, O2, ...., ON ,and
a state transition function T : X × U × X → [0, 1] that
defines the probability distribution of next possible states and
depends on joint action space of all agents. Each agent receives
a reward that is given by ri : X×U×X → R, which depends
on both the state and action spaces of all agents, and is subject
to the discount factor γ ∈ [0, 1]. The local observation of each
agent i, oi ∈ Oi contains partial information from the global
state x ∈ X . Under these conditions, each agent aims to learn
a policy πi : Oi → Ui that maximises its total expected return,
Ex∼T ,u1∼π1,...,uN∼πN

[∑T
t=0 γ

trit(xt, u1t, ..., uNt)
]
.

IV. DOMAIN-AWARE MULTIAGENT ACTOR-CRITIC
(DAMAC)

In this section, we present algorithm details and preliminary
theoretical analysis of the convergence of this approach. We
also provide a case study to explore the benefits of DAMAC.

DAMAC is a MARL algorithm that comprises of off-policy
multiagent actor-critic learning and a utility term that incorpo-
rates domain knowledge in this trial and error learning. Actor-
critic methods are widely used to solve reinforcement learning
problems that combine the benefits of policy- and value-
based approaches [27]. By incorporating domain knowledge,
the reward function is biased towards state-action pairs that
have been determined a priori to be favourable. Note that the
domain knowledge is approximate and is added to increase
the MARL algorithm efficiency and does not directly provide
the optimal policy.

During the training phase, agents learn the optimal policy
in a centralised manner by taking into account both the
information from their experience and available knowledge.
After training, the learned policy is executed in a decentralised
fashion, in which agents only have access to local observa-
tions. During training, the addition of this utility function
reduces the time spent in random exploration and helps agents
focus on useful state-action pairs that eventually leads to
improved sample efficiency and quick convergence to optimal
policy learning. This is important to solve complex multiagent
problems that either take complete domain knowledge to be
solved or take huge computational resources to solve via
flexible reinforcement learning techniques.

DAMAC updates the objective of reinforcement learning,∑
t Eπ[r(xt, ut)], biased towards state-action pairs suggested

by domain knowledge as

J(π) = Eπ [r(xt, ut) + βλ(xt, ut)] . (1)

Here λ(xt, ut) provides the domain-specific information and
β ≥ 0 determines the relative emphasis on the domain
knowledge utility term with respect to the RL reward. In the
case where β = 0, we recover the RL objective.

Under DAMAC, the critic neural networks of all agents
are trained together to minimise the joint regression loss
augmented by the utility term through temporal difference
learning. For each agent i, there is a corresponding Qψi (o, u)
(where o = (o1, ..., oN ) and u = (u1, ..., uN ) for all agents 1
to N ) that is the estimate of the true action-value pair, the sum
of which is used to measure the total loss. This means that
each critic takes observations and actions of all agents. The
target Q-function of each agent Qψ̄i (o′, u′) is the exponential
moving average of Q-functions, subject to the parameters ψ
and ψ̄, which respectively represent the critic and target critic.
This allows the critic loss to be expressed as

LQ(ψ) =

N∑
i=1

E(o,u,r,o′,λ)∼D

[(
Qψi (o, u)− yi

)2
]
, where

yi = ri(oi, ui) + βλi(oi, ui) + γEu′∼πθ̄(o′)

[
Qψ̄i (o′, u′)

]
.

(2)

In this, D represents the experience replay buffer and β is a
weighting for the utility term λ.
The policy gradient for each agent to update its policy πθi is

∇θiJ(πθ) = Eo∼D,u∼πθ
[
∇θi log(πθi(ui|oi))

(Ai(o, u) + βλi(oi, ui))
]
,

(3)

where θi is the policy parameter of agent i. Ai(o, u) is the
advantage function that is given by Qψi (o, u)−b(o, u−i) where
−i represents all agents except i. The multiagent baseline
for our discrete action space is calculated as b(o, u−i) =∑
u′i
π(u′i|oi)Qi(o, (u′i, u−i)) that overcomes the multiagent

credit assignment problem [5] [12]. To accommodate this, the
input to the critic Qi does not include the agent’s action ui so
that each critic outputs the Q-value for all actions. Moreover,
to avoid overgeneralisation that results in the selection of
sub-optimal actions, the sampling of all actions u for policy
gradients are done from all agents’ current policies [28]. The
implementation of DAMAC is given in Algorithm 1.

A. Theoretical Analysis

Following the approach of previous studies [29], we present
a preliminary analysis of the off-policy DAMAC algorithm
performance through a single-agent domain-aware policy iter-
ation method. In this analysis, we assume that accurate domain
knowledge is available. The general policy iteration algorithm
alternates between policy evaluation and policy improvement.
To enable convergence guarantees, we first show that policy
iteration under the new objective (Equation 1), converges to
an optimal policy in the tabular setting.



Algorithm 1 DAMAC algorithm

Initialise critic and policy parameters ψ, ψ̄, θ, θ̄.
for episode = 1 to number-of-episodes do

Calculate λi given initial oi and domain knowledge.
for t = 1 to total-episode-steps do

Retrieve λi based on current oi of each agent i.
Apply action ui ∼ πi(.|oi) and update
(oi, ui, ri, o′i, λi ) in the replay buffer D.
for j = 1 to number-of-critic-updates do

Sample m samples, (om, um, rm, o′m, λm) ∼ D
for all agents.
Update critic using Equation 2.

end for
for j = 1 . . . number-of-policy-updates do

Sample s samples (os) ∼ D.
Update policies using Equation 3.

end for
Update target critic and policy parameters:
ψ̄ = τψ̄ + (1− τ)ψ and θ̄ = τ θ̄ + (1− τ)θ

end for
end for

Proposition 1 (Policy Evaluation). To compute the Q-value
of a policy π, Qπ , with respect to the updated RL objective
in Equation 1, the Q-value is updated iteratively until conver-
gence as limk→∞(T π)kQ = Qπ , with Q as the initial value
of the policy and the Bellman backup operator is

T πQ(xt, ut)
.
= r(xt, ut) + βλ(xt, ut) + γExt+1∼T [V (xt)] ,

where V (xt) = Eut+1∼πQ(xt+1, ut+1).
Proof. The βλ(xt, ut) term updates the reward r(xt, ut) as

r′(xt, ut) = r(xt, ut) + βλ(xt, ut). (4)

If βλ(xt, ut) is strictly positive, then the standard convergence
analysis results for policy evaluation [30] still holds.
Proposition 2 (Policy Improvement). For policies π and π′,
if Qπ′(xt, ut) ≥ Qπ(xt, ut) for all (xt, ut) ∈ X × U then π′

is better than π.
Proof. The Q-value of a policy π for DAMAC on applying
Equation 4 is given by

Qπ(xt, ut)
.
= r′(xt, ut) + γExt+1∼T [Vπ(xt+1)] . (5)

Moreover, the new policy π′ is chosen greedily by selecting
π′(xt) = argmaxut Qπ(xt, ut) where Qπ is more for state-
action pairs with higher βλ(xt, ut). Hence, Qπ(xt, π

′(xt)) ≥
Vπ(xt) and by repeated applications of Equation 5, it must
also be true that

Qπ(xt, ut) ≤ r′(xt, ut)+
γExt+1∼T

[
Eut+1∼π′ [Qπ(xt+1, ut+1)]

]
≤ Qπ′(xt, ut),

where convergence to Q′π is proved in Proposition 1. Note that
βλ(xt, ut) represents expert domain knowledge so this non-
potential reward shaping keeps the optimal policy invariant [9].

However, in DAMAC, we use single-agent domain knowledge
in multiagent domain so the policy improvement is dependent
on the weighting factor β. This dependence has been shown
by empirical analysis in Section V-B.

Policy Iteration. Alternating between policy evaluation and
policy improvement yields policy iteration and it converges to
optimal policy π∗ such that Qπ∗(xt, ut) ≥ Qπ(xt, ut), for all
π 6= π∗ and for all (xt, ut) ∈ X × U [30].

To apply the policy iteration algorithm on complex domains,
we approximate it by using neural networks for both Q-
function and the policy instead of finding the optimal solution
in its exact form. Therefore, we no longer run evaluation and
improvement steps to convergence rather we alternate between
optimising both networks with stochastic gradient descent.

B. Case Study: Constrained Navigational Scenarios

DAMAC is most useful in complex scenarios where we
require both the flexibility obtained from RL algorithms to
achieve goals, and less computational time and resources
to train these flexible algorithms. To explore the relative
advantages of DAMAC, we consider two novel scenarios,
that capture some of the difficulties in performing complex
constrained navigation. These problems are formulated as
multiagent navigation tasks, where each agent has to reach
a predetermined target while avoiding both domain obstacles
and other agents. The latter of these goals is achieved through
the development of emergent collaborative behaviour using
MARL.

The domain knowledge is captured in the utility function λ,
given by Equation 1 that parameterises a single-agent shortest
path routing algorithm. To calculate λ, a single-agent A*
path finding algorithm is employed to determine the optimal
route for each agent to its destination, based on a coarsely
discretised representation of the continuous-spaced navigation
environment. This makes λ dependent on the state for this case
study. As this utility is constructed for a single-agent A* path
that ignores the presence of other agents on a discretised grid,
it can be trivially precomputed with minimal cost, as described
in Algorithm 2. Through the addition of this approximate
utility term in MARL training, the complexity of solving
the navigation scenario is reduced, as it incentivises agent’s
observations that lead to more reward by making each agent
follow the route suggested by the A* algorithm.

As the path returned by A* is one of the many possible
shortest paths for a single-agent on a coarsely discretised
grid, the optimal path for multiple agents will likely differ
from the path suggested by λ. As such, the incorporation of
domain knowledge acts as a catalyst to increase the MARL
algorithm efficiency and does not directly provide the optimal
path. Moreover, while the calculation of the utility function has
been presented in terms of A*, the process for incorporating a
priori knowledge can leverage any extant path search function,
including but not limited to Dijkstra’s algorithm, breadth first
search, and hierarchical algorithms [31]. We chose A* in our
case for its simple implementation and wide-spread usage in
navigational environments and games. Moreover, DAMAC can



Algorithm 2 λ for constrained navigation

Discretise continuous environment into an m× n grid.
for each agent do

Translate agent and target positions to their respective
locations upon the discretised grid.
Calculate the shortest path and the cost to reach all cells
of the discrete grid with A*.
Add the largest possible cost within the environment
(max) to the shortest path cost.

end for
Normalise by dividing all costs by 2 × max within the
environment to keep the value (0, 1].
The normalised cost of the shortest path is λ.

potentially be used for tasks beyond navigation where domain
knowledge is available and a utility function can capture this
a priori knowledge.

V. EXPERIMENTS

In this section, we provide the details of constrained naviga-
tional environments used to test DAMAC and our experimental
setup. We also compare the efficiency of DAMAC with other
MARL methods on our environments and analyse the results.

A. Environments and Setup

Simulated Environments. We use Multiagent Particle En-
vironment (MPE) [32] to construct two novel environments,
Crossing Corridor and Bottleneck that represent the complex
constrained navigation. MPE is frequently used in the literature
for testing the multiagent RL algorithms and many new
scenarios are built on top of the existing ones that confirms
its flexibility [4], [12].

Crossing Corridor. In this scenario, there are a total of
6 agents, each with a corresponding target, as shown in Fig.
1(a). The role of each agent is to navigate its way to reach
its respective goal in the shortest amount of time without
colliding with other agents. The initial positions of agents are
randomised to either the left or right side of the environment.
To make the scenario challenging, the agents on the left-hand
side have their corresponding targets on the right-hand side
and vice versa. Agents are penalized on colliding with one
another and based on their distances from their destinations.
All agents receive a global reward when any agent reaches
and stays at its target. The total reward attained by agents is
the sum of all rewards and penalties that agents get during the
length of each episode (epoch). In this scenario, since agents
and their destinations are not always in line of sight so agents
take a considerable amount of time to learn to reach their
respective goals by randomly exploring the environment.

Bottleneck. Fig. 1(b) shows the Bottleneck environment
that involves 3 agents on the upper portion and their corre-
sponding 3 destinations in the lower portion under the wall.
Only a single-agent can pass through the wall opening at
a time and hence the name, Bottleneck. All agents have to
learn to collaboratively reach their respective targets making
their way through the bottleneck without colliding with one

(a) Crossing Corridor (b) Bottleneck

Fig. 1: Scenario environments. Agents and their targets are respec-
tively represented by large and small same-coloured circles.

another. Agents’ positions are initialised to the upper portion
of the environment and are different at the start of each episode
(epoch). The reward function in this scenario is same as that
in Crossing Corridor scenario. However, this scenario tests the
algorithm ability to train all agents to not only find their paths
to reach their respective destinations but to see how agents
are prioritised to pass through the bottleneck without colliding
with one another.

Experimental Setup. For our experiments, we use the
replay buffer size of 106 that is filled with agents’ experience
(ot, ut, ri, ot+1, λt) in 8 parallel rollouts at every timestep for
each independent simulation. We use batchsize of 1024 and
update the parameters of our policy, critic, and target networks
4 times after every 100 steps across all rollouts. We use the
Adam optimiser to update both policy and critic networks with
the learning rate set to 0.001. To update both policy and critic
target networks, τ is also set to 0.001. We set the value of the
discount factor γ as 0.99. All policy and critic networks use
2 hidden layered neural network with each hidden dimension
of 128 and leaky rectified linear units as the nonlinearity.

B. Results and Discussion

Baselines. We compare our approach with the following
widely-used centralised learning and decentralised execution
MARL techniques: Multiagent Deep Deterministric Policy
Gradient (MAADDPG) [4], Counterfactual Multiagent Policy
Gradients (COMA) [5], and Multiagent Attention Actor-Critic
(MAAC) [12] on our constrained navigational environments.
We also use an ablated version of DAMAC with β = 0
in which domain knowledge has not been incorporated and
agents learn to find the optimal solution by trial and error
using only MARL framework. We include this case in graphs
as a visual reference point to highlight the importance of
including available knowledge within the DAMAC framework.
We discuss β = 0 results in detail when analysing the effect
of utility weighting factor. Based on performance, we tune the
hyperparameters of each algorithm that end up being same as
that of DAMAC. We use the episode (epoch) length of 400
and 200 for Crossing Corridor and Bottleneck respectively.
Moreover, we use β = 1 for DAMAC unless otherwise
stated. Please note that given the nature of our approach, it
can be used with other MARL algorithms to improve their
performance.

Analysis. The reward function plotted in Fig. 2 is the sum
of all accumulated rewards across the entire episode aver-
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Fig. 2: Reward achieved by methods, DAMAC (ours), DAMAC without domain knowledge (β = 0), MAAC [12], MADDPG [4] on
Crossing Corridor and Bottleneck. Average (solid colour) and standard deviation (shaded region) across six independent simulations following
established practice in MARL.

TABLE I: Training efficiency of multiple MARL approaches

Crossing Corridor DAMAC MAAC COMA MADDPG
Highest reward 10752± 147 9296± 666 6178± 860 8072± 758
Epochs for 95% reward 3760 6608 9408 9288

Bottleneck
Highest reward 2529± 20 2518± 53 2051± 658 1612± 358
Epochs for 95% reward 3168 6536 8280 9272

aged over six independent simulations following established
practices for MARL. As evident from the figure, DAMAC
outperforms the reference techniques with respect to both the
rate of convergence and the highest achieved reward since the
reward shaping minimises the time that agents need to explore
and learn about navigating the environment. The reference
algorithms take significantly longer to explore enough of the
domain to begin refining their own behaviours, resulting in the
slower or no convergence behaviour within the given training
time.

From Fig. 2 and Table I, MAAC reaches its highest cumu-
lative reward value of 9296 in Crossing Corridor in 9952
episodes whereas DAMAC achieves the same reward in 2480
episodes, which is only 24.9% of the episodes taken by
MAAC. Furthermore, DAMAC is able to achieve a higher re-
ward of 10752, which is a 15.71% improvement over MAAC.
DAMAC also attains 26.6%, 74%, and 33.2% more reward
as compared to DAMAC without domain knowledge, COMA,
and MADDPG respectively that achieve the maximum reward
of 8495, 6178, and 8072 in 10, 000 episodes respectively. In
Bottleneck, MAAC reaches its highest cumulative reward of
2518 in 9032 epochs whereas DAMAC attains this reward
in 4760 episodes, which is only approximately half of the
episodes as compared to MAAC. DAMAC without domain
knowledge, COMA, and MADDPG attain their highest re-
wards of 2424, 2051, and 1612 respectively as compared to
the 2529 convergence reward of DAMAC. This shows that
DAMAC exhibits the maximum reward gain of 4.3%, 23.3%,
and 56.9% over DAMAC without domain knowledge, COMA,
and MADDPG in Bottleneck in 10k epochs. Since DAMAC
with β = 0 is another MARL algorithm that does not take
advantage of domain knowledge, its performance is closer to

MAAC in both scenarios with MAAC slightly better as MAAC
takes advantage of attention and maximum entropy.

In the experiments, the average maximum reward fluctuates
once the algorithm reaches the convergence point as it depends
on the initial positions of agents. For example, if the positions
of agents are closer to their destinations at the start of episodes,
the reward is higher in these episodes. This also explains the
variance of MARL methods evident in Bottleneck.

Effect of Episode Length. Given the complexity of these
constrained environments, we choose the episode length of 400
and 200 for Crossing Corridor and Bottleneck respectively.
To test the sensitivity of the calculated results to the episode
length, we increase the episode length for Crossing Corridor
to 500 and repeat our experiments. With the increased episode
length, agents have more time to explore the environment in
a single episode rather than settling to a sub-optimal policy
because of the lack of exploration. However, this exploration
is at the expense of 25% more computation time each episode,
the reduction of which is our primary goal in this paper.
Table II shows the comparison of DAMAC with other MARL
approaches in Crossing Corridor when its training episode
length is increased to 500 from 400, that was reported in Table
I. The numbers are averaged over six independent runs.

From Table II, both DAMAC and MAAC attain convergence
to the highest reward but DAMAC takes only half of the
episodes that MAAC requires to reach convergence. Therefore,
while increasing the episode length does improve the results of
all techniques, DAMAC still significantly outperforms all other
techniques in terms of higher reward gain and faster conver-
gence. Moreover, increase in the episode length introduces a
proportional increase to the overall computational cost. Note
that the highest reward for an environment is different for



TABLE II: Comparison of DAMAC with reference MARL methods with episode length = 500 for Crossing Corridor

DAMAC MAAC COMA MADDPG
Highest reward 13797± 93 13218± 868 10528± 2297 9209± 242
Epochs for 95% reward 3512 5520 8528 8464

different episode lengths because the reward is accumulated
across the whole epoch size.

Learned Behaviours. We illustrate the evolution of agents’
learned behaviour with DAMAC using heat maps in Figures
3 and 4. For each environment, these heat maps exhibit the
agents’ evolution from initial exploration (a); to incorporating
domain knowledge to produce a sub-optimal route to the
destination (b); and finally refining the path to produce a more
optimal path that minimises collisions to reach the destination
in fewer steps (c). This convergence process is clear through
the coalescence of the heat map trajectories in initial episodes
to a more condensed set of positions within the environment
in later episodes when the optimal policy is learned.

(a) Episode 100 (b) Episode 2000 (c) Episode 4000

Fig. 3: Agents’ heatmaps for Crossing Corridor after different levels
of learning.

(a) Episode 100 (b) Episode 1000 (c) Episode 3000

Fig. 4: Agents’ heatmaps for Bottleneck after different levels of
learning.

Ablation Analysis and Effect of Utility Weighting Factor.
As already mentioned, the utility value is normalised to keep
its value in the range (0, 1] so that incorporating the utility
calculated for other environments is straight-forward. In this
section, we note the influence of utility weighting factor β, by
analysing algorithmic performance in terms of its convergence
and the highest achieved reward. Domain knowledge is not
incorporated with MARL when β = 0 and it constitutes only
MARL framework. With increased value of β, the focus is
more on approximate domain knowledge that is determined
for a single-agent in a discretised environment and does not
take into account other agents in the environment.

Table III summarises the highest reward that DAMAC
achieves with different values of β and the number of training
episodes at which 90% of the overall highest reward across
all values of β is achieved. As the value of β increases, the
highest reward achieved by the algorithm decreases and even
results in sub-optimal policies where not all agents reach their
targets. Agents are inclined to take the path returned by the

A* algorithm that is not optimal in the multiagent setting with
this increase in β. Therefore, because of the walls, bottlenecks,
and other agents, collisions occur that result in the reduction
of the total received reward. Moreover, the utility term is
similarly high for locations nearby the goal as a consequence
of the discretisation of the continuous space. This results
in agents resorting to non-optimal policies where they don’t
explore further to reach their actual targets once they reach
the locations near their goals.

In these experiments with varying β values, if the initial
positions of agents are such that there are less collisions among
agents, and agents and goals are in line-of-sight, the achieved
total reward is more for those runs. Hence, for higher values
of β, there is more divergent behaviour in independent runs
that can be seen in the table III with β ≥ 3. The case, β = 0
acts poorly in Crossing Corridor because of the complexity of
the environment but manages to achieve the highest reward in
Bottleneck with a very slow convergence rate. This shows that
as the complexity of the environment increases, incorporating
domain knowledge enhances convergence. Moreover, it is a
coincidence that β = 1 comes out to be the nominal β value
in both cases as it cannot be generalised to all environments.
Therefore, the balance between MARL and available knowl-
edge is the key to get the optimal policy in the minimum
number of training epochs in navigational environments.

Importance of Domain Knowledge in MARL. Through
experiments and ablation analysis of DAMAC, we elucidate
the value of domain knowledge in MARL. Our incomplete
but expert domain knowledge incentivises one of the multiple
possible single-agent paths returned by the low resolution A*
algorithm, with a positive reward. This information signifi-
cantly improves the achieved rewards and convergence rate in
our constructed experiments, relative to more computationally
complex MARL approaches. This performance occurs even
in environments where collision events are highly probable
along the domain knowledge provided shortest path. This
demonstrates that agents do not just learn to follow the domain
knowledge, but leverage it alongside their own experience to
better navigate around both the environment and the other
agents contained therein.

VI. CONCLUSION

In this work, we have presented an algorithmic approach of
using domain-specific solvers to incorporate domain knowl-
edge in a multiagent reinforcement learning framework. We
propagate the domain knowledge through the critic networks
loss function, which in turn influences the overall policy. Using
a case study of two constrained navigational environments, we
demonstrate that the computational efficiency of reinforcement
learning methods is considerably improved by utilising the
raw form of available knowledge. Our experiments show that
our algorithm, DAMAC, takes half and even less number



TABLE III: Effect of β on DAMAC Learning

Crossing Corridor β = 0 β = 1 β = 2 β = 3 β = 4 β = 5 β = 6
Highest reward 8495± 683 10752± 147 10581± 244 10022± 816 8965± 1083 9988± 914 9327± 718
Epochs for 90% hrew Not achieved 3280 4448 6536 Not achieved 9184 Not achieved
Bottleneck
Highest reward 2424± 149 2529± 205 2510± 25 2262± 417 1914± 358 2087± 444 2460± 25
Epochs for 90% hrew 7136 2744 4424 Not achieved Not achieved Not achieved 3520

Highest reward, and epochs that correspond to the point of reaching 90% of the highest reward (across all β, with hrew for 10752 and 2529 for
Crossing Corridor and Bottleneck respectively), using the average of 6 independent simulations.

of training episodes to converge than those required by the
existing MARL approaches in two constrained environments.
Moreover, it achieves a substantial higher reward as compared
to other methods. We have also found out that a balance be-
tween the approximate domain knowledge and reinforcement
learning to train agents is required to obtain the optimal policy
as weighting the approximate knowledge more leads to lower
rewards. In summary, our approach lays the foundations for
intelligently incorporating a priori knowledge for complex,
multiagent reinforcement learning tasks. In doing so, MARL
may be flexibly applied to practical scenarios in an Industry
4.0 context, including smart factories and other automation
frameworks.
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