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Abstract—Random projection is a popular method for dimen-
sionality reduction due to its simplicity and efficiency. In the past
few years, random projection and fuzzy c-means based cluster
ensemble approaches have been developed for high dimensional
data clustering. However, they require large amounts of space
for storing a big affinity matrix, and incur large computation
time while clustering in this affinity matrix. In this paper, we
propose a new random projection, fuzzy c-means based cluster
ensemble framework for high dimensional data. Our framework
uses cumulative agreement to aggregate fuzzy partitions. Fuzzy
partitions of random projections are ranked using external and
internal cluster validity indices. The best partition in the ranked
queue is the core (or base) partition. Remaining partitions then
provide cumulative inputs to the core, thus arriving at a consen-
sus best overall partition built from the ensemble. Experimental
results with Gaussian mixture datasets and a variety of real data-
sets demonstrate that our approach outperforms three state-of-
the-art methods in terms of accuracy and space-time complexity.
Our algorithm runs one to two orders of magnitude faster than
other state-of-the-arts algorithms.

Index Terms—High Dimensional Data, Fuzzy Clustering, Ran-
dom Projection, Ensemble Clustering, Cumulative Agreement.

I. INTRODUCTION

Clustering is an essential method of exploratory data anal-
ysis in which data are partitioned into several subsets such
that objects in each subset are similar to each other, and
dissimilar to members of other subsets. Clustering is an
underlying tool for knowledge discovery [1], outlier/anomaly
detection [2]–[5], indexing [6], and compression [7]. With the
rapid advancement of Internet of Things (IoT) technologies,
mobile computing, smart mobile devices, and social network
services, data are growing at very fast rates. Many biomedical
applications such as physiological monitoring, imaging, and
sequencing [8] produce large amounts of high-dimensional
data [9]. This article is about clustering algorithms that can
be used for such large, high dimensional datasets.

High dimensional feature vector data, i.e., data described
by a large number of attributes, poses two challenges for
clustering. First, the so-called ’curse of dimensionality’, which
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is caused by the lack of a sufficient number of samples in most
high dimensional data, makes it difficult to find statistically
meaningful structures in the data [10]. Second, noisy and
irrelevant attributes in the data can worsen the performance
of a clustering algorithm. One possible solution to improve
the utility of clustering algorithms for high dimensional data
is to perform dimensionality reduction [11]. Feature subset
selection [12] and feature transformations to lower dimen-
sional spaces are two well known methods for dimensionality
reduction. Popular algorithms for feature extraction, such
as Principal Component Analysis (PCA) [13] and Singular
Value Decomposition (SVD) [14], use well-defined criteria to
optimize the projection in lower dimensional space. Unlike
these algorithms, random projection [15]–[17] is a relatively
simple, computationally efficient linear transformation method
which does not use any special criteria to find "optimal" lower
dimensional projections. Two key properties, namely low com-
putational complexity and (approximate) distance preservation
in lower dimension subspaces, make random projection [16]
an attractive choice for dimensionality reduction.

Over the past few years, ensemble clustering has drawn
significant attention in addressing the clustering problem.
Random projection based ensemble frameworks [18]–[21]
have been proposed for high-dimensional clustering using
fuzzy or probabilistic clustering algorithms. These approaches
use random projection to generate multiple subsets into a
lower dimension from the original dataset, and then some
method of integration is used across the soft clustering re-
sults obtained on all projected datasets. Among these random
projection based fuzzy clustering approaches, the most recent
approaches [20], [21] require less memory and run faster
than earlier approaches [18], [19]. However, the ensemble
algorithms developed in [20], [21] still require very large
amounts of space for storing a big affinity matrix; moreover,
they take a lot of time to cluster the affinity matrix.

Generating and combining multiple output partitions from
clustering has been done in several ways [22]–[28]. However,
most of the existing merging algorithms suffer from time
and/or space complexity problems. Among these approaches,
agreement (voting) based merging [25]–[28], is the most
popular and relatively computationally efficient approach. To
the best of our knowledge, none of the algorithms based on
merging cluster ensembles using the agreement approach have
been studied for large and high-dimensional datasets.

In this paper, we propose a new, simple and efficient random
projection based ensemble framework using a cumulative
agreement scheme to aggregate multiple fuzzy membership
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matrices based on their quality. Cluster Validity Indices (CVIs)
are used to determine the quality of consensus partitions.
This framework eliminates the need of a final time-consuming
clustering step such as the ones reported in [19]–[21] to
obtain output partitions. Our aggregation method employs an
agreement based approach [27], [28], which, to our knowledge,
has been previously studied for only crisp partitions. Our
algorithm extends this idea to the soft case for effective
aggregation of fuzzy partitions, which are obtained using the
Fuzzy c-Means (FCM) clustering algorithm [29] on randomly
projected datasets. The ensemble approach used in our frame-
work combines fuzzy partitions in a sequential manner, thus
avoiding the complexity required by simultaneous aggregation
of the suite of fuzzy partitions produced by clustering many
random projections of the high dimensional data. Our method,
which we call Cumulative Agreement FCM (CAFCM), scales
linearly in the number of data points and the number of
repetitions, making our random projection based ensemble
approach feasible for large and high dimensional datasets.
We evaluate the performance of our proposed framework
on two synthetic and six real high dimensional datasets to
demonstrate its superiority and robustness over three state-of-
the-art approaches.

Here is an outline of the rest of this article. Section II
presents preliminaries on fuzzy and crisp partitions and ran-
dom projection methods. Section III presents a review of
related work. Our agreement based aggregation model is
discussed in Section IV. Section V describes the use of CVIs
in our framework to achieve the best performance. Section VI
presents the proposed framework for Cumulative Agreement
Fuzzy c-Means (CAFCM) for ensemble fuzzy clustering which
uses random projection and cumulative agreement. Section VII
discusses the numerical experiments and results, followed by
the conclusions and discussion in Section VIII.

II. PRELIMINARIES

In this section, we introduce our notation for crisp and soft
partitions and present the random projection method.

A. Matrix Representation for Fuzzy and Crisp Partitions

Consider a set of n objects O = {o1,o2, ...,on}, where
each object is defined by a set of features in the form of
X = {x1,x2, ...,xn} ⊂ Rp. The non-degenerate (no zero rows
corresponding to empty clusters), soft (fuzzy/probabilistic) and
crisp c-partitions of n objects are matrices, denoted as:

M f cn = {U ∈ Rc×n|∀ i ∈ {1,c}, j ∈ {1,n} : ui j ∈ [0,1];
c

∑
i=1

ui j = 1∀ j;
n

∑
j=1

ui j > 0.∀i.}; (1a)

Mhcn = {U ∈M f cn|ui j ∈ {0,1}∀i, j}, (1b)

where ui j represents the membership of data point j in cluster i
for fuzzy clustering. If the clustering is probabilistic, the value
ui j = pi j of data point j is the posterior probability that, given
point j, it came from class i. Soft partitions are more flexible
than crisp partitions in that each object can have membership

in more than one cluster. In this paper, FCM is used to
generate soft partitions in random projections of X . However,
our ensemble approach for high dimensional data clustering is
equally applicable to probabilistic clustering algorithms such
as the Gaussian Mixture Model (GMM) [30], implemented
with the Expectation-Maximization (EM) [31] algorithm.

B. Random Projection

A random projection (RP) is a linear transformation from
Rp to Rq, represented by a matrix T . Let X = {x1,x2, ...,xn}
⊂ Rp be a set of n points in p dimensions, denoted as the
"upspace". X can be mapped to a reduced dimension dataset
Y = {y1,y2, ...,yn} ⊂ Rq,q� p, denoted as the "downspace",
by the linear transformation of X with T . Most random
projection methods are based on the Johnson-Lindenstrauss
(JL) lemma [32]. It is not clear from [15]–[17] which random
projection function T is best for clustering, so we will use a
variant of the JL lemma proposed by Achlioptas in [16]. The
theorem proved by Achlioptas is as follows:

Theorem 1: Let matrix X ⊂ Rn×p be a dataset of n points
and p attributes. Given ε > 0, and β > 0, for any integer q

q≥ q0 =
(4+2β )log(n)

ε2/2− ε3/3
. (2)

The parameter ε controls the accuracy in distance preservation,
while β controls the probability that distance preservation to
within 1± ε is achieved. Let T be a p×q random matrix, in
which each element ti, j is drawn from one of the following
independently identically distributed distributions:

ti, j =

{
+1 with probability 1/2
−1 with probability 1/2

(3)

ti, j =


+
√

3 with probability 1/6
0 with probability 2/3
−
√

3 with probability 1/6.
(4)

Let Y = 1√
q XT be the projection matrix of the n points in Rq.

Let f : Rp → Rq map the ith row of X to the ith row of Y .
Then for any u,v ∈ X with probability at least 1− n−β , we
have

(1− ε)||u− v||2≤ | f (u)− f (v)||2≤ (1+ ε)||u− v||2.

According to Theorem 1, if the reduced (downspace) di-
mension q is equal or bigger than the JL lower bound q0,
then pairwise Euclidean distance squares are preserved within
a multiplicative factor of 1± ε , and we say that Y has JL
certificate. An older version of this projection operator is based
on randomly choosing each element of T from a Gaussian
distribution with zero mean and unit variance which carries
a similar guarantee [16], [33]. However, the authors in [34]
assert that the JL bound often holds for q� q0. They called
such projections "rogue random projections". We will study
the use of rogue random projections in our ensemble clustering
approach.
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III. RELATED WORK

In this section, we review existing random projection based
cluster ensemble methods for high dimensional data clustering
and agreement based combination schemes.

A. Random Projection Based Ensemble Approaches

Several ensemble approaches have been proposed for high
dimensional data clustering, which are based on random
projection and fuzzy c-means. The main idea of the existing
approaches is as follows; First, multiple downspace datasets
{Yr}N

r=1 are generated in a fixed lower dimension Rq using
RP, where N is the number of RPs. Then, FCM clustering
is performed on each downspace copy to obtain N fuzzy
partitions, e.g., Ur = FCM (Yr), where Ur ∈M f cn. These output
partitions {Ur}N

r=1 are aggregated using an ensemble scheme.
The final output partition is typically obtained by performing
soft clustering on the rows of an aggregated matrix.

Apparently, the first cluster ensemble approach that used
random projection was proposed in [19], in which GMM/EM
clustering was used to obtain probabilistic partitions P∈M f cn,
where p(c|i,θ) is the probability of point i being in cluster c
under a model θ . Subsequently, a similarity matrix Mi was
computed between two joint probability distributions for each
downspace dataset. The final similarity matrix M was obtained
by averaging the Mis, and then the final clustering output was
obtained by applying a hierarchical clustering algorithm, called
complete linkage (CL), on the aggregated similarity matrix M.

A similar approach using FCM for fuzzy clustering (EFCM)
was used in [18] to find the significant genes in DNA
micro-array data. Random projection was used to reduce the
data dimensionality. Then, FCM clustering algorithm was
employed on each downspace dataset to generate membership
matrices Ur ∈ M f cn. Then for each r, a similarity matrix Mr
was computed as Mr = UT

r Ur ⊂ Rn×n. Then, an aggregated
similarity matrix (M) was calculated by averaging the N Mrs
across multiple projection runs. The distance matrix D= 1−M
was computed, and then FCM was performed on the rows of
D ⊂ Rn×n to obtain a final membership matrix.

Both of the above approaches have space complexity O(n2)
for storing the similarity matrix (M). There is a time complex-
ity of O(n2log(n)) in applying complete linkage (GMM/EM
based approach) and O(dlnc2) in applying FCM (the EFCM
approach) on D⊂ Rn×n, where n is number of data points, d
is the dimensions of the matrix on which clustering is applied
(for EFCM approach, d = n), c is the number of clusters, and l
is the number of iterations used by FCM. There is an additional
time complexity of O(cNn2) in the EFCM approach due to
computing the product of the N partition matrices and their
transposes. Therefore, both of these algorithms are limited to
applications for which the number of objects n is small (e.g.,
some thousands of samples), and the original dimension p of
the upspace data is large (e.g., more than tens of thousands).
As n increases, the EFCM approach becomes intractable for
big data.

To address the limitations of these two approaches for big
data clustering, Popescu et al. [20] proposed a new method,

RPFCM-A, that began with FCM clustering of random projec-
tions of the data. The resultant membership matrices {Ur}N

r=1
were concatenated as Ucon = [UT

1 |UT
2 |....|UT

N ], and the final
membership partition was obtained by applying FCM to the
rows of the aggregated matrix Ucon ⊂ Rn×cN . Concatenating
N partitions of n× c dimension by stacking them along the
element dimension results in an n × cN matrix which is
significantly smaller than Mr. This approach eliminates the
time complexity spent computing products of the membership
matrices and their transposes. Thus, it seems more suitable
than the EFCM based approach. However, it still requires the
multiplication of the concatenated matrix with its transpose
when a crisp output partition is desired. Moreover, this scheme
has time complexity of O(dlnc2) when applying FCM to
the concatenated matrix Ucon ⊂ Rn×cN , where d = cN. If the
number of clusters c in the data and the number of downspace
datasets N are such that cN > p; it means the dimension of the
agreement matrix becomes higher than the original dimension
of dataset, which makes this approach unsuitable for high
dimensional data clustering.

Mao et al. [21] proposed a modified approach, RPFCM-
B, based on spectral graph partitioning. Instead of consid-
ering the full agreement matrix Ucon, they performed the
clustering on the first c left singular vectors of Ûcon, where
Ûcon = SV D(Ucon) ⊂ Rn×c, which reduces the computational
time as compared to RPFCM-A approach. However, there is
space complexity of O(cnN), and computational complexity
of O(n(cN)2) for SVD and O(dlnc2) for the FCM clustering,
where d = c.

B. Agreement Based Combination Schemes

Among existing ensemble approaches, agreement based
merging algorithms are popular due to their simplicity and
computational efficiency. The idea of the agreement based
combination scheme for fuzzy clustering was first introduced
by Dimitriadou et al. [27], which is based on minimizing the
average squared distance between ensemble membership parti-
tions and an output optimal partition. This algorithm computes
an approximate solution in a sequential manner, in which, the
best cluster label permutation is obtained for each ensemble
partition with respect to a reference partition, followed by
updating the reference partition through averaging. However,
the determination of the best cluster label for each cluster in a
partition for large values of c is a time consuming task due to
the computation of squared distances between partitions across
each possible permutation of cluster labels. The labelling
correspondence problem is solved in [26] using a maximum-
likelihood estimate found with the Hungarian method [35],
and then plurality voting is applied to obtain an optimal
partition. The Hungarian algorithm can be costly because
it is O(c3). The most recent work on consensus clustering
employs a voting based mechanism [28], where the cluster
label assignment problem is addressed using a contingency
matrix which requires less computation time than that required
by previous methods. The study in [28] was limited to crisp
partitions. This scheme may not enjoy the same performance
for soft partitions, which are obtained from projected datasets
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Fig. 1: Four methods of ensemble FCM clustering using
random projection

using random projection. This is because random projection
produces highly unstable and radically different outputs [19],
[33].

Although a fair amount of work has been done on agreement
based aggregation schemes, only a few schemes are applicable
to soft clustering. In our work, we eliminate the use of FCM
clustering on the aggregated matrix to get a final output
partition, using an agreement based aggregation scheme which
is computationally efficient and easy to implement. Fig. 1
compares the three FCM based schemes in [18], [20] and [21]
to our proposed CAFCM method.

In the next section, we discuss our agreement based scheme
for aggregating the fuzzy partitions {Ur}N

r=1, obtained from
FCM clustering on N randomly projected datasets.

IV. AGREEMENT BASED AGGREGATION MODEL

The objective of an aggregation model is to find a partition
U f , which represents a set of N fuzzy partitions {Ur}N

r=1, the
representation being optimal in some well-defined sense. We
assume that U f and the Ur are all the same size (c× n). Let
u(r)i and u( f )

i be the label vectors of data point xi for the
partitions Ur and U f , respectively. That is, u(r)i is the i-th
column of Ur, and similarly for u( f )

i . The average dissimilarity
function h(Ur,U f ) is chosen as an optimality criteria, and can
be expressed as the average squared distance between the N
columns of Ur and U f , as [27]

h(Ur,U f ) =
1
n

n

∑
i=1
||(u(r)i −u( f )

i )||
2
. (5)

The computation in equation (5) measures the similarity
between Ur and (the unknown solution) U f on the assumption
that the c clusters in Ur and U f are "aligned", i.e., the rows of
Ur and U f represent the clusters in the same order. This is the
so-called "registration problem" in clustering, and care must

be taken to ensure that all of the partitions being aggregated
are aligned in this sense. This problem is exacerbated when
the partitions are fuzzy. We want to relabel the N Ur’s so that
they are aligned. This ensures that they will be aligned with
the unknown U f .

One way to approach this problem is to let Πb(Ur) represent
the mapping of partition Ur to an optimally relabelled partition
Ur,b with respect to some base (or core) partition Ub. Then, an
optimal partition can be obtained as the solution to [27],

U f = argmin
Ub∈M f cn

(
1
N

N

∑
r=1

h(Πb(Ur),Ub)

)
. (6)

The solution of this minimization problem in [27] gives u( f )
i

as the arithmetic mean of u(r)i over all partitions. In order to
obtain the best cluster label permutation for each ensemble
partition, the squared distance (minimization) between the
ensemble and base partitions was chosen as mapping Πb(Ur).
A contingency weight matrix based mapping scheme was
proposed in [28] as a solution of (6). These solutions are
not effective in combining multiple fuzzy partitions which are
obtained using random projections. Our experiments with this
method did not show very promising results. So, we turned to
another approach, which effectively combines fuzzy partitions,
obtained using RPs, based on their quality, as measured by
cluster validity indices.

The concept behind agreement based ensemble approach is
that pairs of points that stick together (appear in the same clus-
ter) in most or all of the individual partitions should also stick
together in the final ensemble partition. Suppose the number
of clusters cr for individual partitions Ur is randomly selected
within some range {cmin,cmax}. The intuition underlying our
approach is that the pairs of points that are members of a
cluster for higher values of c should be considered to be more
strongly associated to each other than pairs of point which are
together in a cluster at a smaller value of c.

The N partitions obtained by applying FCM clustering to
N random projections will have different information content
(quality). The best quality partition, which has maximum
information content about the cluster labels distribution, is
chosen as the base partition, Ub, in the first step of the aggre-
gation. Assuming that we do not have any prior knowledge
for the selection of the base partition and the "true" number
of clusters, we use an internal cluster validity index (CVI) to
choose the base partition (discussed in the next section).

The remaining N − 1 partitions are ranked in decreasing
order of quality based on their relationship to the base parti-
tion, and are combined sequentially based on their rank. The
objective of this scheme is to secure the strongest agreement
between the highest ranked partitions in the queue with the
base partition. In this way, low-quality partitions will have
minimal effect on the quality of the overall output partition.
Minor variations in ranking are not expected to impact the per-
formance of this scheme, because using an ordered sequence
based on decreasing quality effectively integrates the good and
bad fuzzy partitions, and decreases the effects of bad partitions
on the overall output. If the base partition is of poor quality
or there is major variation in ranking (for example, a few
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poor-quality partitions are in the top five partitions in the CVI
queue), then we expect performance to deteriorate. At the other
extreme, if all N partitions are of roughly the same quality,
then the selection of the base partition and ranking of the
remaining partitions will not have a significant effect on the
output partition.

In the next section, we discuss the use of CVIs to achieve
the best performance for CAFCM.

V. QUALITY OF CONSENSUS PARTITIONS

The projected datasets can be drastically different from each
other due to the random mapping from upspace to downspace.
Consequently, clustering on these different downspace datasets
with any algorithm may result in output partitions of different
quality. To determine the quality of partitions, we use a cluster
validity index (CVI). A CVI is a measure of cluster quality
that can be used to identify the "best" member amongst a set
of multiple partitions (where best means, with respect to the
CVI in use). External CVIs require ground truth information,
whereas internal CVIs use only data and/or algorithmic out-
puts. See [36]–[40] and Table X for a detailed analysis and
discussion on various internal and external CVIs.

The quality of the output partition U f constructed by
CAFCM depends on the quality of the base partition Ub, which
is chosen in the initialization phase. The fuzzy partition from
the set {Ur}N

r=1, which best preserves the structure of the
ground truth partition of labeled data will be taken as the
base partition. The intuition behind using the best member
from the set of ensemble partitions as the base partition is that
the output partition U f should contain the maximum amount
of information about structure in the data that is present in
the best quality partition amongst all ensemble partitions.
Most importantly, this will eventually lead us to a method
for identifying Ub for the unlabeled data case.

The quality of individual fuzzy partitions compared to a
ground truth (labeled data) partition can be determined using
a soft external CVI. Let the quality of any partition Ur with
respect to the ground truth partition Ugt , using an external
soft CVI Vexts , be denoted as Vexts(Ur|Ugt), where subsubscript
”s” means soft. Based on the optimality of Vexts(Ur|Ugt), the
N ensemble partitions can be ranked in descending order of
quality such that

Vexts(U(1)|Ugt)≥ Vexts(U(2)|Ugt)≥ ...≥ Vexts(U(N)|Ugt), (7)

where parenthetical subscripts indicate the permutation of the
original indices that results in the ordering shown in (7), and
we assume without loss of generality that the CVI is max-
optimal (best is maximum). This gives a set of sorted partitions
U(exts)

sorted based on their quality with respect to the external
CVI Vexts . In real-world applications, the data is unlabeled
so the ground truth information, which is required to evaluate
partition quality based on (7), is not available. In this case, a
question that must be answered is: can internal CVIs (Vints )
be used to achieve similar rankings for a set of partitions
U(ints)

sorted? Internal/external (I/E) matching analysis is discussed
in Section VII to determine whether the same base partition
and similar ranking of the sorted partitions, suggested by an
external CVI, can be obtained using internal CVIs.

Assuming that similar sets of partitions U(ints)
sorted =U(exts)

sorted can
be obtained using an internal CVI, the best quality partition for
unlabeled data, U(1) from U(ints)

sorted , can be chosen as the base
partition Ub. Using the base partition in Algorithm 1, chosen
by this criterion, results in an output partition U f , which is
an aggregation of the ensemble of inputs that is optimal with
respect to the chosen CVI. This minimizes the average dissimi-
larity between ensemble matrices and the best quality partition,
which best preserves apparent cluster structure or information
about X . Next, we discuss the proposed framework, CAFCM.

VI. CUMULATIVE AGREEMENT FCM (CAFCM)
ALGORITHM

Suppose we have a set of ensemble partitions Usorted =
{U(r)}N

r=1, each partition having cr clusters, ranked according
to (7) in decreasing order of their quality with respect to
a specified CVI. Let the best (first) partition U(1) in Usorted
have c clusters and take U(1) = Ub. The partitions {U(r)}N

r=2
are designated as voting partitions with respect to Ub. The
entries of each column vector of stochastic matrix U(r) ∈M f crn
represent the degree of membership of that object in each
cluster (rows), and sum to 1, whereas, in the Moore-Penrose
pseudoinverse U−1

(r) ∈ M f ncr , each column vector turns into
the row (cluster) vector {ci}cr

i=1 whose entries sum to 1 [41].
These values can be interpreted as the weight of each data
point (rows) in cluster (columns) vector ci. Multiplying the
pseudoinverse of U(r) with base partition Ub gives the weight
matrix Wr,b ⊂ Rc×cr ,

Wr,b =UbU−1
(r) . (8)

Due to the pseudoinverse U−1
(r) in the weight matrix calculation,

the entries in Wr,b do not lie in the range [0,1]. The relabelling
of partition U(r) against the base partition Ub is achieved by
multiplying U(r) with this weight matrix Wr,b, which gives the
transformed partition Ur,b as

Ur,b =Wr,bU(r). (9)

The degrees of membership in the transformed partition Ur,b
correspond to degrees of memberships in U(r), which are
scaled by the entries of Wr,b. This accomplishes the vote by
U(r) to the base partition Ub. The ensemble approach in [28],
that computes the weight matrix W 1 as

W =UbUT
(r), (10)

is a special case of approach (8) (suitable for fuzzy partitions).
Both approaches are demonstrated in Example 1 with a

base partition Ub and an ensemble partition U(r). The mutual
information between the transformed and the base partition is
measured using the soft Normalized mutual information index
(NMI) VNMIs [37] . It can be inferred from the NMI values
in Example 1 that Ur,b contains more mutual information with
respect to the base partition Ub, than U (obtained using (10)
and (9)).

1The columns of weight matrix, W , are normalized in [28] such that wi j ∈
[0,1], and ∑

cr
j=1 wi j = 1.



1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2017.2729501, IEEE
Transactions on Fuzzy Systems

6 IEEE TRANSACTIONS ON FUZZY SYSTEMS

Example 1: Consider a fuzzy base partition Ub of size 3×4
and an ensemble fuzzy partition U(r) of size 2× 4, as given
below:

Ub =

0.8 0.9 0.0 0.1
0.1 0.1 0.9 0.1
0.1 0.0 0.1 0.8

 ,U(r) =

[
0.6 0.7 0.1 0.1
0.4 0.3 0.9 0.9

]

The weight matrix Wr,b, computed using (8), and the matrix
W , computed with (10), are as follows:

Wr,b =

 1.35 −0.09
−0.15 0.57
−0.20 0.52

 ,W =

0.74 0.27
0.15 0.39
0.11 0.34

 ,
which gives the corresponding transformed partitions Ur,b and
U , using (9), as:

Ur,b =

.78 .92 .05 .05
.14 .06 .50 .50
.08 .02 .45 .45

 ,U =

.56 .60 .32 .32
.24 .22 .36 .36
.20 .18 .32 .32

 ,
VNMIs(Ur,b|Ub)=0.2178, VNMIs(U |Ub)=0.0217.

When multiplying the partition U(r) with weight matrix Wr,b,
each row vector {ci}cr

i=1 of U(r) votes for each of the clusters
{c j}c

j=1 of Ub, with weights wi j from the cumulative vote
weight matrix Wr,b. In the general case, each partition U(r)
from Usorted , casts its vote with Ub this way in decreasing
order of their quality in a sequential manner. Following [27],
the base partition U (i)

b at iteration i is calculated by averaging
the last base partition U (i−1)

b with transformed partition U (i)
r,b .

It is evident from (8) and (9) that Ur,b, and in turn U f , will
have the same number of clusters as the base partition Ub.
If the number of clusters cr for each ensemble partition is
chosen randomly from cmin to cmax, the criterion of selecting
the base partition based on the CVI ranking (refer to Section
V) does not always capture the most ’meaningful’ information
i.e., true number of clusters in the base partition. The problem
of finding the true or best number of clusters, using CVIs, is
well addressed in the literature. In our work, each ensemble
partition having the best number of clusters cr is obtained
using a chosen CVI. For each downspace dataset, FCM
clustering is performed with the number of clusters varying
from cmin to cmax. Depending on the evaluation of the CVI, the
ensemble partition Ur having the CVI-best number of clusters,
cr is obtained for each downspace dataset.

Our CAFCM algorithm for high dimensional data clustering
using random projection and cumulative agreement based
aggregation with FCM clustering is presented in Algorithm 1.
In Step 1 of the Algorithm 1, multiple downspace datasets
{Yr} are generated in a fixed lower dimensions; downspace
Rq using random projection, as discussed in Section II. In
Step 2, FCM clustering is applied to each downspace dataset
Yr, with the number of clusters varying from cmin to cmax. In
Step 3, the partition Ur with the best number of clusters cr
is obtained for each downspace dataset, using a chosen CVI.
This step gives N fuzzy partitions, each having a CVI-best
number of clusters cr. In Step 4, these N fuzzy partitions are

TABLE I: Time and space complexity of four FCM-based
ensemble approaches

Ensemble Methods Time Complexity Space
Complexity

EFCM [18] O(dlnc2)+O(cNn2), d = n O(n2)

RPFCM-A [20] O(dlnc2)+O(cNn2), d = cN O(n2)

RPFCM-B [21] O(dlnc2)+O(n(cN)2), d = c O(cnN)

CAFCM (Proposed) O(nNc2) O(cn)

l is the number of iterations to termination, d is the dimensions of the
matrix on which clustering is applied, c is the number of clusters,
n is the number of data points, and N is the number of random
projections.

Algorithm 1 CAFCM: Cluster Ensemble for FCM Clustering
with Random Projection
Input: Dataset X ⊂ Rn×p, cluster range = {cmin,cmax},
downspace dimension q, number of random projections N.
Output: Fuzzy partition U f .
Step 1: Dataset generation in downspace.

for r = 1 to N do
Generate downspace datasets Yr ⊂ Rn×q using Y =

1√
q XT , where T ⊂ Rp×q is the random matrix built using

(3).
end for

Step 2: Run FCM on each Yr, obtaining Ur ∈M f cn: c = cmin
to cmax.
Step 3: Get partitions {Ur}N

r=1 ∈M f crn, each partition having
a CVI-best cr number of clusters, choosing each cr with an
internal cluster validity index, Vints .
Step 4: Get a set U of sorted partitions {U(r)}N

r=1 ∈M f crn, as
given in (7), using the cluster validity index, Vints .
Step 5: Assign the best partition U(1) (from Step 4) as the
base partition, i.e., U (1)

b =U(1).
for i = 2 to N do

Wi,b =U (i−1)
b U−1

(i)
Ui,b =Wi,bU(i)

U (i)
b = i−1

i U (i−1)
b + 1

i Ui,b
end for

U f =Ub.

ranked based on their quality as in (7). In our experiments, the
Normalized Partition Entropy (PEB) VPEBs [38] was chosen
as an internal index in Steps 3 and 4. Step 5 corresponds
to the cumulative agreement based aggregation approach, as
discussed in this Section. While FCM is part of the title of
our algorithm, we point out that this scheme applies without
change when the ensemble of soft partitions is generated by
ANY fuzzy or probabilistic clustering algorithm.

The time and space complexity of the proposed aggregation
approach and the three state-of-the-art ensemble approaches
that are used for comparison is shown in Table I. Our
aggregation approach has time complexity of O(nNc2) for
matrix multiplication and computation of pseudoinverse of
the rectangular matrix [42]. The fast Moore Penrose inverse
method [42] was used to compute the pseudo inverse of
ensemble partition U(r). Therefore, the proposed aggregation
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method has linear computational complexity in the number
(n) of input samples. The CAFCM approach has the minimal
space complexity, O(cn), which is required to store the base
partition that is updated sequentially in each iteration.

VII. EXPERIMENTS

We performed five sets of experiments. In the first experi-
ment, we explored the effect of using downspace datasets gen-
erated by different RP distributions (3) and (4) on the output
partition. In the second experiment, an internal CVI validation
test was performed among all internal CVIs to choose the best
’cr’ corresponding to each RP, and subsequently a best internal
CVI is chosen. In the third experiment, an Internal/External
(I/E) agreement test was performed to determine whether the
partitions ranking, achieved by a soft external CVI, can also be
obtained using a soft internal CVI. Based on the agreement
performance of each internal CVI against the soft external
CVI, we choose one best internal CVI to get sorted partitions
for each dataset in our ensemble approach. In the fourth
experiment, we demonstrate the effect of altering the ordering
sequence of ensemble partitions on the output partition for
CAFCM. In the last experiment, we compare different cluster
ensemble approaches for high dimensional data clustering. To
facilitate the comparison of these different approaches, we
denote the approaches of [18] as EFCM, of [20] as RPFCM-
A, of [21] as RPFCM-B, and our cumulative agreement
based approach (Algorithm 1) as CAFCM. The experiments
were performed in the MATLAB environment on a normal
PC with the following configurations; OS: Windows 7 (64
bit); processor: Intel(R) Core(TM) i7-4770 @3.40GHz; RAM:
16GB.

A. Datasets and Parameter Settings

We performed our experiments on the following datasets.
1) Synthetic datasets: Two synthetic datasets, each having

n = 10000 data points in p = 1000 dimensions, were con-
structed by drawing labeled samples from a mixture of three
Gaussian distributions. GM1 is a well separated Gaussian
mixture, while GM2 presumably has overlapping Gaussian
clusters because its means are closer than those in GM1. The
properties of these synthetic datasets are given in Table II.

TABLE II: Properties of two synthetic datasets GM1 and GM2

Component 1 2 3
Means

GM1 (−6,−6, ...,−6)1000 (0,0, ...,0)1000 (6,6, ...,6)1000

GM2 (−2,−2, ...,−2)1000 (0,0, ...,0)1000 (2,2, ...,2)1000

Standard deviations in all directions
GM1 (1,1, ...,1)1000 (2,2, ...,2)1000 (3,3, ...,3)1000

GM2 (1,1, ...,1)1000 (2,2, ...,2)1000 (3,3, ...,3)1000

2) Real datasets: Six publicly available real high-
dimensional labeled datasets were chosen to demonstrate the
applicability of our approach. The details are as follows:

KDD CUP 99 [43]: We used a sample of KDD CUP 99,
which contains a wide variety of internet attacks simulated
in a military environment. It consists of 494021 instances of
41 dimensional vectors, and each vector is labeled to specify
the attack type. We normalized all 41 features to the interval
[0,1] by subtracting the minimum and then dividing by the
subsequent maximum so that they all had same scale. This
dataset contains 22 types of simulated attacks which fall into
one of four main categories [43].

ACT [44]: This is a time-series dataset which contains data
representing 19 activities such as sitting, walking, jumping
etc., captured by 45 motion sensors over a 5 minute window
sampled at 25Hz. Each activity is performed by 8 different
subjects. The 5-min signals are divided into 5-sec segments so
that 480 (= 60×8) signal segments are obtained for each ac-
tivity. In each segment, there are a total of 125 (= 5sec×25Hz)
rows and 45 columns. We concatenated each segment data to
obtain 9120 (= 480× 19) instances in 5625 dimensions. All
features were normalized to [0,1] using the method discussed
earlier.

Forest Covertype [45]: These data consist of 54 carto-
graphic features obtained by the U.S. Geological Survey
and U.S. Forest Services, collected from a total of 581012
(30m×30m) cells, which were then categorized into 7 forest
cover types. This is a challenging dataset for any clustering
algorithm as it contains ten continuous features, and 44 binary
features (four wilderness types and 40 soil types). Because
of the different nature of 54 features, we started developing
our own distance metric using Euclidean and Hamming dis-
tance with normalized continuous feature (within [0,1]) that
accounts for these differences to give similar weight to all the
features. But the clustering results were slightly worse than
using Euclidean distance alone. After several experiments,
we discovered that the binary features do not add too much
value in discriminating the forest Cover type. Using the
Euclidean distance with scaled continuous features, with all
binary features, yielded the best results in our experiments,
therefore, we used Euclidean distance model for Forest dataset.
We normalized the continuous features to the interval [0,1].

MNIST [46]: This dataset is a subset of a large set of
handwritten images from the National Institute of Standards
and Technology (NIST). It contains a total of 70000 784 (=
28× 28) dimensional binary images of the digits 0 to 9.
The main problem with handwritten images is that a single
character can be written in many often quite different ways.
This causes overlapping clusters in the data and makes it
challenging for clustering.

HAR [47]: This time-series dataset contains 10299 in-
stances of 6 daily activities performed by 30 subjects, while
carrying a waist-mounted smart phone with embedded inertial
sensors. It is a preprocessed dataset which has 561 features
with time and frequency domain variables.

CIFAR 10 [48]: This dataset contains 60000 32x32 color
images in 10 classes, with 6000 images per class. The classes
are mutually exclusive. We concatenated each image into a
3072 = (32×32×3) dimensional feature vector.

3) Parameters: The model and error norms were both
Euclidean for FCM except for the two time-series datasets. The
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Cosine distance was used as model norm for HAR and ACT,
based on its performances in previous studies [20]. This was
done by replacing the Euclidean norm by the Cosine distance
in the FCM function. In this case, the resultant algorithm is
not alternating optimization since the FCM objective function
has been abandoned. So this is an instance of alternating
cluster estimation. The number of random projection (RPs),
N is chosen as 30, unless stated otherwise. The weighting
exponent m = 2, termination threshold ε = 0.000001, and
the number of maximum iterations is chosen as 100 for the
MATLAB implementation of FCM. Termination occurs when
the absolute value of the difference between successive values
of the FCM objective function using either distance is less
than ε .

B. Evaluation Criteria

Adjusted Rand Index: The soft version [36] of the adjusted
rand index, ARIs (Hubert and Arabie [49]) is used as an
external soft CVI. This index VARIs(U |Ugt) measures the
degree to which a fuzzy partition U matches a crisp Ugt .
Higher values indicate a better match, so VARIs is a max-
optimal CVI. This index maximizes at 1 when U = Ugt , and
it’s minimum may be negative when its expected value is not
zero.

The Normalized Partition Entropy (PEB) VPEBs [38], Par-
tition Index (SC) VSCs [50], Normalized Partition Coefficient
(PCR) VPCRs [51], and Xie-Beni index (XB) VXBs [52], are
used for internal CVI comparisons. Based on the min or max-
optimality of internal CVIs, a set U of partitions, ordered in
decreasing quality as in (7), is obtained for each internal CVI
Vints . The performance of each internal CVI Vints against the
external CVI VARIs is evaluated using two metrics:

Kendall’s rank correlation coefficient [53]: Let Eexts and
Eints be position vectors of Vexts and Vints respectively, which
contain the ranking of sorted (descending order of quality) par-
titions. Kendall’s coefficient τ measures the similarity between
orderings in Eexts and Eints , which is given as [53]:

τ =

Number of
concordant pairs −

Number of
discordant pairs

N(N−1)/2
. (11)

Kendall’s τ is valued in [−1,1], where 1 is for perfect agree-
ment between two rankings, and −1, for perfect disagreement.

Position of the base partition: The selection of the best
quality partition to be the base partition is important in our
approach. Let the position of the best partition U(1) (first in
Eexts ) in Eints be denoted as eU(1) , then a position metric VUb
is used to evaluate how accurately an internal CVI determines
the position of the base partition in Eints , thus

VUb = 1−
eU(1) −1

N−1
. ∈ [0,1] (12)

The integer eU(1) is the position of the partition in the internal
ranking Eints whose partition matches U(1) =Ub, so eU(1) can
take any value from 1 to N. Suppose eU(1) = 1, so that U(1) is
the best partition in both rankings Eexts and Eints , then VUb = 1.
On the other hand, suppose eU(1) = N, then VUb = 0, So the

TABLE III: The average VARIs and downspace data generation
time for distribution (3) and (4)

Random Matrix\Datasets GM1 GM2
VARIs Time (s) VARIs Time (s)

Distribution (3) 1.00 0.0266 0.90 0.0267
Distribution (4) 1.00 0.0265 0.90 0.0265

range of VUb is [0,1], maximum at 1 when the best external
and best internal partition are the same; and minimum at 0
when the best external partition is the worst internal partition.
The higher the value of VUb , the higher the ranking of the best
partition U(1) in Eints .

The evaluation criteria to compare the performances of
different ensemble approaches are:

Accuracy: The similarity of the final clustering solution U f
with respect to ground truth partition Ugt is measured using
VARIs(U f |Ugt), for all four fuzzy ensemble approaches.

Run-Time: Running time is also an important criteria for
comparison, which is related to the scalability of an algorithm.
For each dataset, we pre-generated the downspace datasets us-
ing random projection, and used the same projection matrices
for all algorithms. We keep the number of RPs N, and other
parameters fixed for all approaches. We also compare the four
fuzzy ensemble approaches based on the aggregation time Tagg,
required to get a final output partition U f from the N ensemble
partitions.

C. Selection of Random Matrix T for Downspace Data (Y )
Generation

We conducted an experiment to demonstrate that we can
use either of equations (3) or (4) as the basis for random pro-
jection. Using datasets GM1 and GM2 with distributions (3)
and (4), we generated downspace datasets {Yr} (q = 100)
and used them in our framework for ensemble clustering.
The average (10 trials) execution times for downspace data
generation and the corresponding soft adjusted rand indices
VARIs for output partitions are shown in Table III. These values
confirm that there is very little difference between the projec-
tions based on equations (3) and (4). As also shown in [16],
both (3) and (4) are very simple probability distributions and
all mathematical operations required to compute Y = 1√

q XT
are very efficient and easy to implement. Subsequently, we
used distribution (3) to generate downspace datasets in all the
remaining experiments.

D. Internal CVIs Validation for Best ’cr’

The base partition should ideally contain the nominally
"true" target value for the number of clusters cgt , that are
identified by Ugt . In this regard, the best-c validation test [40]
was performed using the four soft internal CVIs to estimate cgt
in all datasets. The downspace dimension q was chosen as 20.
For the choices of ε = β = 0.25, and n= 10000, qo = 1591, so
q is well below the JL bound qo. In this experiment, FCM was
performed on each downspace dataset by partitioning the data
at each value of c between {cmin,cmax}. The lower (cmin) and
the upper (cmax) limits were chosen such that they under- and
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TABLE IV: The average (20 trials) of the best ’c’s from all
internal CVIs (Vints)

<Internal
CVI> cgt <VPEBs > <VSCs > <VXBs > <VPCRs >

Synthetic Datasets
GM1 3 3.0 3.0 2.1 3.0
GM2 3 3.0 3.0 2 2.9

Real Datasets
MNIST 10 10.83 11.98 6 10.12
CIFAR 10 7.1 9.6 6.2 6.4
HAR 6 5.3 6.5 3 4.9

FOREST 7 4.8 6.7 4.2 4.4
ACT 19 18.8 21.5 17.1 18.2

KDD CUP 23 19.3 20.7 19.5 18.8

Root Mean Square Error 5.30 4.00 8.04 6.26

over-estimated the possible number of clusters in the data. The
best quality partition, Ur, having cr clusters, was chosen using
each CVI based on its min/max optimality. This procedure
was performed for each downspace projection, and the (round)
average of the ’best c’s was used as an estimate of the true
number of clusters in the upspace data. In this test, randomly
chosen subsets of each upspace dataset were used for the big
datasets.

Table IV shows the estimated number of clusters in each
dataset for each of the internal CVIs. The value of the
apparent2 true number of clusters cgt is shown in the second
column of Table IV. The values in the last row of Table IV
show the square root of the sum of squared errors (RMSE)
between cgt and the estimated values for each internal CVI. In
this exercise, VSCs produces slightly more reliable estimates of
cgt than the other three CVIs, whilst VPEBs produces the second
best estimates of cgt . We remark that these conclusions are not
generally applicable. You could test many different CVIs and
get different best results. Or you could change datasets and
discover that VSCs and VPEBs performed badly. And so on, ad
infinitum. It can also be observed from Table IV that VPCRs

works best for MNIST, VPEBs for ACT, while VSCs is best for
rest of the datasets. We tested the performance of the CAFCM
algorithm using both VSCs and VPEBs in Step 3, and the final
results were very similar. Therefore, we chose VPEBs as the
best internal CVI based on this and the I/E agreement test
(next) for use in Steps 3 and 4 of CAFCM Algorithm.

E. The Internal/External (I/E) Agreement Test

In this experiment, we performed the Internal/External (I/E)
agreement test, in which the performance of an internal CVI is
compared with the performance of an external CVI to assess
whether they both yield similar base partition and similar
partition rankings or not [29], [54]. We compared the partition
rankings and the base partition obtained using the external
CVI (VARIs ), with the partition rankings and base partition
obtained using each of the four internal CVIs. Among these
four internal CVIs, the CVI which determines the most similar

2We say apparent because it is well known that labeled data which contain
c1 physically labeled subsets often possess c2 6= c1 "best clusters" with respect
to a given model and algorithm [29].

TABLE V: Average Values (5 trials) of Kendall’s τ and (VUb)
of internal CVIs against VARIs .

<Internal
CVI> <VPEBs > <VSCs > <VXBs > <VPCRs >

Synthetic Datasets
GM1 1.00 (1.00) 0.99 (1.00) 0.05 (0.96) 1.00 (1.00)
GM2 0.89 (1.00) 0.99 (1.00) 0.01 (0.41) 0.89 (1.00)

Real Datasets
MNIST 0.36 (0.98) 0.11 (0.95) 0.01 (0.66) 0.23 (0.97)

CIFAR 10 0.25 (0.98) 0.42 (0.98) -0.06(0.55) 0.28 (0.98)
HAR 0.68 (1.00) 0.26 (0.98) 0.06 (0.96) 0.58 (0.99)

FOREST 0.17 (0.98) 0.11 (0.98) 0.10 (0.86) 0.15 (0.96)
ACT 0.65 (1.00) 0.36 (1.00) 0.17 (0.94) 0.64 (1.00)

KDD CUP 0.19 (0.93) 0.09 (0.28) 0.10 (0.96) 0.18 (0.93)

Column
Average 0.52 (0.98) 0.41 (0.89) 0.04 (0.78) 0.49 (0.98)

partition ranking and base partition, obtained using the external
CVI, is chosen for use in our framework. Using this best
internal CVI, we hope to achieve the desired partition rankings
and base partition in the best possible way when ground truth
data are not available (the unlabeled case).

1) Partition rankings comparison: Step 3 of the CAFCM
algorithm produces the N ensemble partitions having best ’cr’
number of clusters. The ranking of each ensemble of fuzzy
partitions is established using the external CVI VARIs , and the
four soft internal CVIs VPEBs , VSCs , VXBs , and VPCRs , based on
the partition quality. The partitions ranking, Eints , of each of
the four soft internal CVIs was compared with the partitions
ranking, Eexts , of soft external CVI, VARIs , for each dataset
using the Kendall rank correlation coefficient.

2) Base partition comparison: Besides the partition rank-
ings, the selection of the base partition, Ub, is also important
in our framework. In this experiment, the position eU(1) of
the base partition Ub, the best external CVI partition (first in
Eexts ), in each internal CVI partition ranking Eints was used to
compute the position metric VUb for each internal CVI and for
each dataset.

The values of τ and VUb were computed between
rankings Eexts = {EARIs} and each ranking of Eints =
{EPEBs ,ESCs ,EXBs ,EPCRs}, using (11) and (12). This procedure
was repeated 5 times for each dataset.

Table V shows the averaged values of τ and VUb (in paren-
theses) corresponding to the order of the N fuzzy partitions
established by each internal CVI for each dataset. The notation
<CVI> in the first row of the table indicates the basis of the
τ and VUb values that are displayed in each column, not to be
confused with the value of the CVIs, which are NOT shown.
The values in each column are formatted with just enough
resolution so that the optimal values can be seen.

Apparently all of the CVIs except VXBs perform well for
the two synthetic datasets, which means three internal CVIs
are able to achieve almost the same ranking of partitions
as obtained by the external CVI VARIs . The τ value of all
four CVIs degrades for the real datasets. However, the (VUb)
values of VPCRs and VPEBs are high for all real datasets, which
means they reliably choose the best quality partition from
the N ensemble partitions. The last row of Table V contains



1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2017.2729501, IEEE
Transactions on Fuzzy Systems

10 IEEE TRANSACTIONS ON FUZZY SYSTEMS

TABLE VI: The effects of ordered versus random aggregation
of ensemble partitions (tabulated values are the 10 trial average
of VARIs ).

Sequence Ordering of Partitions GM1 (q = 30) GM2 (q = 100)
Decreasing order of quality 1.00 0.90

Arbitrary order 0.98 0.85

column averages, and it shows that overall VPCRs and VPEBs

perform well (with a very slight advantage to VPEBs ), while
VXBs performs worst.

Based on this overall performance of four internal CVIs
in determining partition rankings and the base partition, the
performance of VPEBs (internal CVI) agrees best with the
performance of the soft external index VARIs . Therefore, we
chose VPEBs to determine the base partition and a set of sorted
partitions, required in Step 4 of CAFCM Algorithm. The CVI
VPEBs is also used in Step 3 of Algorithm 1 to obtain the
ensemble partitions, having the best ’cr’ number of clusters.

F. Effect of Ordering Sequence of Partitions on Output Parti-
tion

To demonstrate the effect of altering the ordering of the
ranked queue, as shown in (7), on the output partition, we
performed an experiment using datasets GM1 and GM2 con-
sidering two cases viz., where sequence of ensemble partitions
is (i) ordered and (ii) arbitrary. First, we obtained a base
partition for each dataset in the manner described. Table VI
compares the VARIs values of the output partition obtained
when the ensemble partitions are combined in a sequential
manner based on their CVI quality as in (7) to the VARIs values
of the output partition obtained when the N − 1 remaining
partitions are combined with the base partition in an arbitrary
order. The average VARIs values (10 trials) in Table VI make
it clear that combining the remainder partitions according to
their CVI rank yields better VARIs values (and hence, a better
output partition) than arbitrary combination.

G. Comparison of Different Cluster Ensemble Methods

In this experiment, we compare the performance of our
approach with three existing ensemble approaches for high
dimensional data clustering using random projection with
FCM. We discuss the performance of all four cluster ensemble
approaches in 5 data groups (G1-G5), based on the different
attributes of datasets.

Synthetic datasets of different downspace dimensions q
(G1): For synthetic datasets GM1, GM2, experiments were
performed for downspace dimension q = 10,20,30,50,100.
These q values are corresponding to rogue random projections,
which are chosen irrespective of ε and β (below the JL bound)
as mentioned in Section VII-D. The average VARIs values and
ensemble time Tagg of all approaches over 5 trials for GM1
and GM2 are shown in Table VII. The best performance
approach for each downspace dimension is highlighted in
bold. It is evident from the values in Table VII that even
with q = 10, all the ensemble approaches achieve very good
clustering results (VARIs > 0.9) for the GM1 dataset. This

TABLE VIII: Average VARIs values and ensemble time Tagg
(s) for different number of RPs (N) on the GM2 dataset.

EFCM RPFCM-A RPFCM-B CAFCM
N ARI Tagg ARI Tagg ARI Tagg ARI Tagg

5 0.56 75 0.43 0.12 0.45 0.12 0.52 0.00
10 0.69 70 0.44 0.17 0.60 0.12 0.65 0.00
20 0.66 88 0.43 0.40 0.70 0.11 0.74 0.01
30 0.62 98 0.58 0.66 0.71 0.13 0.79 0.02
40 0.63 97 0.41 0.85 0.74 0.16 0.85 0.03
50 0.80 126 0.62 1.08 0.82 0.18 0.89 0.03

is because the clusters in this dataset are (probably) well
separated from each other. EFCM and RPFCM-B get perfect
results (VARIs = 1) for q = 10 and 20. The CAFCM approach
performs reasonably well (VARIs > 0.9) in significantly less
computation time, and achieves perfect results for q = 30. It
can be concluded from Table VII that the CAFCM approach
is 10− 100 times faster than the other three approaches. All
four approaches get perfect results for q = 30 and above, so
we do not compare them for higher downspace dimensions.

For the GM2 dataset, CAFCM performs significantly better
than the other three approaches for all downspace dimensions
except q = 10. The weak performance of CAFCM for q =
10 may be because, the distribution of points among clusters
changes in each consensus partition, which in turn, causes the
weak agreements of points for any cluster across all consensus
partitions. Whereas for q > 10, more features make stronger
agreement of each data point for any cluster. The CAFCM
algorithm performs aggregation in negligible time compared
to the other three approaches, for both synthetic datasets. This
is because, unlike other ensemble approaches, CAFCM does
not use FCM on a final aggregation matrix to get the final
membership matrix.

In order to compare the performance of all four ensem-
ble methods with respect to stability, the standard deviation
(rounded off) of VARIs values with average values are shown
in Table VII. We can see that CAFCM seems to be the least
variable among all the approaches. This might be due to the
smoothing effect from sequential averaging of the transformed
partitions and base partition (refer to Algorithm 1). The EFCM
algorithm seems to be the most stable of the other three
approaches.

Synthetic dataset GM2 for different number of RPs, N (G2):
We conducted another experiment for GM2 dataset for differ-
ent numbers of RPs, N (ensemble size). For datasets having
high diversity (overlapping clusters) like GM2, increasing N
may be beneficial because there will probably be much more
diversity in the random projections due to the mixed clusters
in the upspace. Table VIII shows the average VARIs values
and ensemble time (5 trials) of all approaches for a fixed
value of q(= 40). It can be noted that CAFCM gives the best
performance for all Ns except N = 5 and 10. As expected, the
adjusted rand index (VARIs ) increases for all approaches as N
increases. Unlike existing approaches, increasing the ensemble
size has a negligible effect on the computational time of
CAFCM. The maximum speedup is CAFCM:EFCM is 4200 : 1
at N = 50, and the minimum speedup is CAFCM:RPFCM-B
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TABLE VII: Average VARIs values and ensemble time Tagg (in s) for all approaches on the GM1 and GM2 datasets.

EFCM RPFCM-A RPFCM-B CAFCM
q VARIs Tagg VARIs Tagg VARIs Tagg VARIs Tagg

GM1 Dataset cr ∈ {2,8}
10 1.00± 0.0 68.9 0.97± 0.0 0.36 1.00± 0.0 0.15 0.94± 0.0 0.01
20 1.00± 0.0 70.9 0.99± 0.0 0.39 1.00± 0.0 0.13 0.99± 0.0 0.01
30 1.00± 0.0 71.9 1.00± 0.0 0.40 1.00± 0.0 0.16 1.00± 0.0 0.02

GM2 Dataset cr ∈ {2,8}
10 0.76± 0.02 89.6 0.40± 0.02 0.18 0.75± 0.12 0.15 0.61± 0.01 0.00
20 0.60± 0.10 83.2 0.43± 0.15 0.54 0.45± 0.26 11.7 0.68± 0.02 0.01
30 0.79± 0.18 82.4 0.47± 0.03 0.52 0.30± 0.01 11.03 0.83± 0.01 0.02
50 0.90± 0.02 71.1 0.55± 0.16 0.54 0.70± 0.22 0.12 0.90± 0.01 0.02
100 0.85± 0.19 73.1 0.75± 0.23 0.47 0.63± 0.29 0.11 0.90± 0.02 0.02

= 11 : 1 at N = 20.

High dimensional real datasets (ACT, HAR, MNIST and
CIFAR) for different q (G3): In this group, we discuss the
performance on the real datasets ACT, HAR, MNIST and
CIFAR, which have relatively high dimensions (in hundreds
and thousands) as compared to the KDD CUP and FOREST
datasets, which have smaller upspace dimensions. For G3
datasets, the downspace dimensions q = 10,20,30,50,100
were chosen. Line-plots are used to present the VARIs values of
all ensemble approaches for different downspace dimensions,
which are shown in the left columns of Figs. 2 and 3, whereas,
the right columns in Figs. 2 and 3 shows the time performance
(on logarithmic scale) of all ensemble approaches for different
numbers of downspace dimensions. We did not apply EFCM
to MNIST, CIFAR (as n > 50000) to avoid an out of memory
error, and its associated computational load. Therefore, the
time performance for these datasets is shown on a non-
logarithmic scale. The minimum and maximum number of
clusters in consensus partitions is shown in the title of the
figure for each dataset.

Figs. 2(a) and (b) show that CAFCM outperforms all other
ensemble methods for the two time-series datasets (HAR
and ACT). For the image datasets (MNIST and CIFAR), the
performance of CAFCM is comparable to RPFCM-B, and
outperforms RPFCM-A. The aggregation time for CAFCM is
quite small compared to the other three approaches, which
agrees with our time complexity analysis as discussed in
Section III.

KDD CUP and FOREST Covertype (G4): The upspace
dimensions for FOREST and KDD CUP are 41 and 54,
respectively, so we chose the downspace dimensions to be q =
10,20,30,40. For each of these datasets, the experiments were
performed on a subset of n= 100,000 instances. Consequently,
the EFCM algorithm was not applied on these datasets to avoid
the associated computational load. The performance of all en-
semble approaches for these two datasets, is shown in Figs. 3
(a) and (b) respectively. The CAFCM approach performs better
than the other three ensemble methods for almost all of the
downspace dimensions. The CAFCM algorithm achieves near
to best accuracy even with q = 10 (25%) dimensions for these
two datasets. The time performance in Fig. 3 (b) shows that
even for the large datasets, CAFCM takes negligible time for
aggregation compared to the other approaches.

Performance of all ensemble approaches for different num-
ber of samples (n) (G5): In order to demonstrate the applica-
bility of our algorithm for big data, the time performance of
each ensemble approach for different number of samples of the
KDD CUP dataset is presented in Fig. 4 (on logarithmic scale).
EFCM tests were limited to n= 20,000 input samples to avoid
the large computational burden. We see that CAFCM takes just
a few seconds for even n = 100,000 samples. The maximum
computational time (for 100,000 samples) of CAFCM is no
more than the minimum time (for 10,000 samples) taken by
the other approaches.

VIII. CONCLUSIONS AND DISCUSSION

This paper introduces a simple and computationally efficient
framework called CAFCM for high dimensional data cluster-
ing, which employs FCM clustering an ensemble of random
projections. Three other state-of-the-art ensemble approaches
that also use FCM clustering are discussed in this paper. These
approaches require large amounts of space for storing a big
affinity matrix. In addition, they also require FCM clustering
on a large affinity matrix to get the final partition, so they
incur much larger computation time than CAFCM does.

The CAFCM algorithm eliminates the complexity involved
in dealing with a final affinity matrix using a cumulative
agreement based fuzzy partition aggregation approach. The
final CAFCM partition is achieved with cumulative agreement
based relabelling and averaging of the ensemble of fuzzy
partitions. Each partition is taken sequentially from a ranked
queue established per equation (7). The ranks are computed
with a cluster validity index. The highest ranking partition
becomes the core partition Ub, and this partition drives the
agreement procedure.

We experimented with different internal CVIs to assess
the quality of ensemble partitions having known target (true)
numbers of labeled subsets. The performance of four internal
CVIs were correlated with the assessments made by the soft
external ARI, VARIs . The normalized soft partition entropy
(VPEBs ) index led to the best final partitions in the experiments
presented here. Once the CVIs for steps 3 and 4 in Algorithm 1
are chosen, our approach does not require any prior knowledge
of the number of clusters that might be present in the dataset,
which makes it attractive for real clustering problems. We
demonstrated the superiority of our CAFCM approach by
comparing it with three existing approaches on two Gaussian
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(a) HAR Dataset, cr ∈ {3,10}
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(b) ACT Dataset, cr ∈ {15,25}
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(c) CIFAR Dataset, cr ∈ {4,16}
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(d) MNIST Dataset„ cr ∈ {4,16}

Fig. 2: VARIs values (in left column) and Aggregation time Tagg (in right column) for different downspace dimensions

mixture datasets and six real datasets. Our experimental results
show that CAFCM outperforms the other three approaches
in terms of accuracy, stability, space, and time complexity.
Experimental results reveal that on average our algorithm runs
one to two orders of magnitude (10− 100 times) faster than
other state-of-the-arts algorithms, and at best, can achieve
speedups in on the order of 4000 : 1.

We also showed that CAFCM can produce reasonable
performance even for downspace dimensions well below the
JL bound (rogue random projections). This is very important

when the dataset has many features. For example, even with
q = 10, the CAFCM approach produced good results on the
ACT data. The proposed CAFCM algorithm has linear O(n)
time complexity in the number (n) of data points. We also
showed empirically that our algorithm scales linearly in the
number of samples (n) for a big dataset (KDD CUP). The
CAFCM ensemble time for n = 100,000 samples was less
than the minimum ensemble time for the other approaches
for any number of samples. The CAFCM algorithm may
take hundreds of seconds for very large (n ∼ 109) datasets.
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(a) KDD Dataset, cr ∈ {15,25}
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(b) FOREST Dataset, cr ∈ {3,15}

Fig. 3: VARIs values (in left column) and Aggregation time Tagg (in right column) for different downspace dimensions
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Fig. 4: KDD CUP Dataset: Aggregation time Tagg for different
number of samples

However, our aggregation approach takes only about a second
for n = 100,000 samples, and we estimate that it will take
only a few seconds for a n = 106 data points.
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TABLE IX: The Contingency Table A to compare partition U and V

Partition V
v j = row j of V

Class v1 v2 ... vr Sums

Partition U
ui = row i of U

u1
u2
u3
.

uc

A=


n11 n12 ... n1r
n21 n22 ... n2r
n31 n32 ... n3r
... ... ... ...
nc1 nc2 ... ncr

=UV T

n1•
n2•
n3•

.
nc•

Sums n•1 n•2 ... n•r n•• = n

TABLE X: Cluster Validity Indices used in this paper

CVI Formula Description Optimality/Range
Soft External CVI

Adjusted Rand Index
(ARIs) [36]

a− (a+c)(a+b)
(a+b+c+d)

(a+c)+(a+b)
2 − (a+c)(a+b)

(a+b+c+d)

The parameter a,b,c, and d (refer to [49])
are derived from generalized contingency

matrix A∗ = φUV T (Table IX), where
φ = n

∑
c
i=1 ni•

Max-optimal,
maximum=1, minimum
can be negative if index

is less than expected
value.

Normalized Mutual
Information (NMIs) [37] MI(U,V )/max(H(U),H(V ))

MI = ∑
c
i=1 ∑

r
j=1(ni j/n)log( ni j/n

ni•n j•/n2 ),
H(U) =−∑

c
i=1(ni•/n)log(ni•/n), where

ni• are derived from contingency matrix.

Max-optimal, and ranges
in [0,1]

Soft Internal CVI

Normalized Partition
Entropy (PEB) [38]

(
−1

n

c

∑
i=1

n

∑
j=1

ui jlog(ui j)

)
/lnac

ui j is the fuzzy membership degree of
object x j to i-th cluster. The c is the

number of clusters. This validity index
requires only membership values.

Min-optimal, and ranges
in [0,1]

Normalized Partition
Coefficient (PCR) [51] (c

||U ||22
n
−1)/(c−1)

||U ||22= ∑
c
i=1 ∑

n
j=1(ui j)

2.This validity index
requires only membership values.

Max-optimal, and ranges
in [0,1]

Partition Index (SC) [50]
c

∑
i=1

(
∑

n
j=1(ui j)||x j−Vi||m/2

∑
n
j=1(ui j)2

) Vi(1≤ i≤ c) is center for each cluster, and
m is the weighting exponent. This validity
index requires the membership values and

the dataset both.

Max-optimal

Xie Beni (XB) [52] ∑
c
i=1 ∑

n
j=1[u

m
i j||x j−Vi||2]

n mini6= j(||Vi−Vj||)
This validity index requires the

membership values and the dataset both. Max-optimal


