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Abstract—The ubiquity of mobile sensing devices in the In-
ternet of Things (IoT) enables an emerging data crowdsourcing
paradigm called participatory sensing, where multiple individuals
collect data and use a cloud service to analyse the union of
the collected data. An example of such collaborative analysis
is collaborative anomaly detection. Given the possibility that
the cloud service is honest but curious, a major challenge is
how to protect the participants’ privacy. The scheme called
Random Multiparty Perturbation (RMP) addresses this challenge
by allowing each participant to perturb his/her tabular data by
passing the data through a nonlinear function, and projecting the
data to a lower dimension using a participant-specific random
matrix. Here, we propose an improvement to RMP by introducing
a new nonlinear function. The improved scheme is assessed
in terms of its recovery resistance to the maximum a priori
(MAP) estimation attack. Experimental results and preliminary
theoretical analysis indicate that RMP is resistant to collusion
attacks and has better recovery resistance to MAP estimation
attacks compared to the original scheme. It also achieves a good
trade-off between accuracy and privacy.

I. INTRODUCTION

Central to the IoT is the ability to capture data, either
through sensors or active contribution by people, which gives
birth to the data crowdsourcing paradigm called participatory
sensing. In this collaborative learning scenario, participants
want to extract information/knowledge from their joint records,
without disclosing their privacy-sensitive information. The
problem of preserving privacy in this scenario is referred to
as “privacy-preserving collaborative learning” [1]. Historically,
Agrawal and Srikant [2] were the first to study this problem,
under the umbrella term “privacy-preserving data mining”
(PPDM).

Most PPDM schemes are based on either Secure Multiparty
Computation (SMC) or randomisation/perturbation. SMC uses
cryptographic primitives to ensure a high level of privacy
and accuracy, at the expense of high computational and com-
munication overhead. The main challenge facing SMC-based
schemes is the requirement for simultaneous coordination
of all participants during the entire training process, which
limits the number of participants. A promising alternative to
SMC is randomisation, which trades off privacy and accuracy
for scalability by perturbing the data in a way that is (i)
computationally efficient, (ii) does not allow an attacker to
recover the original data, and (iii) does not severely affect the

accuracy of data mining. In such a scheme, the participants
perturb their records before sending them to the cloud service
to be processed. Most existing randomisation approaches such
as [1], [3], [4] require all participants to perturb their data
using the same perturbation matrix, and are thus vulnerable
to collusion (between some of the participants and the cloud
service). To address this challenge, Erfani et al. [5] (co-
authors of this paper) proposed a privacy-preserving collab-
orative anomaly detection scheme called Random Multiparty
Perturbation (RMP) that allows participants to use their own
unique, randomly generated perturbation matrix to randomise
their data. The perturbation process of RMP consists of a
nonlinear transformation stage and a linear projection stage.
The nonlinear stage is used to condition the probability density
function (pdf) of the perturbed data to thwart maximum a
posteriori (MAP) estimation attacks, whereas the linear stage
is to compress the data and resist independent component
analysis attacks. The nonlinear transformation function of
RMP is the double logistic function, but the privacy-preserving
properties of this function have not been thoroughly assessed.

Our contributions here are two-fold: (i) the proposal of an
alternative nonlinear transformation function, which we call
“repeated Gompertz”, and (ii) the evaluation of the privacy-
preserving properties of both the double logistic function and
the repeated Gompertz function. In terms of the recovery rate,
which measures how well an attacker can recover the original
data from the perturbed data, the repeated Gompertz function
proposed here is found to be more resistant to MAP estimation
attacks than the double logistic function proposed in [5].

II. RELATED WORK

In general, PPDM schemes are either syntactic or semantic.
Semantic approaches—of which RMP is an example–aim to
satisfy some semantic privacy criteria/definitions, which are
concerned with minimising the difference between adversarial
prior knowledge and adversarial posterior knowledge about
the individuals represented in the database. Potentially the
most popular semantic privacy criterion is differential privacy.
Differential privacy was designed for the scenario where a
database server answers queries in a privacy-preserving man-
ner by adding tailored Laplace noise to the query results [6],
[7]. In such a scenario, the database comprises private data of



multiple individuals. The participatory sensing scenario, where
participants are data owners who publish data (instead of
answering queries) about themselves alone, can be considered
as a distributed version of the differential privacy scenario.
In such a scenario, additional mechanisms need to be paired
with differential privacy; evidence supporting this claim can
be found in many highly cited references including:

• Shi et al.’s scheme [8] enables participants to upload en-
crypted values to a data aggregator, which computes the sum
of the encrypted values. These values are perturbed with
Laplace noise that satisfies (ε, δ)-differential privacy, but the
encryption relies on a trusted dealer allocating q+1 secrets
that sum to 0, to the data aggregator and the q participants.

• Ács et al.’s scheme [9] enables smart meters, organised
into clusters, to send Laplace noise-tainted readings to an
electricity distributor; but requires all meters in a cluster to
share pairwise keys.

To dispense with the additional, high-overhead cryptographic
mechanisms, most randomisation-based schemes use alterna-
tive privacy criteria. For RMP, the criterion recovery resis-
tance, defined in Sect. IV, is used. This criterion is based on
the recovery rate metric used in Sang et al.’s innovative study
of attacks on randomisation-based schemes [10].

Randomisation techniques include (i) additive perturbation,
(ii) multiplicative perturbation, and (iii) geometric perturba-
tion, and (iv) nonlinear transformation.

Additive perturbation adds independent and identically
distributed (i.i.d.) noise to the original data [2], but this
additive noise can be filtered out [11].

Multiplicative perturbation premultiplies the original data
with a random noise matrix. The following designs of the noise
matrix are known:

• Rotation perturbation defines the noise matrix as a matrix
with orthonormal rows and columns [12]. This scheme is
vulnerable to “known-input attacks” [13], where an attacker
can recover the original data from its perturbed version with
just a few leaked inputs.

• Random projection leverages the Johnson-Lindenstrauss
Lemma by defining the noise matrix as a matrix whose
elements are independently sampled from the same zero-
mean Gaussian distribution [3]. If the original data follows
a multivariate Gaussian distribution, a large portion of the
data can be reconstructed via MAP estimation [14]. Both
rotation perturbation and random projection are distance-
preserving transformations, which are good for preserving
data mining accuracy, but susceptible to attacks that exploit
distance relationships [13].

• Uniform random transformation (abbreviated as RT) defines
the noise matrix as a matrix whose elements are indepen-
dently sampled from the same uniform distribution [15].
This has the advantage of making attacks on distance-
preserving transformations [13] not applicable. RMP uses
exactly RT, where the noise matrix is a projection matrix
whose elements are independently sampled from the uni-
form distribution U(0, 1).

Geometric perturbation uses a mix of additive and mul-
tiplicative perturbations, where the data matrix X is mapped
to RX+Φ+Δ, where R is a rotation perturbation matrix,
Φ is a random translation matrix with identical entries, and
Δ is an i.i.d. Gaussian noise matrix [12]. It is known that
without Δ, geometric perturbation is vulnerable to “known
input attacks” [13], but there are no general results on how
the Δ term influences the effectiveness of these attacks.
All the randomisation techniques discussed so far are linear
techniques.

Nonlinear transformation is meant to be used in conjunc-
tion with linear techniques to thwart Bayesian estimation at-
tacks. The general randomisation takes the form B+Q·N(A+
RX), where B, Q, A, R are random matrices, and N is a
bounded nonlinear function [4]. The tanh function is found to
preserve the distance between normal data points, but collapse
the distance between outliers, making the function suitable for
privacy-preserving anomaly detection [4], provided only the
privacy of anomalous records needs to be protected.

Recently proposed, RMP [5] uses both RT and nonlinear
transformation. The innovations of RMP include (i) the use of
participant-specific RT matrices, and (ii) the use of the double
logistic function as the nonlinear transformation function for
protecting both anomalous and normal records from Bayesian
estimation attacks. However, the privacy-preserving properties
of the double logistic function have not been thoroughly
assessed. Here, we propose the repeated Gompertz function
as an alternative to the double logistic function, and provide
empirical evidence of the advantages of this alternative in
terms of the improved recovery resistance of RMP.

III. RMP: THE IMPROVED SCHEME

As depicted in Fig. 1, the general participatory sensing
architecture comprises a set of participants C = {ci|i =
1, . . . , q}, a data mining cloud service S, and a set of end-
users U . The cloud service is assumed to be honest but curious,
i.e., it will never perform any malicious action to disrupt
the protocols or compromise the participants but it might try
to discover privacy-sensitive information of the participants,
including colluding with some of the participants. RMP con-
siders the case where (i) the data mining operation is anomaly
detection, and (ii) scalability requirements necessitates the use
of a randomisation-based PPDM scheme. Based on the state of
the art in PPDM, the following design criteria are applicable:

• Resilience to distance inference attacks: Uniform random
transformation [15] does not preserve the angle (inner
product) or Euclidean distance between transformed data
points, and is thus resistant to distance inference attacks.
Moreover, it is suitable for anomaly detection.

• Resilience to Bayesian estimation attacks: Bayesian esti-
mation is a general attack that exploits the pdf of the original
data. Gaussian data is particularly exploitable because it
reduces the MAP estimation problem to a simple convex
optimisation problem [14]. A nonlinear transformation can
be applied to prevent this reduction by conditioning the pdf.



• Resilience to collusion: Let Xi ∈ R
n×mi be the nth

dimensional dataset of participant ci, where mi is the
number of records. If participant ci perturbs its records as
Zi = TXi, and T ∈ R

w×n, w < n, is a random matrix
shared by all participants, then leakage of T due to collusion
to the cloud service S can compromise the privacy of all the
participants. Preventing collusion requires each participant
to use an independently unique perturbation matrix.

Participants Data mining 
cloud service 

End-users

Model

Fig. 1. The general participatory sensing architecture.

A. The improved scheme
RMP’s two-stage data perturbation scheme was designed

with the preceding criteria in mind. Let T be a w× n matrix
(w < n) with U(0, 1)-distributed elements. Each participant
ci generates a unique perturbation matrix

T̃i = T+Δi, (1)

where each element of Δi is drawn from U(−α, α), and 0 <
α < 1. Experimental results show that for small values of
α, the accuracy loss in anomaly detection is small. Suppose
participant ci is contributing data Xi ∈ R

n×mi to the cloud
service S for anomaly detection. The participant transforms
Xi to Zi ∈ R

w×mi in two stages:
Stage 1: The participant transforms Xi to Yi, by applying

the nonlinear perturbation function N element-wise:

Yi = N (Xi). (2)

In the original version of RMP, N is defined as the double
logistic function. Here for the improved version of RMP, N
is chosen to be the repeated Gompertz function:

N(x)
def
= a1e

−b1e
−c1x−d1

u(0.35− x)

+
(
0.5 + a2e

−b2e
−c2x−d2

)
u(x− 0.35),

(3)

where the parameters a1, b1, c1, d1, a2, b2, c2, d2 are defined in
Fig. 2, and u() is the Heaviside step function. The derivation
of the function parameters is explained in Sect. IV. Fig. 2 plots
different nonlinear perturbation functions for comparison.

Stage 2: Using T̃i generated earlier, the participant trans-
forms Yi to Zi :

Zi = T̃iYi . (4)

The participant then sends Zi to the cloud service S. Once
S receives all the perturbed datasets Zi, i = 1, . . . , q, it
concatenates them as: Zall = [Z1| · · · |Zq ], and then trains an
anomaly detection model on Zall. The learned model M can
be used by end-users to identify anomalies in their test records.
RMP is independent of the anomaly detection algorithm used,
but the autoencoder is used for our study.

Param Value
a1 0.5247
b1 6.0000
c1 13.2000
d1 0.2040
a2 0.4000
b2 6.0000
c2 27.5000
d2 -16.0750
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Fig. 2. Parameters of the repeated Gompertz function, and a plot of different
nonlinear perturbation functions. The tanh function is N (x) = tanh(βtx),
where βt ≈ 1.23 [5]. The double logistic function is N (x) = 1 −
exp(−βdlx

2), where βdl ≈ 2.81 [5]. The repeated Gompertz function is
defined as per Eq. (3).

IV. PRIVACY ANALYSIS

Corresponding to multiplicative perturbation, we use an
alternative definition for differential privacy, which we state
informally now but formally later: a perturbation scheme is
privacy-preserving with respect to an attack A and a data
distribution pD if only a small fraction of the original data,
characterised by pD, can be recovered from the perturbed data
through A. This definition has three major components:
• the reference attack;
• the data distribution, which captures an aspect of the

attacker’s auxiliary information; and
• the recovery rate, which captures the notions of “small

fraction” and “recovered”.
To specify the reference attack, we first consider attacks

to linear multiplicative perturbation schemes. These types of
schemes project a data vector (and hence the whole data
matrix) to a lower dimensional space so that an attacker has
only an ill-posed problem in the form of an underdetermined
system of linear equations Ty = z to work with, where z is
a projection of vector y. An underdetermined system cannot
be solved for y exactly, but given sufficient prior information
about y, an approximation of the true y may be attainable. We
can characterise an attack by the extent of prior information
available to the attacker.

In a known input-output attack, the attacker has some
input samples (i.e., some samples of the original data) and
all output samples (i.e., all samples of the perturbed data),
and knows which input sample corresponds to which output
sample [13]. In the participatory sensing scenario where the
cloud service may collude with one or more participants to
unravel other participants’ data, the known input-output attack
is an immediate concern. In the following, our privacy analysis
is conducted with respect to a known input-output attack based
on MAP estimation — this is our reference attack. MAP
estimation is based on Bayesian statistics and is more general
than maximum likelihood estimation because the former takes
a prior distribution into account.

To measure the strength of the reference attack, we define
the recovery rate. If for a data vector x the recovered copy



is x̂, then the relative error is ξ
def
= ‖x̂ − x‖2/‖x‖2, where

‖ · ‖2 is the Euclidean norm. Denote the joint distribution of ξ
and x by pΞ,X(ξ,x), then we define the ε-recovery rate with
respect to the perturbation algorithm and attack as

r ε(A, pD)
def
=

∫ ε

ξ=0

∫

x∈Dx

pΞ,X(ξ,x) dxdξ, (5)

where Dx is the domain of the data vector, and x is
normalised. The joint distribution pΞ,X depends on the attack
A and data distribution pD. In the absence of an analytical
expression for Eq. (5), we estimate the recovery rate as the
fraction of test data that can be recovered to within a relative
error of ε. At this point, we state the privacy definition
formally as follows.

A probabilistic algorithm that takes pD-distributed x ∈ R
n

as input and produces z ∈ R
w as output is (ε, δ)-recovery

resistant with respect to pD and attack algorithm A if
r ε(A, pD) = δ.

Suppose the attacker is targeting a particular participant by
trying to solve Z = TY for Y. We consider two scenarios:
where T is known, and where T is unknown.

A. Scenario Where T is Known

This is the worst-case scenario and here, we assume the
attacker somehow knows T exactly but not Y, for example
when the attacker manages to predict the output of the victim’s
improperly initialised pseudorandom number generator (in
fact, such a vulnerability was discovered on the Android
mobile platform in mid-2013). Let z represent a column of
Z, and y represent a column of Y. The MAP estimate of y,
given T and z, is

ŷ = argmax
y

p(y|z,T) = argmax
y

p(z|T,y)p(T)p(y)

p(z|T)p(T)

= argmax
y∈Y

p(y)∫
Rn p(z|T,y) dy

= argmax
y∈Y

p(y),

(6)

where Y = {y : z = Ty}.
If y is n-variate Gaussian with a positive definite covariance

matrix, then Eq. (6) becomes an easily solvable quadratic
programming problem [14, Theorem 1]. The key is to design
a nonlinear function N that transforms a potentially Gaussian
data distribution to a distribution that deters accurate solution
of Eq. (6).

In this paper, we propose using the “repeated Gompertz”
function defined in Eq. (3) as the nonlinear function. The
following explains how the proposed function is derived. The
Gompertz function takes the standard form:

Gompertz(x) = ae−be−cx

, (7)

where the parameter a specifies the upper asymptote, b con-
trols the displacement along the x axis, and c adjusts the
growth rate of the function. As tanh(βtx) is good for protect-
ing anomalous data points, the repeated Gompertz function is
given slopes that approximate those of tanh(βtx) at x = 0 and

x = 1. The repeated Gompertz function is also designed to
have a flat middle section so that for that section the function
cannot be inverted, in order to protect normal data points.
Through extensive search, we found the geometry in Fig. 2
to be good for protecting both anomalous and normal data
points: (i) a Gompertz curve presenting a steep slope over the
interval [0, 0.35]; and (ii) another Gompertz curve presenting
a plateau over the interval [0.35, 0.6], a steeper slope over
the interval [0.6, 0.75] and another plateau over the interval
[0.75, 1]. The parameters of the two Gompertz functions are
given in Fig. 2. This compositional structure inspired the name
“repeated Gompertz”.

B. Scenario where T is unknown

Consider the case where the attacker knows neither T nor
Y. The MAP estimates of Y and T, given Z, are

(T̂, Ŷ) = argmax
T,Y

p(T,Y|Z)

= argmax
T,Y

p(Z|T,Y)p(T)p(Y)∫ ∫
p(Z|T,Y)p(T)p(Y)dTdY

= argmax
(T,Y)∈Θ

p(T)p(Y),

(8)

where Θ ∈ {(T,Y) : Z = TY}. In a known input-output
attack, p(T) and p(Y) are estimated as inputs to Eq. (8).
Eq. (8) is a nonconvex optimisation problem that is harder
to solve than Eq. (6). The repeated Gompertz is designed to
make data recovery via Eq. (6) difficult when T is known.
Now that T is unknown, the attacker is expected to get an
even lower recovery rate by solving Eq. (8), which is a more
difficult problem.

V. SIMULATIONS AND EVALUATION

This section presents the simulation and evaluation results
of the improved RMP in terms of its privacy-preserving and
accuracy-preserving properties.

Experiments are conducted on (i) purely Gaussian datasets,
(ii) purely Laplace-distributed datasets, (iii) seven real datasets
from the UCI Machine Learning Repository, and (iv) two
challenge synthetic datasets. The seven real datasets are (i)
Abalone, (ii) Forest, (iii) Adult, (iv) Gas, (v) OAR, (vi) DSA,
and (vii) HAR, with dimensionalities of 8, 54, 123, 128, 110,
315 and 561 respectively. The two synthetic datasets are (i)
Smiley with 20 features, and (ii) GME with 100 features.
The Smiley dataset consists of samples drawn from two
compact Gaussians and an arc shaped distribution to resemble
a smiley face, and is often used to challenge anomaly detection
algorithms. The GME dataset is a mixture of four separated
Gaussians.

A. Privacy evaluation

Experimental results are provided in this section on the
recovery resistance of the improved RMP against the MAP
estimation attack, in terms of the ε-recovery rate defined in
Eq. (5). In the absence of an analytical expression for Eq. (5),



we estimate the ε-recovery rate as the fraction of test data that
can be recovered to within a relative error of ε:

r̂ ε(A, pD)
def
=

#
{
x̂i :

‖x̂i−xi‖2

‖xi‖2
≤ ε, i = 1, . . . ,m

}

m
, (9)

where xi and x̂i are the ith original data record and its
attacker-estimated value respectively.

To execute MAP estimation, the attacker can either apply
the [14, Theorem 1] formula, provided the original data is
multivariate Gaussian distributed; or solve the constrained
optimisation problem (6). To solve optimisation problem (6),
the attacker needs to evaluate an objective function that is the
pdf of the original data; for this, the attacker can estimate the
pdf of the original data as the pdf of the leaked input samples,
using multivariate kernel density estimation (KDE). For KDE,
we use Ihler and Mandel’s Kernel Density Estimation Toolbox
for MATLAB1. Among the kernels supported, we use the
Epanechnikov kernel — which is optimal in the sense of the
asymptotic mean integrated squared error — with uniform
weights.

TABLE I
EVALUATED SCHEMES

Scheme Nonlinear perturbation
function (stage 1)

Linear projection matrix
(stage 2)

RP [3] none T ∼ Nw×n(0, 4)
tanh+RT tanh [4] T ∼ Uw×n(0, 1)

DL+RT [5] double logistic T ∼ Uw×n(0, 1)
RG+RT repeated Gompertz T ∼ Uw×n(0, 1)

The four schemes shown in Table I are evaluated in the
worst-case scenario where the attacker knows exactly the
victim’s perturbation matrix.

Purely Gaussian datasets: Fig. 3 shows that RG+RT pro-
vides significantly higher recovery resistance for both normal
and anomalous data compared to the other schemes.

Purely Laplace datasets: Fig. 4 shows that RG+RT signif-
icantly outperforms other methods for Laplace datasets, and
this is especially evident for normal data. Furthermore, the 0.1-
recovery rate against RG+RT is below 10%, which is much
lower than other schemes.

Assorted real and synthetic datasets: Consistent with
the results for purely Gaussian and purely Laplace datasets,
as shown in Fig. 5, RG+RT also outperforms tanh+RT and
DL+RT in terms of recovery resistance for both normal
data and anomalous data. Note the low recovery rates in
many cases, especially for example, RG+RT achieves (0.1,
0)-recovery resistance for the DSA and HAR datasets.

B. Accuracy evaluation

For anomaly detection, a stacked denoising autoencoder is
used. The hyperparameters of the autoencoder are set based on
the best performance on validation set. Feature values in each
dataset are normalised to [0, 1] and merged with 5% anomalous
records, which are distributed between [0, 0.05] or [0.95, 1].

1http://www.ics.uci.edu/∼ihler/code/kde.html
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Fig. 3. Recovery rates of MAP estimation attacks against the evaluated
schemes, on w× 1000 data projected from 15× 1000 normalised Gaussian-
distributed data (zero mean, identity covariance matrix).
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Fig. 4. Recovery rates of MAP estimation attacks against the evaluated
schemes, on w × 1000 data projected from 15 × 1000 normalised Laplace-
distributed data (zero mean, unity scale).

Anomalies are identified by the denoising autoencoder based
on the mean absolute error between the inputs and outputs
of the training records. According to three sigma rule, a
well-known measure for anomaly detection, the reconstruction
error is expected to be Gaussian distributed, hence 99.73% of
the error values are expected to be at most three standard
deviations away from the mean, namely, within the threshold
μ(e) + 3σ(e). An error value larger than the threshold is
unlikely and is identified as an anomaly.

The Area Under the ROC Curve (AUC) is used to com-
pare the anomaly detection accuracy of the autoencoder with
and without data perturbation by our scheme. Without data
perturbation, the AUC is close to 1. With data perturbation,
the AUC is expected to decrease, and the goal is to measure
the extent of this decrement. Reducing data dimensionality
from n to w ≤ (n + 1)/2 ensures that no linear filter can
recover the original data from its perturbed version [3]. On
the other hand, this raises the concern of accuracy loss. Fig. 6
shows that dimensionality reduction has minor impact on
accuracy. Reducing data dimensionality by 50% decreases the
detection rate by at most 5% in the worst case. Our study also
reveals that RG+RT has better or similar AUC performance to
tanh+RT and DL+RT.

VI. CONCLUSION AND FUTURE WORK

We present an improvement to an existing privacy-
preserving collaborative anomaly detection scheme called
RMP. The randomisation-based scheme perturbs data in two
stages: the first, nonlinear stage thwarts Bayesian estimation
attacks, whereas the second, linear stage resists independent
component analysis, distance inference attacks and collusion
attacks. For the nonlinear perturbation stage, a new nonlinear
function called the “repeated Gompertz” function is proposed
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here. The function is designed to condition the pdf of the
perturbed data to protect both anomalous and normal data
records. Preliminary analysis and empirical evaluation indicate
that the two-stage transformation, RG+RT, maintains privacy
of both normal and anomalous data, and delivers the lowest
recovery rates for all the selected datasets, outperforming the
state of the art (tanh+RT and DL+RT). It also achieves a good
trade-off between accuracy and privacy.

The next step from this work is to establish a theoretical
framework for designing the nonlinear perturbation function,
and evaluating the recovery resistance analytically. There is
also a need to extend RMP to other data types and data mining
algorithms.
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