
1

Online Cluster Validity Indices for
Streaming Data

Masud Moshtaghi, James C. Bezdek, Sarah M. Erfani, Christopher Leckie, James Bailey

Abstract—Cluster analysis is used to explore structure in unlabeled data sets in a wide range of applications. An important part of
cluster analysis is validating the quality of computationally obtained clusters. A large number of different internal indices have been
developed for validation in the offline setting. However, this concept has not been extended to the online setting. A key challenge is to
find an efficient incremental formulation of an index that can capture both cohesion and separation of the clusters over potentially
infinite data streams. In this paper, we develop two online versions (with and without forgetting factors) of the Xie-Beni and
Davies-Bouldin internal validity indices, and analyze their characteristics, using two streaming clustering algorithms (sk-means and
online ellipsoidal clustering), and illustrate their use in monitoring evolving clusters in streaming data. We also show that incremental
cluster validity indices are capable of sending a distress signal to online monitors when evolving clusters go awry. Our numerical
examples indicate that the incremental Xie-Beni index with forgetting factor is superior to the other three indices tested.

F

1 INTRODUCTION

The intrinsic nature of streaming data requires algorithms
that are capable of fast data analysis to extract knowl-
edge. Online clustering algorithms provide a way to extract
patterns from continuous data streams. Therefore, online
clustering has gained popularity in applications involving
massive streams of data, such as router packet analysis and
environmental sensing [1], [2]. In these applications, the
velocity and volume of data is too high for the processing
unit to access each data sample more than once. A category
of fast online clustering algorithms, also referred to as
sequential clustering, process data quickly and efficiently
by receiving samples one at a time and updating cluster
statistics (such as prototypes) with each sample [3], [4], [5].

An important aspect of any clustering algorithm is as-
sessment of the quality of the resulting clusters, i.e., how
well does any partition match the input data? Cluster validity
indices (CVIs) comprise computational models and algo-
rithms whose job is to identify the “best” member among
different partitions of the input data. Most CVIs are max-
optimal or min-optimal, meaning that the partition pre-
ferred by the index is indicated by the maximum (minimum)
value of the index on the partitions being evaluated. To date,
CVIs have been used exclusively in a static (or batch) setting,
being applied to sets of partitions generated by different
parameter settings of the clustering algorithm applied to a
collected set of data. In online clustering, the question of
how well a clustering algorithm matches the data becomes
even more important as we need to know how the clustering
algorithm is performing at any point in time and how it
reacts to the changes in the partitions over time. The key
assumption in the online context is that data are processed

• M. Moshtaghi, J.C. bezdek, S. Erfani, C. Leckie and J.Bailey were with the
School of Computing and Information Systems, University of Melbourne,
Melbourne, Australia, 3010. M. Moshtaghi is now at Amazon.com
E-mail: masud.moshtaghi@unimelb.edu.au

once, and historical data will not be available for a retrospective
analysis.

While batch clustering algorithms are supported by a
wide range of cluster validation methods [6], no effort has
been made to extend cluster validation methods to online
clustering algorithms. This study concerns itself with the
use of internal incremental cluster validity indices (iCVIs) (we
drop the word “internal” in the rest of the paper), that are
computed online (on the fly) and used to control/interpret
clustering for streaming data.

Most of existing batch indices assess two basic charac-
teristics of a set of clusters: compactness (or density) and
separation of the clusters [6]. Compactness is usually cal-
culated based on the observations while separation is often
measured by the distance between cluster prototypes. In the
online setting, where each observation can be accessed only
once, an incremental/recursive calculation of compactness
is necessary. In this paper, we propose two incremental
methods to estimate within cluster dispersion: (1) an exact
incremental update of a batch formula; and (2) an online
formula incorporating an exponential forgetting factor. Us-
ing these two methods we then derive online versions of
two well-known CVIs namely, the Xie-Beni (XB) [7] and the
Davies-Bouldin (DB) [8] indices. These indices can be applied
to both hard and soft partitions.

This paper offers four main contributions: (1) we propose
a new concept of incremental validation of online clus-
tering algorithms which provides new insights into these
algorithms; (2) we propose two incremental versions of
within cluster dispersion, viz., with and without forgetting,
a facility that enables the iCVI to gracefully forget earlier
inputs; (3) we propose incremental versions of two well-
known batch CVIs allowing exact calculation of the two
indices with fast sequential processing of data; and (4) we
analyze and discuss the properties of the proposed iCVIs
within the context of two online clustering algorithms. Our
results demonstrate useful insights produced by the iCVIs
about the partitions produced by online clustering algo-
rithms. Moreover, the proposed iCVIs can indicate learning

ar
X

iv
:1

80
1.

02
93

7v
1

 [
st

at
.M

L
]

 8
 J

an
 2

01
8

2

difficulties experienced by the clustering algorithm and can
signal the appearance of new clusters in the evolution of the
data stream.

The next section summarizes related work. In Section 3,
we present definitions and notation needed in this paper.
Section 4 contains background information on two impor-
tant online clustering algorithms. In Section 5, we derive
two versions of the iXB, iDB indices and analyze their char-
acteristics. Section 7 contains numerical examples used to
evaluate the proposed models. A summary and conclusions
are given in Section 8.

2 BACKGROUND AND RELATED WORK

In this section, we briefly describe related work in cluster
validation and online clustering algorithms. It is especially
important to record our definition of an online clustering
algorithm as our goal is to validate these algorithms using
cluster validity indices.

According to Guha et al. [1], clustering in data streams
can be divided into two main strategies: (1) buffering a
window of streamed inputs, finding clusters in the win-
dow using a batch algorithm such as the classic k-means
algorithm; and then merging clusters in adjacent windows
to obtain a final clustering. This strategy is espoused, for
example, in [9], [10], [11]; (2) using incremental learning
techniques to find clusters in the evolving data stream.
Examples of this strategy include [3], [5], [12], [13], [14], [15].
We refer to this second approach as online or incremental
clustering. Algorithms for online clustering can themselves
be divided into two categories. The first category is general
clustering algorithms for any sequence of data (we call this
type 2a data). These algorithms do not assume any ordering
in the data stream and require the number of clusters to
be specified in advance, for example sequential k-means, or
more briefly, sk-means, and sequential agglomerative clus-
tering [3]. A second category of online clustering algorithms
assume a natural ordering in the data (time-series) and
operate on the assumption that close observations in time
will be closely related. These algorithms use this assumption
to dynamically create clusters in evolving data streams (we
call this type 2b data). In this paper, we propose cluster
validation methods for online clustering algorithms of types
2a and 2b.

Cluster validity indices (CVIs) can be grouped into two
categories: internal and external indices. Internal indices use
only the information available from the algorithmic outputs
and the observed unlabeled data. In contrast, external CVIs
use additional external information about substructure in
the data, usually in the form of a reference partition (a
ground truth partition), so the data processed are labeled.
External CVIs are used to compare partitions obtained by
a clustering algorithm to ground truth labels. Another use
of external CVIs is to correlate external and internal assess-
ments of labeled data [6]. In this application the external
CVI becomes a tool for selection of the “best” internal CVI
when unlabeled data are to be clustered. The use of external
CVIs to choose a “good” internal CVI is comprehensively
discussed in [6]. Our focus in this paper is on internal CVIs.
Milligan and Cooper’s 1985 paper is widely regarded as a
landmark study for the comparison of internal CVIs [16].

Internal cluster validity indices fall under the broad
umbrella of goodness-of-fit measures such as likelihood
ratio tests and Root Mean Squared Error [17]. The majority
of goodness-of-fit measures target parametric models while
CVIs provide a non-parametric mechanism to evaluate
clustering outputs. Another differentiating point between
internal CVIs and goodness-of-fit measures is the meaning
of the fitness term. Most internal CVI models have compo-
nents that attempt to capture cohesion and separation, while
goodness of fit indices usually assess the fit of a model to
the data that generates it.

There are two categories of internal CVIs based on the
way that they measure cohesion and separation. The CVIs
in the first category use only the partitions generated by
the clustering to determine the quality of the partition.
Measures of this type include the partition coefficient and
partition entropy [18]. Indices such as these often appear in
the context of fuzzy cluster validity. However, most CVIs
fall into the second category, that is, they use both the data
and the partition information.

We develop incremental CVIs by deriving an incremen-
tal formula for the data-dependent part of two well-known
indices, i.e., XB and DB. After determining the incremental
update formula for cluster cohesion, we derive one step
update formulae for these two indices. We then investigate
their application to cluster analysis in data streams. While
the results of any online clustering algorithm can be ana-
lyzed using the proposed iCVIs, we focus on two clustering
algorithms - a crisp clustering algorithm from the general
data stream clustering category (type 2a), viz., sk-means;
and the online elliptical clustering (OEC) clustering algorithm
from the time-series clustering category (type 2b), which is
a soft/fuzzy clustering algorithm.

3 PROBLEM STATEMENT AND DEFINITIONS

Traditional batch clustering algorithms aim to find crisp or
fuzzy/probabilistic k-partitions of a collection of n samples
of static data, viz., X = {x1,x2, . . . ,xn, . . . ,xn} ⊂ <p. All
vectors in this article are column vectors. Crisp and fuzzy
partitions of X are conveniently represented by matrices in
the following sets:

Mfkn = { U ∈ <kn : for 1 ≤ i ≤ k, 1 ≤ j ≤ n :

0 ≤ uij ≤ 1 :

k∑
i=1

uij = 1 ∀j;
n∑
j=1

uij > 0 ∀i } ;
(1)

Mhkn =
{
U ∈Mfkn : uij ∈ {0, 1} ∀i, j

}
. (2)

Now suppose that n inputs have arrived sequentially in
the streaming data, and we have found, from these n inputs
Un ∈ Mfkn, a set of soft/fuzzy clusters of X , together with
a set Vn = {v1n, . . . ,vkn} ⊂ <kp of cluster centers. We can
use (Un, Vn) to calculate various CVIs.

When input xn+1 arrives, it is used by an online clus-
tering algorithm to find the membership, ui,n+1, of the
new point in the ith cluster, 1 ≤ i ≤ k. Let the vector
un+1 = {ui,n+1|i = 1, . . . , k} be the label vector of xn+1

in the set of (k) clusters. The clustering algorithm will also
use xn+1 to update Vn → Vn+1.

3

Given the new input xn+1, its cluster assignment un+1

and the updated cluster centers Vn+1, we will derive one-
step update formula for a particular CVI.

The calculation of un+1 and updates to V are done
using specific incremental clustering algorithms such as sk-
means [3] or OEC [5]. The question posed here is how
the value of the chosen CVI changes incrementally with
this update. Fig. 1 illustrates the overall process. The two
time series at the top of the figure form the input to the
online clustering algorithm on the bottom right. When xn+1

becomes available, the online clustering algorithm finds the
membership values un+1, and updates the cluster centers
to produce Vn+1. Then, un+1, Vn+1,xn+1 are passed to the
incremental cluster validation process. The objective in this
paper is to answer the question “iCVI(n+1)=?” posed in the
bottom left panel of Fig. 1.

F
ea

tu
re

 2

F
ea

tu
re

 1

2 dimensional Input:

, ,

iCVI(n+1)=?

Online Clustering AlgorithmIncremental Cluster Validation

Set of cluster centers: ,

Membership vector of :

Time

Time

Fig. 1. One-step update of incremental CVI in an online setting.

To answer this question, we first need to describe how
un+1 and Vn+1 are calculated incrementally by online clus-
tering algorithms. Section 4, briefly describes two algo-
rithms to solve this problem.

4 INCREMENTAL CLUSTERING ALGORITHMS

The calculation of iCVIs depends on the information pro-
vided by a particular clustering algorithm. Therefore, we
start by providing a brief overview of two different types of
incremental clustering algorithms.

4.1 Sequential k-means

The sk-means algorithm shown below as Algorithm 1 and
its variants have been studied in various forms in the
literature of self organizing maps (SOMs) [3], [19]. Algorithm 1
records the basic sequential k-means method studied by
Macqueen [20].

Macqueen’s algorithm requires pre-specification of k, the
number of clusters it builds. After initializing the k clusters
by designating the first k points in X as the initial cluster
centers, when the next input arrives, sk-means computes
the distance from the next input to the k cluster centers,
and assigns the input point to the cluster of the nearest
prototype. Then the winning prototype is updated as shown

Data: X - set of data points
Input: k - number of clusters
Note : ‖.‖ is the Euclidean norm
Initialize Vk with the first k data points
Vk = {x1,x2, . . . ,xk};
Uk is the k × k identity matrix;
Initialize the counter for each cluster {n1, n2, . . . , nk}

with 1;
foreach xn in the stream do

m = argminm∈{1...k} ‖xn − vm‖;
nm = nm + 1;
vm = vm + (xn − vm) /nm;
un = (0, 0, . . . , 1, . . . , 0)

T ∈ {0, 1}k, where the 1
appears in the m− th place, is appended to the
current U as its n− th column;

end
Algorithm 1: The basic sequential k-means algorithm
(Macqueen [20]).

in the third line of the for part of Algorithm 1. So at step n+1
of the algorithm the k vector un+1 has only one element
with the value of 1 (the winner of a nearest prototype
competition), and the remaining k − 1 values are 0.

4.2 Online Ellipsoidal Clustering

This section briefly reviews the online ellipsoidal clustering
(OEC) algorithm developed in [5]. This clustering algorithm
is specific to time-series and does not require the number
of clusters to be pre-specified. This algorithm has ellip-
soidal cluster prototypes defined by k sets of means and
covariance matrices

{
(mi,n, S

−1
i,n)|i = 1, . . . , k

}
at any step

n. Two different radii are considered for each ellipsoid, one
called the effective boundary, i.e., the smaller radius, and the
other one is called the outlier boundary. The outlier boundary
prevents the cluster prototype from being affected by large
outliers. These boundary thresholds are selected from the
inverse of the chi-squared distribution, (χ2)−1

p (γ), where
γ is the probability that a cluster member falls inside the
ellipsoid. In the OEC clustering algorithm, cluster center
vi,n+1 is formed from the sample mean mi,n+1 of each
cluster, and un+1 is formed by the values obtained from
the soft assignments of the input point to the clusters,
ui,n+1, 1 ≤ i ≤ k, defined as

ui,n+1 =

 k∑
j=1

(Fi,n+1/Fj,n+1)
2/(m−1)

−1

, m ∈ (1,∞),

(3)
where Fi,n+1 = (xn+1−mi,n)TS−1

i,n(xn+1−mi,n). Readers
may recognize this as the membership update formula
required by fuzzy k-means using the sample-based Maha-
lanobis norm for the inner product induced distance [21].
The OEC algorithm uses two other parameters that we need
to set during the experiments.
Stabilization period (ns) - An ellipsoidal prototype in <p is
created by p + 1 consecutive distinct points, but to obtain a
reliable estimate of (mi,n, S

−1
i,n), more data from the input

4

stream is required. The integer ns stabilizes these incre-
mental estimates by temporarily disabling the OEC guard
zone and new cluster detection tests until the current cluster
contains ns points.
Forgetting factor (λOEC)- OEC has a special forgetful proto-
type. When this prototype does not overlap with any of the
existing clusters in the system, a new cluster is formed. This
prototype use an exponential forgetting factor (λOEC) for this
purpose.

Now that we have described how vn+1 and un+1 can
be updated using two different clustering algorithms, we
can describe how iCVIs use this information to assess the
evolving clusters incrementally. In Section 5, we introduce
an incremental calculation of a common cohesion measure
in CVIs, then we discuss how two particular CVIs which
use this cohesion measure can be updated using its previous
value at time n with the additional information provided by
un+1, Vn+1 and xn+1.

5 THE INCREMENTAL CVIS

Normally there is no external ground truth information
available with streaming inputs, hence we explore the usage
of internal CVIs to assess the evolving performance of online
clustering algorithms that generate both memberships and
cluster prototypes. We consider two well-known indices in
this group that work for both hard and soft partitions.

The first index of this type is the Xie-Beni (XB) index [7].
A general formulation of this index for a batch collection of
n inputs is [22], where A is a positive-definite weight matrix
which induces the inner product norm ‖x‖2A = xTA x:

XBmA (U, V ;X) =
JmA (U, V ;X)

n
(

mini6=j

{
‖vi − vj‖2A

})
, where m ∈ [1,∞), and

JmA (U, V ;X) =

n∑
j=1

k∑
i=1

(uij)
m ‖xn − vi‖2A .

(4)

The parameter m is called the fuzzifier of the model.
For simplicity, we consider only A = Ip (the Euclidean
norm)and m = 2, and drop subscripts, writing J2Ip as J
in the sequel.

The second index is a relative of the DB index [8]
introduced by Araki et al. [23],

DB (U, V ;X) =
1

k

k∑
i=1

max
j,j 6=i

Li + Lj

‖vi − vj‖2

Li =

∑n
j=1 u

2
ij ‖xj − vi‖2∑n
j=1 u

2
ij

.

(5)

This is not a true generalization of the the DB index because
square roots are missing for this choice of p = q = 2 in [8].
but the values of (5) are closely related to the true DB index
in the crisp case. The common part of these two (and many
other) indices is the way that they capture the within-cluster

dispersion. We define the fuzzy within cluster dispersion, for
U ∈Mfkn, as,

Ci,n =

n∑
j=1

(uij)
2 ‖xj − vi,n‖2. (6)

This is the only part of either index that depends directly
on the input data. Therefore, we first develop an incremental
calculation of this part of the index, and then use it to
propose formulae for incremental calculation of these two
indices.

5.1 Incremental Cluster Dispersion Measure

In this section, we derive a formula for (6) at time step n+ 1
based on its value at time step n. We assume that at time
n + 1, all of the previous input values x1, ...,xn have been
discarded, so the only data point we have to work with is
xn+1.The goal is to write the update formula in terms of
the value in the previous step and a change to this value
on seeing the n + 1st input, i.e., Ci,n+1 = Ci,n + ∆Ci,n. We
begin with

Ci,n+1 =

n+1∑
j=1

(uij)
2 ‖xj − vi,n+1‖2 (7)

First we isolate the effect of the last point in the summa-
tion to obtain

Ci,n+1 =

n∑
j=1

(uij)
2 ‖xj − vi,n+1‖2+

(ui,n+1)2 ‖xn+1 − vi,n+1‖2︸ ︷︷ ︸
Ai,n+1

.
(8)

At this point if we could assume that ‖vi,n+1 − vi,n‖ ≈
0, we would have Ci,n+1 = Ci,n + Ai,n+1. Here, we are
looking for an exact calculation of Ci,n+1 so we need to
compute the effect of the change in the cluster centers. To
isolate the change of the centers, we add and subtract vi,n
inside the Euclidean norm in the first term in (8), and rewrite
the norm in terms of the (Euclidean) inner product,

Ci,n+1 =

n∑
j=1

(uij)
2 < xj − vi,n + vi,n − vi,n+1,xj − vi,n

+ vi,n − vi,n+1 > +Ai,n+1.
(9)

After few steps and some simplification we obtain

Ci,n+1 = Ci,n +

∆Ci,n︷ ︸︸ ︷
Ai,n+1 +Mi,nBi,n+1 + 2Qi,n+1

(10)

where

Qi,n+1 =

n∑
j=1

(uij)
2 〈xj − vi,n,vi,n − vi,n+1〉 (11)

Bi,n+1 = ‖vi,n − vi,n+1‖2 (12)

5

Mi,n+1 = Mi,n + u2
i,n+1, Mi,1 = u2

i,1 (13)

The term Qi,n+1 in equation (11) depends on the previous
(discarded) values of xj and uij where j = 1, . . . , n, so
we cannot yet make the incremental calculation of ∆Ci,n.
Since the second part of the dot product in (11), i.e.,
(vi,n − vi,n+1), does not depend on j, we can write Qi,n+1

as

Qi,n+1 = [vi,n − vi,n+1]
T

Gi,n︷ ︸︸ ︷ n∑
j=1

(uij)
2 (xj − vi,n)

 (14)

Using the same trick of adding and subtracting vi,n in
(14) we can write an incremental update formula for Gi,n+1,

Gi,n+1 = Gi,n + ∆Gi,n, Gi,1 =
−→
0

∆Gi,n = Mi,n(vi,n − vi,n+1) + (ui,n+1)2 (xn+1 − vi,n+1) .
(15)

We now have all the components needed to calculate
∆Ci,n. The two terms Ai,n+1 and Bi,n+1 are calculated
directly and Qi,n+1 and Mi,n+1 are incrementally calcu-
lated. The Algorithm 2 depicts a function that incrementally
calculates the compactness.

Data: vi,n,vi,n+1, ui,n+1, xn+1

Input : Gi,n,Mi,n, Ci,n
Output: Gi,n+1,Mi,n+1, Ci,n+1

/* note i = 1, . . . , k
foreach i ∈ {1, . . . , k} do

Qi,n+1 = [vi,n − vi,n+1]
T
Gi,n;

Bi,n+1 = ‖vi,n − vi,n+1‖2;
Ai,n+1 = (ui,n+1)2 ‖xn+1 − vi,n+1‖2;
Ci,n+1 = Ci,n +Ai,n+1 +Mi,nBi,n+1 + 2Qi,n+1;
Gi,n+1 = Gi,n +Mi,n(vi,n − vi,n+1)+

(ui,n+1)2 (xn+1 − vi,n+1);
Mi,n+1 = Mi,n + u2

i,n+1;
end

Algorithm 2: The incremental compactness function for
data point xn+1.

As n → ∞ the effect of each new sample on the total
value of Ci,n is expected to become small. In data streaming
applications, which have, in theory, an infinite data stream,
we are interested in how well a clustering algorithm keeps
up with the evolution of cluster structure of points in the
stream. Our objective is to use iCVIs to capture the quality of
the partitions over a window of the most recent observations
at any point in time.

Exponential fading memory is a common approach in
online learning methods. In this approach a forgetting factor
0 < λ < 1 is included in the incremental estimations so
that the data sample from f steps before the current sample
is weighted by λf . In this way, older samples become

less and less relevant to the current estimation. The batch
representation of Ci,n with a forgetting is shown in (16).

Cλi,n =

n∑
j=1

λn−ju2
ij ‖xj − vi,n‖2 (16)

An argument similar to the one used to derive equation
(10) leads to an incremental update formula for Cλi,n+1.

Qλi,n+1 = (vi,n − vi,n+1)Gλi,n (17)

Bi,n+1 = ‖vi,n − vi,n+1‖2 (18)

Ai,n+1 = u2
i,n+1 ‖xn+1 − vi,n+1‖2 (19)

Cλi,n+1 = λCλi,n + ∆Cλi,n

∆Cλi,n = 2λQλi,n+1 + λMλi,nBi,n+1 +Ai,n+1
(20)

Gλi,n+1 = λGλi,n + ∆Gλi,n

∆Gλi,n = λMλi,n(vi,n − vi,n+1) + (ui,n+1)2 (xn+1 − vi,n+1) .
(21)

Mλi,n+1 = λMi,n + u2
i,n,Mi,1λ = u2

i,1 (22)

In the next section, we use these formulas to derive two
incremental versions of the XB and DB indices at equations
(4) and (5).

5.2 Incremental Xie-Beni Index
Let XB(n + 1) denote the value of the XB index we seek
when xn+1 arrives after n1 inputs have been processed.
Let Jn+1 denote the value of J at step n + 1. To compute
XB incrementally, i.e., to compute XB(n + 1), we need an
incremental update for Jn+1 and for the denominator of (4).
The numerator of XB is updated using the value of Ci,n+1

from Algorithm 2, and the denominator is calculated with
the updated centers Vn+1. Equation (23) shows the one step
update of Jn+1 at step n+ 1.

Jn+1 =

k∑
i=1

Ci,n+1. (23)

Let
hn+1 = min

i 6=j,vi,vj∈Vn+1

{
‖vi − vj‖2

}
. (24)

Then value of the incremental XB index, is

XB(n+ 1) =
Jn+1

(n+ 1)hn+1
. (25)

For batch clustering, the case k = 1 is usually not
considered. However, in the streaming environment and in
algorithms like OEC, the number of clusters dynamically
changes and starts from k = 1. With one cluster, hn+1

is undefined in (24). When k = 1, we replace (24) with
hn+1 = max

{
hn, ‖v1 − xn+1‖2

}
.

6

The one step update of iXB with forgetting is obtained
by replacing Ci,n+1 with Cλi,n+1 in (23) to obtain in Jλ,n+1,

XBλ(n+ 1) =
(1− λ)Jλ,n+1

hn+1
. (26)

Please note that XB(n+1) and XBλ(n+1) are the values of
the incremental XB indices without and with the forgetting
factor after xn+1 is processed, while iXB and iXBλ are the
names of the incremental XB models.

5.3 Incremental DB Index
Let DB(n) denote the value of the Davies-Bouldin index after
n inputs. We want to compute incrementally updated values
DB(n+1) and DBλ(n+1) when input xn+1 arrives. We need
to normalize Ci,n+1 and Cλi,n+1 with the number of data
points in the ith cluster. The index DB(n + 1) at time step
n+ 1 can be written as

DB(n+ 1) =
1

k

k∑
i=1

max
j,j 6=i

Li,n+1 + Lj,n+1

‖vi,n+1 − vj,n+1‖2
, (27)

where

Li,n+1 =
Ci,n+1

Mi,n+1
. (28)

To calculate the index with the forgetting factor, DBλ(n+
1), we need to define Lλi,n+1 to be used instead of Li,n+1

and we control the decay of the denominator by clamping
the decay at 1 with max function.

Lλi,n+1 =
Cλi,n+1

max {1,Mλi,n+1}
. (29)

As with the XB case, DB(n) and DB(n + 1) are values of
the incremental indices; iDB and iDBλ are the incremental
models that produce them.

6 COMPUTATIONAL PROTOCOLS

In this section, we first describe the synthetic and real-life
datasets used in our evaluations and then we study the
characteristics of iXB, XBλ(n), iDB and DBλ(n).

6.1 Datasets and Parameters
The synthetic dataset S1 consists of two-dimensional vec-
tors (xq, yq), q > 2, which are generated using two modes,
M1 and M2, with different dynamic functions and input
signals (xn, q = 3, 4, . . .). Values of the independent variable
(x) are random i.i.d. samples from a Gaussian distribution
with µ = σ = 1. Values of the dependent variable (y) from
M1 and M2 are then computed according to (30) or (31)
respectively.

yn = 1.018xn−1 + 1.801yn−1 − 0.8187yn−2

y0 = y1 = y2 = 0
(30)

yn = xn−1 + 0.5xn−2 + 1.5yn−1 − 0.7yn−2

y0 = y1 = y2 = 0
(31)

To build S1, we considered 4 mode changes between the
two modes at uniform random intervals between 200 and
500 samples starting with M1. Instead of a sudden shift
between the modes, we gradually change the individual
parameters of one mode to the other mode in 5 equal steps,
during which we generate 10 samples in each intermediate
mode. Fig. 2(a) shows a scatter plot of the S1 dataset with
the input (Feature 1 = x) and output (Feature 2 = y).

The second synthetic dataset S2 (shown in Fig. 2(b)), is
generated by considering two modes, M1 and M2, with dif-
ferent two-dimensional normal distributions N(µ1,Σ1) and
N(µ2,Σ2) and 9 intermediate modes. The parameter values

of the modes M1 and M2 are: Σ1 =

(
3.8418 −2.6474
−2.6474 4.8478

)
,

Σ2 =

(
1.5239 −0.5390
−0.5390 1.6467

)
, and µ1 = (95, 75) and µ2 =

(5, 5). M1 is the initial mode, and M2 is the final mode. M1

is transformed as follows. First, 500 samples {k = 1 . . . 500}
are drawn from M1. Sampling continues as each individual
value of the covariance matrix and the mean are changed
in 10 equal steps from their values in M1 to those in M2.
After the first step, 200 samples {n = 501 . . . 700} are taken
from the new normal distribution. After each new step 200
more samples are added to the dataset. The final step ends
at mode M2. The squares show 1% of the samples from
each normal distribution, which are perturbed by uniform
noise from [−10, 10]. A small level of noise is added to this
dataset to investigate how the algorithms react to noise.

The third synthetic data set, S3, is generated by drawing
samples from two-dimensional Gaussian distributions that
rotate around a circle with 10 equal shifts. Before each shift,
200 samples are generated using the current Gaussian. In
this data set, the noise (the blue cluster in the center of
Fig. 2(c)) is generated by a Gaussian at the center of the
circle. At each of 10 steps a random number of samples
between 1 and 20 are removed from the outer distribution
and then this number of samples are drawn from and added
to the inner noise distribution. Table 1 summarizes the
characteristics of the three synthetic datasets.

Column 2 of Table 1 specifies the number of physically
labeled subsets in each data set. These subsets may, or may
not, correspond to visually apparent or computationally
acquired clusters. For example, if you imagine Figure 2(b)
without the colors (which show the labels), most observers
would assert that this data set has only 1 cluster.

We also use two real-life datasets. The LG dataset is from
a collection of weather station nodes in the Le Genepi (LG)
region in Switzerland [24]. Two weeks of data at node 18
starting from October 10th 2007 are used in the evaluation.
We use average surface temperature (T) and humidity (H)
readings at node 18 over 10-minute intervals to form two
dimensional input vectors {xn = (Tn, Hn)}.

Fig. 3(a) shows a scatter plot of the LG data. The imagery
information from the site shows that there is a snowy
day during the two weeks of data collection and the data
confirms that a cold and windy day precedes the snow.
Fig. 3(b) shows this change of weather in time-series plots
of temperature and relative humidity data. Therefore, we
assume that there are three physical events, and that these
may correspond to three clusters in the data: sunny days
before and after the snow, cold front moving in, and the

7

x = Feature 1

-2 -1 0 1 2 3 4 5

y
 =

 F
ea

tu
re

 2

-10

0

10

20

30

40

50

60

70

80

90

100

(a) S1: Synthetic Locally Linear Processes

Feature 1

0 20 40 60 80 100

F
ea

tu
re

 2

-10

0

10

20

30

40

50

60

70

80

90

100

Noisy Data

(b) S2: Shifting Gaussian Distribution

Feature 1

10 20 30 40 50 60 70

F
ea

tu
re

 2

15

20

25

30

35

40

45

50

55

60

65

Noisy Data

(c) S3: Circular Shifting Gaussian Distribution
with Systematic Noise

Fig. 2. Scatter plots of three synthetic datasets. S2 and S3 show the progression of time with colors, starting with black and becoming lighter with
time.

TABLE 1
Summary characteristics of the datasets used in the evaluations.

Dataset # samples (n) # Labels (k) # dimensions (p) Noise Attributes Labeling
S1 1955 2 2 No Noise - Drift between Clusters Exact
S2 2727 11 2 1% - Uniform Random Exact
S3 2000 10 2 1% - Systematic Random Exact
LG 2016 3∗ 2 Unknown Our guess∗

GSA 9969 3∗ 8 Unknown Our guess∗
∗ These are unlabeled data sets, so we use physical arguments to justify the approximate
number of clusters shown in column 2 for these two data sets.

snowy day and label data accordingly, i.e., all of the points
for days 1-6 and 10-14 are in cluster 1 (blue), day 7 in cluster
2 (green), and days 8 and 9 in cluster 3 (red).

The second real-life data set is a gas sensor array under
dynamic gas mixtures from the UCI repository that contains
conductivity samples at 100Hz obtained from 16 chemical
sensors (4 unique sensors). The conductivity of these types
of sensors changes in the presence of different gas mixture
concentrations. More information on the generated data set
can be found in Fonollosa et al. [25]. We select two pairs of
each unique sensor (8 sensors) and take the mean of their
100 samples per second over 5 minutes of the experiment as
our evaluation data set (a stream of 300 8-dimensional input
vectors), which we refer to as GSA. During this five minutes
the sensors are exposed to two different concentrations of
gases CO and Ethylene. This will lead to three distinct
behaviours in the dataset: no gas being present, presence
of CO and presence of Ethylene.

6.2 Initialization

Macqueen’s sk-means algorithm has only one parameter
to choose, k. We use the recommended parameter values
for OEC from [5]. These parameters are forgetting factor
λ = 0.9, effective cluster boundary and outlier bound-
ary threshold of 0.99 and 0.999 respectively, a stabilization
period of ns = 20, and and an OEC forgetting factor
λOEC = 0.9.

The two clustering algorithms have slightly different
initialization procedures. In sk-means the first k points are
the initial cluster prototypes and the index calculations start

at the k + 1-th point. In the OEC clustering algorithm,
the first p + 1 points are used to calculate a single cluster
prototype and the cluster evaluation starts from point p+ 2
with only one cluster in the system.

Upon start of the evaluation at step n, the iCVIs are
initialized with Ci,n = 0, Mi,n = n and Gi,n =

−→
0 (zero

vector in <p). After initialization, the clustering algorithms
and iCVIs process data one sample at a time.

7 NUMERICAL EXPERIMENTS

We first study the effect of forgetting in the indices. In these
experiments we specify k to be the correct number of labels
for sk-means for the synthetic datasets. We show that both
indices with forgetting reveal more information about the
data streams than when forgetting is not in use.

7.1 Forgetting or Not

In the iCVI indices (similar to their batch counterparts)
each new data point at time n affects the overall value of
the index with the weight 1/n (see (25)). Therefore, over a
long data stream, we expect XB(n) and DB(n) to become
saturated by data points and lose the sensitivity they need to
reflect changes due to new data inputs.

Fig. 4 shows the values of the two indices with and
without forgetting for online clustering in S2 with the
OEC algorithm. The times when the distribution of samples
changes are indicated with red vertical lines. You can see a
sudden jump in the indices at these times. Even in a fairly
small data set such as S2, the jumps in the indices with no

8

-10 -5 0 5 10

Temperature(C°)

10

20

30

40

50

60

70

80

90

H
u

m
id

it
y
 (

%
)

(a) Scatterplot of LG

0 500 1000 1500 2000

Time (n)

-20

0

20

40

60

80

100

T
em

p
.(

C
°)/

R
el

.
H

u
m

id
it

y
(%

)

Temperature

Humidity

Change of weather

(b) Time-series view of the data

Fig. 3. Scatterplot and time-series views of the LG data. The scatterplot
shows three expected clusters.

forgetting as n increases (bottom of Fig. 4) becomes very
small. A data distribution change occurs around 1750, but
neither DB(n) nor XB(n) show this change. This suggests
that these two indices are not as suitable for monitoring
evolving clusters in streaming data as their forgetting factor
counterparts, which are shown in the top part of Fig. 4. The
jumps in the indices with forgetting factor are larger and
much clearer than those in with no forgetting, and do not
seem to depend on the number of samples processed by the
index.

0 500 1000 1500 2000 2500

Time (n)

0

0.5

1

In
d

e
x

 V
a

lu
e

S1

XB(n)

DB(n)

0

0.5

1

In
d

e
x

 V
a

lu
e

XB (n), =0.9

DB (n), =0.9

Fig. 4. Values of XB(n), DB(n), XBλ(n) and DBλ(n) with λ = 0.9 in
OEC clusters of the S2 dataset.

7.2 Interpretation of the iCVI model output over time

To study the usefulness of XBλ(n) and DBλ(n) in inter-
preting the results of online clustering algorithms, we first
plot their values over time in clusters found by sk-means
in the three synthetic datasets. In most cases because of
the larger number of clusters and lower accuracy of sk-
means in finding the expected clusters, the scale of the iCVI
values for the sk-means approach is much higher than the
values corresponding to OEC clusters. Therefore, we show
the changes of XBλ(n) and DBλ(n) over time for only sk-
means in Fig. 5. We will discuss the noteworthy trends in
OEC using separate figures.

In Fig. 5, The indices XBλ(n) and DBλ(n) have almost
identical performance for data set S1, as can be seen by
comparing graphs of their values in Fig. 5(a). But their
performance is quite different for data sets S2 and S3, as
can be seen in the top and bottom views in Figs. 5(b) and
5(c), respectively. We highlight two main traits in values of
these indices. These traits relate to the appearance of new
clusters in the stream (spikes in the index) and performance
of the clustering algorithm in modeling the new cluster (the
reduction of the index after a spike).

7.2.1 Appearance of new clusters
CVIs assess cohesion and separation so sudden changes
in the value of a CVI indicate changes in the cohesion
and separation of the clusters produced by the clustering
algorithm. Thus, a sudden change in an online validity
index usually indicates the appearance of a new cluster
in the data stream. This superficially relates to change-
point detection in data streams but the distinction needs
to be made that iCVIs monitor the partitions produced
by the clustering algorithm and do not search for change-
points in the streams. However, change-points that result in
appearance of new clusters in the data streams change the
cohesion of the clusters and cause spikes in the iCVI values.

The vertical lines in Fig. 5 mark the times where new
clusters appear in the synthetic datasets. The sk-means
algorithm performs reasonably well on the S1 dataset, com-
pletely fails for the S2 dataset (Fig. 6(a)), and partially iden-
tifies the evolving clusters in S3 (Fig. 6(b)). As we shall see,
the OEC algorithm performs reasonably at detecting times
when new distributions are created in all three datasets.

There is a jump in the values of both indices in Fig. 5
shortly after each new cluster is introduced in the data
stream. As the algorithms learn the prototype that repre-
sents the new distribution in the data, the value of the index
drops (bear in mind that these indices are all min-optimal).
This behaviour is clearly shown in XBλ(n) plots but the
DBλ(n) plot in the top view of Fig. 5(c) does not reflect
this behaviour. We attribute this to partial identification of
clusters in S3 and the systematic noise in this dataset which
affects DBλ(n) more than XBλ(n).

7.2.2 Distress signals in the clustering algorithm
Another valuable asset of the graphs of incremental validity
indices with forgetting is that a streaming plot of their
values can exhibit signs of failure. The sk-means algorithm
performs well in the S1 data set and we can see a sharp peak
(sudden increase and decrease) in Fig. 5(a) after the first time

9

0 500 1000 1500

Time (n)

0

5

10

15

X
B

(n
)

0

10

20
D

B
(n

)

(a) S1: Synthetic Locally Linear Processes

0 500 1000 1500 2000 2500

Time (n)

0

200

400

600

X
B

(n
)

0

1

2

3

D
B

(n
)

(b) S2: Shifting Gaussian Distribution

0 500 1,000 1500 2,000

Time (n)

0

50

X
B

(n
)

0

5

10

15

D
B

(n
)

(c) S3: Circular Shifting Gaussian Distribution
with Systematic Noise

Fig. 5. Values of XBλ(n) and DBλ(n), λ = 0.9, for sk-means. The vertical lines (red) are times when a change occurs in the dataset.

the second cluster appears in the data. The XBλ and DBλ
indices are almost identical in this data set. However, sk-
means fails to identify the expected clusters in both S2 and
S3 as shown by the end-state partitions in Fig. 6 even when
the correct number of clusters are supplied to the algorithm.
Let’s see how the XBλ(n) plots reflect this problem in the
sk-means clustering algorithm.

Fig. 5(b) shows XBλ(n) over time and the final clusters in
S2 shown in Fig. 6(a) by sk-means. The XBλ(n) plot shows
that its values have an increasing trend. In this dataset, we
have 11 clusters that appear one by one in the stream. We
know that the appearance of new clusters results in spikes
in the XBλ(n) values. After the appearance of a new cluster
in the data, we expect the clustering algorithm to create a
prototype for the cluster and update the partition to account
for the newly observed cluster. Subsequently, this should
bring any min-optimal down to similar (or lower) values
that were observed before the new cluster appeared. The
total failure of sk-means in S2 is evident by its inability
to restore the XBλ(n) values after a new cluster enters the
data stream. Indeed, increasing values of these min-optimal
indices signals that things are going awry! The DBλ(n)
values show smaller peaks and decreases but still shows
that sk-means cannot find good clusters to sharply reduce
the index. The graph in the top view of Fig. 4 shows the
values of both indices for the OEC algorithm applied to S2,
which identifies all the clusters correctly. The sharp peaks
in the values verifies the fact that the clustering algorithm
finds all the expected clusters.

Figs. 5(c) and 6(b) tell a slightly different story for S3.
The sk-means clusters in this dataset provide some sep-
aration between the expected clusters. The separation is
achieved by creating two partitions with 3 clusters each, a
partition with two clusters and the final cluster is identified
correctly. At two points during the experiment, there are
significant reductions in the XBλ(n) values (around 800 and
1500 samples) which correspond to the times after the two
subsets of 3 clusters are created. The decreasing trend of
XBλ(n) towards the end is due to the fact that sk-means
performs slightly better in identifying the last 3 clusters. In
particular, correct identification of the last cluster reduces
the index value quite sharply. The DBλ(n) values in this
dataset are very different to the XBλ(n) values. The index
DBλ(n) generates large peaks around the noisy data and

Feature 1

0 20 40 60 80 100

F
e
a
tu

r
e
 2

-10

0

10

20

30

40

50

60

70

80

90

100

(a) S2: Shifting Gaussian Distribution

Feature 1

10 20 30 40 50 60 70

F
e
a
tu

r
e
 2

15

20

25

30

35

40

45

50

55

60

65

(b) S3: Circular Shifting Gaussian Distribution
with Systematic Noise

Fig. 6. The terminal clusters produced by sk-means in S2 and S3

shows higher sensitivity to systematic noise in the data.
Sharp peaks corresponding to sudden drops in XBλ(n)

after the spikes (appearance of a new cluster) relates to the
clustering algorithm appropriately creating a prototype for
the cluster, while a gradual decrease after a spike is a sign
of the failure of the algorithm to identify the new cluster.
The DBλ(n) index is more sensitive to large amplitude local
noise and generates smaller peaks for the new clusters. This
hinders the interpretation of the clustering results in terms
of appearance of new clusters and learning problems in the
algorithm.

So far we only looked at problems in the sk-means
algorithm because OEC finds all the expected clusters in

10

0 10 20 30 40 50 60

Feature 1

10

20

30

40

50

60

70

F
e
a

tu
r
e
 2

Fig. 7. Terminal OEC clusters on S3 dataset.

these three synthetic datasets. However, In S3, as shown
in Fig. 7, one of the cluster prototypes has been expanded
and covers the systematic noise in the centre of the plot (The
expanded prototype is a single prototype that represents the
two clusters of data captured by the horizontally elongated
ellipse in Fig. 7). Fig. 8 shows the values of the two indices
for OEC clustering in this dataset. Both indices have similar
trends with DBλ(n) producing larger peaks for noisy data.
Neither graph in Fig. 8 experiences a drop after creating this
prototype. This indicates that OEC does not produce a good
model of the data which matches the visual assessment of
the clusters.

The overall conclusion from our synthetic data experi-
ments is that XBλ(n) is much more effective than DBλ(n),
so the remaining discussion will involve only XBλ(n).

0 500 1,000 1500 2,000

Time (Samples)

0

0.5

1

1.5

iX
B

0

2

4

iD
B

Fig. 8. XBλ(n) and DBλ(n) values for OEC clusters in S3

7.3 Experiments with real data

Since we have only assumed information about the ground
truth in the real datasets it is harder to interpret the XBλ(n)
values. We will use the insights obtained from our analysis
of the synthetic datasets to understand the behaviour of
XBλ(n) when clustering in the real-life datasets. Fig. 9(a)
shows values of XBλ(n) calculated for both OEC and sk-
means (with k = 3 clusters) in the LG dataset. The major
event in this dataset is a snowfall event (the approximate
location of the event between about n = 700 and n = 900
is marked in the figure). OEC identifies three clusters in this
dataset [5] which correspond to normal days, high wind
before the snow and the snow. The two very close sharp

spikes followed by drops in both indices values corresponds
the spike for the wind before the snow and the snow fall as
identified by OEC. The first spike corresponds to the time
when the high wind had become the dominant feature in
the area. Some level of wind can be observed from step 600.

The index values for sk-means clusters do not corre-
spond to the major events in the dataset. There is only one
major peak around the very start of the high winds at about
step 600. Since sk-means does not consider the correlation
in time between the data points, it fails to account for the
temporal nature of the clusters in the LG data. As shown
in Fig. 6.1, we must to look at the evolution of data in time
to see the major events and the scatter plot of the data does
not show a clear cluster tendency. The large overlap between
clusters of data corresponding to major events leads to the
fact that aligning clusters with the events does not guarantee
the maximal separation. This is reflected in the index values
for sk-means in Fig. 9(a) that shows no clear increasing trend
or particularly slow reduction in the index values. However,
the index values for sk-means clusters are mainly lower than
those for OEC clusters showing that sk-means clustering
creates relatively better clusters in terms of cohesion and
separation.

0 500 1000 1500 2000
Time (n)

0

5

10

15

20

25

X
B

(n
)

sk-means

OEC
snow

(a) LG: Sensorscope project in Le Genepi

0 50 100 150 200 250 300

Time (n)

0.01

1

1000

X
B

(n
)

sk-means

OEC

(b) GSA: Gas Sensor Array. Vertical lines in-
dicate the times where concentration of gases
change

Fig. 9. The XBλ(n) index over the real-life datasets. The y-axis of GSA
plot is shown in logarithmic scale.

The GSA dataset is collected in a more controlled envi-
ronment than LG and hence, has a more recognizable cluster
tendency. In this dataset two different gas concentrations
are introduced during the experiment. When the gas is
introduced (times indicated by the red vertical lines) there
is a delay until the sensors react to the presence of the gas,
which is seen as a delay of the values in Fig. 9(b). The peaks

11

in both indices occur a few seconds after the introduction
of the gas. For the first event at about n = 75, a gas is
introduced when no other gas is present, while the second
event at about n = 180 corresponds to removing one gas
and introducing another gas. In the second case, the indices
show two peaks close to each other for both clustering
algorithms. The last event at about n = 270 corresponds
to emptying the chamber and since the empty chamber had
been seen by the clustering algorithms, this results in a much
smaller peak in the graphs. OEC has smaller XBλ(n) values
than sk-means, which indicate that in this dataset, OEC
results in a better separation between the expected clusters
than sk-means.

8 CONCLUSIONS

To the best of our knowledge, the concept of incremental
validity indices (iCVIs) in data stream clustering has not
been studied before. Our iCVIs offer an unsupervised val-
idation mechanism for online clustering algorithms. In this
article, we introduced the novel concept of online iCVIs
and derived forgetting and non-forgetting versions of two
well-known internal validity indices (the Xie-Beni indices
(XB(n) and XBλ(n)) and the Davies-Bouldin indices (DB(n)
and DBλ(n))). Our experiments used two different styles of
algorithms for streaming clustering: sk-means, which does
not account for the historical context of streaming data; and
OEC, which retains a history of time dependency in clusters
through the retention of its cluster statistics (means and
covariances). We discussed how these indices can be used
to interpret the performance of online clustering algorithms
with respect to the appearance of new clusters and how
the clustering algorithm reacts to evolving clusters. An
increasing trend in any min-optimal index seems to point
to a more questionable belief about cluster quality in the
clustering of the data. Thus, our iCVI models afford a means
for sending distress signals about evolving clusters to real
time monitors.

Our experiments indicate that the most reliable of the
four incremental indices {XB(n),XBλ(n), DB(n),DBλ(n)} is
XBλ(n). And of the two clustering algorithms used, OEC
seems to perform much better than sk-means. But definitive
conclusions require many more tests. There are many, many
internal CVIs. Our next focus will be on deriving other
incremental validity indices and conducting comparative
studies among different types of indices.

9 ACKNOWLEDGMENT

This research was supported under Australian Research
Council’s Discovery Projects funding scheme (project number
DE150100104).

REFERENCES

[1] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan, “Clustering data streams: Theory and practice,”
IEEE Transaction on Knowledge and Data Engineering, vol. 15, no. 3,
pp. 515–528, 2003.

[2] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L. F.
de Carvalho, and J. ao Gama, “Data stream clustering: A survey,”
ACM Computing Surveys, vol. 46, no. 1, pp. 13–31, Jul. 2013.

[3] M. Ackerman and S. Dasgupta, “Incremental clustering: The case
for extra clusters,” in Neural Information Processing Systems (NIPS),
Montreal, Canada, December 2014.

[4] P. Angelov, Evolving Takagi-Sugeno Fuzzy Systems from Streaming
Data (eTS+). John Wiley & Sons, Inc., 2010, pp. 21–50.

[5] M. Moshtaghi, J. Bezdek, and C. Leckie, “Online clustering of
multivariate time-series,” in Proceedings of SIAM Conference on Data
Mining, Florida, USA, May 2016.

[6] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Perez, and I. Perona,
“An extensive comparative study of cluster validity indices,”
Pattern Recognition, vol. 46, no. 1, pp. 243 – 256, 2013.

[7] X. L. Xie and G. Beni, “A validity measure for fuzzy cluster-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 13, no. 8, pp. 841–847, Aug 1991.

[8] D. L. Davies and D. W. Bouldin, “A cluster separation measure,”
IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 1,
no. 2, pp. 224–227, Feb. 1979.

[9] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, On Clustering
Massive Data Streams: A Summarization Paradigm. Springer US,
2007, vol. 31, pp. 9–38.

[10] N. Ailon, R. Jaiswal, and C. Monteleoni, “Streaming k-means
approximation,” in Neural Information Processing Systems 2009,
vol. 22, 2009, pp. 10–18.

[11] M. Salehi, C. Leckie, M. Moshtaghi, and T. Vaithianathan, “A
relevance weighted ensemble model for anomaly detection in
switching data streams,” in Proceedings of PAKDD, 2014, pp. 461–
473.

[12] P. Angelov and X. Zhou, “Evolving fuzzy-rule-based classifiers
from data streams,” IEEE Transactions on Fuzzy Systems, vol. 16,
no. 6, pp. 1462–1475, 2008.

[13] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering
over an evolving data stream with noise,” in SIAM Conf. on Data
Mining, 2006, pp. 328–339.

[14] P. Kranen, I. Assent, C. Baldauf, and T. Seid, “The clustree: In-
dexing micro-clusters for anytime stream mining,” Knowledge and
Information Systems, vol. 29, no. 2, pp. 249–272, 2011.

[15] N. Mozafari, S. Hashemi, and A. Hamzeh, “A statistical approach
for clustering in streaming data,” Artificial Intelligence Research,
vol. 3, pp. 38–45, 2014.

[16] G. W. Milligan and M. C. Cooper, “An examination of procedures
for determining the number of clusters in a data set,” Psychome-
trika, vol. 50, no. 2, pp. 159–179, 1985.

[17] K. Schermelleh-Engel, M. Moosbrugger, and H. Helfried, “Eval-
uating the fit of structural equation models: Tests of significance
and descriptive goodness-of-fit measures,” Methods of Psychological
Research, vol. 8, pp. 23 – 74, 2015.

[18] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms. Norwell, MA, USA: Kluwer Academic Publishers,
1981.

[19] N. R. Pal, J. C. Bezdek, and R. J. Hathaway, “Sequential competi-
tive learning and the fuzzy c-Means clustering algorithms,” Neural
Networks, vol. 9, no. 5, pp. 787 – 796, 1996.

[20] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in In 5th Berkeley Symposium on Mathe-
matical Statistics and Probability, 1967, pp. 281–297.

[21] J. C. Bezdek, A Primer on Cluster Analysis: Four Basic Methods that
(Usually) Work. Sarasota, FL., USA: First Design Publishing, 2017.

[22] N. R. Pal and J. C. Bezdek, “On cluster validity for the fuzzy c-
means model,” IEEE Transactions on Fuzzy Systems, vol. 3, no. 3,
pp. 370–379, 1995.

[23] S. Araki, H. Nomura, and N. Wakami, “Segmentation of thermal
images using the fuzzy c-means algorithm,” in Proceedings of the
Second IEEE International Conference on Fuzzy Systems, San Fran-
cisco, USA, April 1993, pp. 719–724.

[24] “SensorScope. http://lcav.epfl.ch/page-86035-en.html,” 2007.
[Online]. Available: http://lcav.epfl.ch/page-86035-en.html

[25] J. Fonollosa, S. Sheik, R. Huerta, and S. Marco, “Reservoir comput-
ing compensates slow response of chemosensor arrays exposed to
fast varying gas concentrations in continuous monitoring,” Sensors
and Actuators B: Chemical, vol. 215, pp. 618 – 629, 2015.

http://lcav.epfl.ch/page-86035-en.html
http://lcav.epfl.ch/page-86035-en.html

	1 Introduction
	2 Background and Related Work
	3 Problem Statement and Definitions
	4 Incremental Clustering Algorithms
	4.1 Sequential k-means
	4.2 Online Ellipsoidal Clustering

	5 The Incremental CVIs
	5.1 Incremental Cluster Dispersion Measure
	5.2 Incremental Xie-Beni Index
	5.3 Incremental DB Index

	6 Computational Protocols
	6.1 Datasets and Parameters
	6.2 Initialization

	7 Numerical Experiments
	7.1 Forgetting or Not
	7.2 Interpretation of the iCVI model output over time
	7.2.1 Appearance of new clusters
	7.2.2 Distress signals in the clustering algorithm

	7.3 Experiments with real data

	8 Conclusions
	9 Acknowledgment
	References

