
Adaptive Edge Caching based on Popularity and
Prediction for Mobile Networks

Li Li
School of Computing and Information Systems

The University of Melbourne
Melbourne, Australia

lli10@student.unimelb.edu.au

Sarah Erfani
School of Computing and Information Systems

The University of Melbourne
Melbourne, Australia

sarah.erfani@unimelb.edu.au

Chien Aun Chan
Department of Electrical and Electronic Engineering

The University of Melbourne
Melbourne, Australia

chienac@unimelb.edu.au

Christopher Leckie
School of Computing and Information Systems

The University of Melbourne
Melbourne, Australia

caleckie@unimelb.edu.au

Abstract—Edge caching in mobile networks can improve users’
experience, reduce latency and balance the network traffic load.
However, edge caching requires suitable strategies for determin-
ing what files to pre-fetch at which cell and at what time. Due
to the heterogeneity of users’ content preferences and mobility,
caching based only on popularity has limitations. Considering
that cells located in different places have different predictability,
in this paper, we propose an adaptive edge caching algorithm
based on content popularity as well as the individual’s prediction
results to provide an optimal caching strategy, aiming to max-
imize the cache hit rate with acceptable file replacement cost.
A heuristic optimization strategy based on genetic algorithms is
presented, along with a prediction model based on an improved
Markov model for each user according to the historical data. In
the model, similar users are clustered based on their behavior
patterns. We evaluate our algorithm on a simulation dataset as
well as a 3-week real-life dataset from China Mobile. The results
show that our optimal caching strategy can improve the cache hit
rate compared with other methods, especially when the storage
capacity is small and the similarity in content requests of users
is low.

Index Terms—mobile edge caching, cache deployment opti-
mization

I. INTRODUCTION

Content caching at the edge of the mobile network has
attracted increasing research attention recently. Caching at
the wireless network edge (close to users) can help reduce
latency, balance network traffic load, and improve users’
experience [1]. However, since the storage capacity for each
cell is limited, it is important to design appropriate caching
strategies to balance the trade-off between the quality of users’
experience, and the limited storage capacity. In this paper, we
focus on the problem of finding a strategy for caching at the
edge of the network.

To design an appropriate caching strategy, we need to
answer the question: what contents should be pre-fetched, at
which cells and when? This is a challenging task, due to the

following factors: (i) Limited storage size: Since the storage
space in the edge node is limited, it is not possible to cache
all the contents. Therefore, only those content items that can
make the most profit (maximum hit rate/minimum cost) should
be selected to be cached. (ii) Users’ mobility: Users in the
network may frequently be handed off from one cell to another.
(iii) Users’ heterogeneous preferences: The probability that
each content item is requested by a specific user during a
certain period can differ among individuals.

A simple caching strategy is to choose the most popular
contents at the network edge. The limitation of this method
is that the real popularity of the contents in the network is
unknown and users’ behavior (movement and content requests)
in the network can be dramatically different, in which case
popularity-aware caching may not be effective. A recent study
[2] shows that the behavior of users in the network, including
content, location, and mobility, affects the performance of edge
content caching. In [3], the authors also noted that statistical
patterns of content requests both in aggregated form and on a
per-user basis should be considered in the content deployment
problem.

Although there has already been some research on mobile
users’ behavior prediction [4], [5], [6], the prediction of users’
behavior may not be easy. For example, in a city center, people
move in various directions in a nondeterministic manner.
Their behavior may be not predictable, leading to a low
prediction accuracy. This will reduce the performance gain
of edge caching and introduce extra costs, such as the energy
consumed in the backhaul and edge cells due to ineffective
content placement. An important property of cells in this
content is their predictability in terms of users’ movements.
The predictability of a cell is the observed likelihood of being
correct when we predict that a user will move into a given
cell next. For example, if the prediction model predicts that
100 users will next move into a given cell, but only 60
actually do so, then we consider the predictability of that cell

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

978-1-7281-2009-6/$31.00 ©2019 IEEE

Personal use is permitted, but republication/distribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

paper N-19458.pdf

Fig. 1. Averaged prediction accuracy of the top 2,000 most visited cells within
one city in southern China. Area H denotes an area with high prediction
accuracy, and area L indicates an area with low prediction accuracy.

is 0.6. In Fig. 1, using the prediction model we propose in
this paper, the average prediction accuracy of the top 2,000
most visited cells within a city in southern China is shown.
We can see that different cells may have different levels of
predictability. For those cells in area L, the prediction accuracy
for users’ behavior is low. Whereas for cells located along a
main road (area H), the prediction accuracy is relatively high.
This indicates that we should not totally rely on the prediction
results when developing the caching strategy.

Therefore, we propose to consider not only the prediction
results from the prediction model, but also the predictability of
the cells. The basic idea is that, for cells with low predictabil-
ity, we would prefer to cache the most popular files; whereas
in other cells with high prediction accuracy, we would prefer
to cache files according to the results from our prediction
model. According to this, we propose to construct a proactive
caching strategy considering two aspects: the popularity and
the prediction results of users’ location and content requests.
In particular, we propose a formal model to optimize these
two aspects of the proactive model.

To summarize, our main contributions are:

• We formalize the edge caching strategy problem in cellu-
lar networks, to maximize the hit rate over the whole net-
work under a replacement constraint. An adaptive caching
strategy based on general popularity and personalized
predictions is also proposed, and a heuristic solution
based on genetic algorithms is provided for solving the
optimization problem.

• We propose a Markov based model for the prediction
of users’ behavior in terms of movement and requests,
which is inspired by [4]. To overcome the ”cold-start”
limitation of Markov models when a new cell is visited,
a clustering method is also proposed to find users who
share similar behavior patterns.

• Simulations are provided to evaluate the performance
of our proposed algorithm. We also test our algorithm
on a real-life dataset from China Mobile. The results
show that our algorithm outperforms all the existing
schemes, especially when the cache capacity is low and
the distribution of content popularity is skewed.

The remainder of the paper is organized as follows. Section

II provides a review of the related work. Section III introduces
the model of the system and our adaptive edge caching
strategy. In Section IV, a heuristic method based on genetic
algorithms is proposed to solve our proposed optimization
model. The prediction model is presented in Section V. The
details of our experiments on simulation data as well as real
life data and a discussion of the results of our methods are
shown in Sections VI and VII. Section VIII concludes our
work and proposes some future directions.

II. RELATED WORK

The edge caching problem has attracted extensive attention
recently due to its advantages for reducing latency, as well as
relieving the heavy overhead burden on the network backhaul
[7]. The current research mainly focuses on issues like the
caching architecture design, content deployment and delivery
[8]. This paper falls within the problem of content deployment
and delivery.

Two common caching schemes are Least Frequent Used
(LFU) and Least Recently Used (LRU). They are simple but
not robust methods, since their performance can be reduced by
the heterogeneity of users in the network. To fully exploit the
edge resources, as mentioned in several works, e.g., [9], [10],
[11], popularity-based cache placement schemes have been
widely deployed to maximize the hit rate. For example, in [9],
the authors found that content popularity varies at different
locations. A linear prediction model is built to estimate the
future hit rate of contents at different locations, and according
to the results, contents that can have the highest hit rate
will be cached. The authors in [11] proposed a model called
PopCaching, which can predict the popularity and make the
content caching decision on-line to maximize the hit rate.
Naifu et al. [12] proposed a linear prediction model to estimate
the future content requests based on historical data, and then
an on-line cache replacement optimization model was built
based on the future popularity prediction. Although these
methods considered the change of popularity, none of them
considered the characteristics of the mobile users’ behaviors
in the network.

Recently, some works [2], [3], [13] have started to consider
the movement and request characteristics of the mobile users
in the wireless network. The basic idea is that if the users’
trajectories and requests can be predicted based on historical
data, then the cell can proactively cache appropriate files
and the user can download the pre-fetched files along their
trajectory. To achieve this, as mentioned in [3], we should
not only consider the content popularity, but also the user’s
preference, which can be predicted and play a key role in the
design of caching. In [13], the authors also pointed out that
taking user mobility into consideration is critical for caching
design in content centric wireless networks. Ge et al. [2]
provided a thorough study on the behavior of mobile video
users. A geo-collaborative caching strategy was also provided.
They divided the cache storage into two parts according to
the fractions of two types of users: single-location users and
multi-location users. Dong et al. [14] argued that the common

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-19458.pdf- 2 -

assumption that the preferences are identical among all users is
not true in practice, and showed that optimizing caching policy
with individual users’ preferences is beneficial. However, in
[14], the user preferences were assumed known a priori, which
actually cannot be known perfectly in advance in real-life
applications.

In this paper, we not only propose to integrate a personalized
prediction model into the edge caching problem, but also
provide an optimization model that can adaptively decide the
preferences for popularity and prediction results. To the best
of our knowledge, this is the first algorithm that considers
the predictability of different cells when developing the cache
deployment strategy.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we provide the description of the system
model, and formulate the optimization problem.

A. Assumptions

Cells in the network: There are K cells in the network which
can deploy caches, denoted as C = {c1, c2, ..., cK}. However,
the storage of a cell for caching is limited.

Proactive caching: We assume that the network is refreshed
at fixed time slots. At the beginning of each time slot the
selected content files are pre-fetched at each cell so that user’s
content request can be processed with reduced latency. A time
period with L time slots is represented as T = {t1, t2, ..., tL}.

Files in the network: Suppose that there are N content
files that may be requested in the network, denoted as F =
{f1, f2, ..., fN}. These files have been sorted by popularity,
which is pF = {p1, p2, ..., pN}, where pi ≥ pj ≥ 0, ∀i ≤ j,
and

∑N
f=1 pf = 1. We also assume that all files have the

same unit size and the content popularity distribution does not
change during the time period we considered.

Users in the network: We assume that the maximum number
of mobile users in the network is M , and the mobile users
in the network we are considering can leave or enter the
network at any time. The user set is represented as U =
{u1, u2, ..., uM}. We also assume that at each time slot a user
is served by its closest cell.

B. Caching Strategy

To improve the user experience at an acceptable cost, we
plan to deploy different caching strategies for cells with differ-
ent predictability levels. For the cells with a higher prediction
accuracy, we prefer to pre-cache documents according to
the users’ prediction results, whereas in those cells where
mobile users’ behavior are unpredictable, we consider pre-
caching files according to their popularity, as shown in Fig. 2.
Based on historical data of the mobile users, a prediction
model is built (refer to Section V), and then an optimization
model is proposed to obtain the preferences for popularity and
personalized prediction results.

Therefore, we can represent the caching strategy as Φ =
[φ1, ..., φc, ..., φK], where c = 1, ...,K, is the percentage of
space that is used for popularity caching for cell c. For each

Fig. 2. An example of the adaptive caching framework.

cell, if we represent the files selected by popularity as F 1,
and the files selected by prediction results as F 2, they should
satisfy:

F 1, F 2 ⊂ F and F 1 ∩ F 2 = ∅. (1)

Suppose the storage of each cell is limited and fixed,
denoted as s. Then the space limits for popularity caching and
personalized caching of cell c would be s ·φc and s · (1−φc),
respectively. This means F 1 and F 2 should satisfy:

|F 1| = s · φc, |F 2| = s · (1− φc), (2)

where |·| denotes the number of files. If φc = 1, it means
that the files in cell c are cached solely according to the
general popularity. If φc = 0, it means that the files in cell
c are cached by the personalized prediction. (2) indicates
that there are s + 1 discrete values for selection in φc, i.e.,
φc ∈ {0, 1/s, 2/s, . . . , 1}.

The caching strategy for each cell can be described as the
following two steps:

S1: First, the file fi is cached according to the top popularity,

pfi ≥ pfj , ∀fi ∈ F 1, fj ∈ F − F 1. (3)

The cached file set F 1 contains the files of the highest
popularity.

S2: Then we select files from the rest of the file set F −
F 1 according to our prediction results. Files with the highest
prediction confidences are selected. If we use âtufc ∈ {0, 1}
to represent the prediction result of whether or not user u will
request file f in cell c at time t, then the predicted request
frequency for each cell can be calculated as:

q̂tfc =

M∑
u=1

âtufc. (4)

We select the file fi based on the top prediction frequency:

q̂tfic ≥ q̂
t
fjc, ∀fi ∈ F

2, fj ∈ F − F 1 − F 2. (5)

The cached files in F 2 have the highest prediction confi-
dence. All the selected files in F 1 ∪F 2 will be cached in cell
c at time t.

Based on these caching strategies, we can obtain the caching
deployment of a file in a cell at a given time. We use a binary

Adaptive Edge Caching based on Popularity and Prediction for Mobile Networks

paper N-19458.pdf- 3 -

variable btfc to represent whether or not the file f is cached
in cell c at time t,

btfc =

{
1 file is cached
0 file is not cached

. (6)

The value of âtufc is known a priori based on the prediction
model, and the value of q̂tfc can be obtained accordingly. Given
a value of φc, then the caching strategy btfc of cell c can be
achieved based on the popularity and the prediction.

C. Problem Formulation

Caching replacement: The replacement cost for refreshing
caching files at time t is defined as the number of files that
are cached at time slot t but not at the previous time slot t−1,

Rt
c =

{ ∑N
f=1 b

t
fc · (1− b

t−1
fc), t ≥ 2

0, t = 1
. (7)

We suppose that the replacement cost for all the cells at
time t should be less than an upper threshold Costr,

K∑
c=1

Rt
c ≤ Costr. (8)

Hit rate: A cache hit occurs when the requested data can be
found in its cache. We use atufc ∈ {0, 1} to represent whether
the user u requests file f in cell c at time t or not. Then the
average hit rate of cached data in cell c is:

Ht
c =

∑N
f=1

∑M
u=1 a

t
ufc · btfc∑N

f=1

∑M
u=1 a

t
ufc

, c ∈ C, t ∈ T. (9)

The overall average hit rate of the network during the entire
time period is:

H =

∑L
t=1

∑K
c=1

∑N
f=1

∑M
u=1 a

t
ufc · btfc∑L

t=1

∑K
c=1

∑N
f=1

∑M
u=1 a

t
ufc

. (10)

Optimization model: In order to provide consistent Quality
of Experience (QoE) to users, in our model, the objective is
to maximize the hit rate of the whole network during a certain
time period. Therefore, the optimization problem is:

max : H(Φ)
s.t. (2), (8).

The value of the objective function (10) can be calculated
given a specific caching strategy, i.e., the value of Φ. In
Algorithm 1, we provide the pseudo-code for calculating the
objective function H(Φ) in (10) given Φ = [φ1, ..., φc, ..., φK].
Apart from Φ, the other three inputs are the popularities of files
which are assumed to be known a priori, users’ real requests
and user’s predicted requests obtained by our prediction model,
which will be discussed in detail in Section V.

The optimal values are sought under two constraints, which
are the division of the storage capacity constraint in (2) and the
total replacement cost constraint in (8). The storage capacity
constraint, which determines the proportion of cell storage
used for content selected by popularity versus content selected

by prediction, is directly related to the value of φc. As for the
total replacement cost constraint, the optimal state of each
cell, which is calculated independently of other cells, may not
satisfy the total replacement cost constraint in (8). Therefore,
in calculating the optimal caching strategy, the states of all
cells are essentially interconnected and need to be considered
simultaneously.

For each cell c, there are s+1 possible discrete states for φc,
i.e., φc ∈ {0, 1/s, 2/s, . . . , 1}. The non-linearity of the total
replacement cost constraint in (8) makes a fast algorithm with
reduced complexity infeasible. The complexity of the problem,
which includes K cells of s + 1 discrete states, is (s + 1)K .
The total replacement cost constraint is non-linear due to the
non-linearity in (7), and thus the optimization problem is non-
linear and cannot be solved in polynomial time. This combina-
torial problem makes it intractable to find the global optimal
solution because of its exponentially large search space and
the inclusion of a highly non-linear constraint. To solve the
non-linear optimization problem, we propose to use stochastic
optimization, such as Genetic Algorithms (GA), to find a
probably local optimum. GA are considered as an appropriate
choice for solving the current problem since the optimization
model is highly non-linear and discontinuous [15]. High-
quality solutions for this optimization can be obtained based
on bio-inspired operators including mutation, crossover and
selection. The details are shown in the next section.

Algorithm 1 Calculate the value of the objective function
Input: caching strategy Φ = [φ1, ..., φc, ..., φK], popularity of

all the files, users’ real request atufc and predicted request
âtufc

Output: objective function H(Φ)
1: for each time t→ 1, L do
2: for each cell c→ 1,K do
3: F 1 = ∅, F 2 = ∅;

// cache by popularity
4: extract top s · φc files to F 1 from F based on the

popularity;
// cache by prediction

5: calculate the predicted request frequency q̂tfc using
(4) based on the predicted user request âtufc;

6: extract top s ·(1−φc) files to F 2 from F −F 1 based
on the predicted request frequency;

7: for each file c→ 1, N do
8: btfc ← 0
9: if c ∈ F 1 ∪ F 2 then

10: btfc ← 1
11: end if
12: end for
13: end for
14: end for
15: calculate H using (10)
16: return hit rate H

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-19458.pdf- 4 -

IV. HEURISTIC SOLUTION

Genetic Algorithms (GA), which were first proposed in [16],
are a heuristic search and optimization technique inspired by
natural selection, the process that drives biological evolution.
In this paper, a genetic algorithm is applied as the optimization
search method, which is described in Algorithm 2. Basically,
there are four steps.

S1: Generate a set of initial solutions (represented by chro-
mosomes) as the first population. Each chromosome Φ,
is a possible solution to the optimization problem. It
stores an array of values, and each value (also called
gene) represents the φ ∈ {0, 1/s, 2/s, . . . , 1} value of
each mobile cell.

S2: Calculate the fitness score f(Φ) of each chromosome Φ.
The fitness function f determines how fit a chromosome
is, which considers the objective function H(Φ) in (10)
and the penalty of the constraint in (8).

f = H(Φ) + g

(
max

{
K∑
c=1

Rt
c − Costr, 0

})
, (11)

where g(·) is the penalty function as proposed in [17].
S3: Generate nP chromosomes as the successor population

to replace the source population using the following
steps.

a) Selection In the selection phase, we select two
chromosomes Φ1 and Φ2 from the source popu-
lation. The idea of the selection phase is to select
the fittest individuals and let them pass their genes
to the next generation. Individuals with high fitness
have more chance to be selected for reproduction.
In this paper, Roulette Wheel Selection [18] is
adopted.

b) Crossover We apply a crossover operator to Φ1

and Φ2 to generate a child chromosome Φchild by
combining the genetic information of two parent
chromosomes. We adopt a k-point crossover oper-
ator [19], which incorporates k randomly picked
crossover points from the parent chromosomes.
The crossover rate rc refers to the fraction of the
next generation that are produced by crossover.

c) Mutation We apply an extended Power mutation
[20], which is suitable for solving integer optimiza-
tion problems, to produce Φ′child by changing rm
of the gene values in Φchild. Mutation helps intro-
duce diversity within the population and prevent
premature convergence.

d) Add the new child chromosome Φ′child to the
successor population.

S4: Evaluate the termination criterion. Calculate the fitness
score f(Φ) in (11) for nP chromosomes. The algorithm
terminates (converges) if it cannot produce new offspring
that are significantly improved from those of the previ-
ous generation, and the chromosome with the highest
fitness score is returned as the solution. If the criterion
is not met, return to S3.

Algorithm 2 Genetic Algorithm
Input: population size nP , crossover points k, crossover rate

rc, mutation rate rm
Output: solution Φ

1: randomly generate nP chromosomes as the first popula-
tion;

2: evaluate the fitness score f(Φ) of each chromosome Φ in
the first population;

3: while the termination condition is not satisfied do
4: for i→ 1, nP do
5: selection select two chromosomes Φ1 and Φ2 in the

parent population according to the fitness scores;
6: crossover apply k-point crossover to Φ1 and Φ2 to

obtain the child chromosome Φchild with a crossover
rate rc;

7: mutation mutate a portion of rm genes in Φchild to
generate Φ′child;

8: append Φ′child to the successor population;
9: end for

10: end while
11: return Φ with the highest fitness score

Fig. 3. The framework of our Markov-based prediction model.

V. MARKOV-BASED PREDICTION MODEL WITH USER
CLUSTERING

A user’s movements can be characterized by a Markov
stochastic process, which assumes that the next state is only
influenced by the current state and a fixed number of previous
states. In this section, we develop our Markov-based prediction
model for user’s mobility and preferences. The framework
is shown in Fig. 3. Basically, there are two steps: (1) In
the first step, users’ movements and content request behavior
(sequences) are extracted from the database; (2) In the second
step, to address the cold start problem a prediction model
with an improvement by user clustering is proposed for more
robust prediction. Here we discuss the details about the second
step, which includes a second-order Markov model improved
by user clustering. The direct benefit of the user clustering
algorithm is an improved prediction accuracy of the user’s
next position/file request.

A. Markov Model

Here a second-order Markov model is adopted. In the
training process, the transition probability of one user traveling

Adaptive Edge Caching based on Popularity and Prediction for Mobile Networks

paper N-19458.pdf- 5 -

from cells (ci1 , ci2) to cell cj is denoted as p(ci1 ,ci2),cj , which
can be obtained by:

p(ci1 ,ci2),cj = p(cj |(ci1 , ci2)) = Nij/Ni, (12)

where Nij is the occurrence of the user moving from cells
(ci1 , ci2) to cell cj , and Ni is the frequency of cells (ci1 , ci2)
being visited by the user, (ci1 , ci2) are the previous two cells
visited by the user consecutively. The values of Nij and Ni are
calculated by the statistics of users in the data preprocessing.

Then in the prediction part, at time slot t − 1, given the
user’s current cell ct−1 and previous cell ct−2, we can predict
the cell that the user will visit in the next time slot t to be:

ĉt = arg max
c

p(ct−2,ct−1),c. (13)

Similarly, we can make the prediction for users’ file request
behavior in the next time slot f̂t. According to the predicted
location ĉt and file request f̂t, we can obtain whether or not
the user will request file f in cell c at time t, i.e., the value
of âtufc as used in (4).

B. User Clustering

To overcome the problem that the Markov prediction may
not work if the current cell has never occurred in the user’s
historical mobility behavior, we propose to utilize the historical
mobility transition matrix from other similar users [4]. The
basic idea is that, when the prediction cannot be made by
using the user’s own historical mobility pattern, we use the
mobility pattern of users who have similar patterns to predict
the next cell of this user.

Here we choose to use iVAT [21], [22] for user clustering.
iVAT is a useful tool for visual assessment of clustering ten-
dency [23], which displays a reordered dissimilarity matrix as
a gray-scale image with a modified version of Prim’s minimal
spanning tree algorithm. There are three steps included as
follows:

S1: Feature selection.
a) Each mobile user can be represented as a vector,

B1 = [t1, ..., tj , ..., tK], where K is the number of
cells, and tj is the number of time stamps the user
has spent in cell cj .

b) The visiting sequence is treated as a string, and
the bigrams can be extracted for each user. Then
a vector of K(K − 1) bigrams can be obtained,
which is denoted as B2.

c) After normalizing the two vectors B1 and B2 sep-
arately, we concatenate these two vectors together
as the feature vector for each user.

S2: Dissimilarity measurement. Cosine distance is selected
here as the dissimilarity measurement between two
users.

S3: The dissimilarity matrix obtained from S2 is fed to iVAT
for clustering.

Fig. 4 shows an example of the iVAT clustering result for
114 users in a small district. We can clearly see that seven
clusters are detected for these users. Here notice that not all

Fig. 4. An example of user clusters of one district based on iVAT clustering.

the users can be clustered together, since some users may
behave quite differently from others. For those distinct users,
the proposed improvement of the user clustering does not
work.

The procedure of the prediction model is summarized as
follows: we first extract the previous two cells of the user;
if the user never visited these two cells consecutively before,
the prediction model obtained by similar users will be applied,
otherwise the individual prediction model will be applied for
prediction.

VI. SIMULATION

In this section, we describe our simulator to evaluate the
effectiveness of our algorithm in terms of the cache hit rate
compared with three benchmarks.

A. Simulation Setup

We simulate the mobility patterns of 2,500 users on a
simulation area with 64 (8 × 8) cells using the smoothly
truncated Levy walk algorithm [24], which simulates users’
mobility pattern using the preset probability for travel distance,
pause length, and change in direction. Users’ content requests
are modeled based on Poisson arrivals. The number of all the
content files in the network is assumed to be 500,000. The
popularity distribution of the files follows a Zipf distribution,
which has been used in many existing works [10].

pF ∼ Zipf(α,N),

where α is the distribution skewness parameter, and N is
the total number of files in the network. The larger α is, the
higher the skewness of the distribution. The total runtime of
the simulation is around 1.5 hours.

B. Benchmarks

We compare the performance of our method with the
following benchmarks:
• Least Frequently Used (LFU): When the cache is full,

discard the least recently used items first.
• Least Recently Used (LRU): Purge the item with the

lowest reference frequency when the cache is full.
• Popularity Caching (PC): The most popular contents

over the whole network will always be cached at each

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-19458.pdf- 6 -

Fig. 5. Averaged cache hit rate under different cache storage capacity (s =
100, ..., 103) and four different α values (α = 0.4, 0.8, 1.2, 1.6).

cell. Here we suppose the popularity of contents is
known and not changing during the time period we are
considering.

C. Performance Comparison

Here, we divide the cells randomly into 4 groups, and set
the content request prediction accuracy as 30%, 50%, 70% and
90% respectively. We investigate the performance of our pro-
posed method with varying cache capacity (s = 100, ..., 103)
and with various skewness parameters (α = 0.4, 0.8, 1.2, 1.6)
in terms of the averaged cache hit rate. Fig. 5 shows the
results during a high network load of 90%, which means
approximately 2,250 users out of 2,500 are active in the
simulation area. We can extract the following insights: (1)
As the storage capacity increases, the hit rates of all the
algorithms grow, but our optimal method grows the fastest.
This indicates that our method is better suited for resource
limited networks. (2) The performance of all the methods
increases when α turns larger, and LRU, LFU and Popularity
Caching are very sensitive to the skewness of the content
popularity distribution. (3) In the experiments, our optimal
solution always outperforms the other benchmark methods,
and the performance of the popularity based method is better
than LFU and LRU. Especially, when α is low, the hit rate
of our method is much higher than the other three methods.
For example, when α = 0.4, the hit rate of our method can
achieve 0.6, while the hit rates of the other three methods
are quite low, less than 0.05. This means that our method
has better performance when the mobile users have a lower
similarity in content requests. (4) Our proposed method can
effectively reduce the cache storage requirement. For example,
if the target cache hit rate is 0.5, when α = 0.4 and α = 0.8,
our optimal caching needs a cache capacity of around 100 files,
while other benchmark methods require more than 1,000 files.

D. Parameter Selection and Performance of GA

There are four parameters in GA, i.e., population size nP ,
number of crossover points k, crossover rate rc and mutation
rate rm. Here, we mainly analyze the effect of nP and rc.
For the mutation rate rm, normally a small value of 0.5% −

Fig. 6. The φ values of cell groups with different values of prediction
accuracy. For example, in Group1 the prediction accuracy is set as 30%.

TABLE I
PARAMETER ANALYSIS OF GA

nP rc Generations Average hit rate Maximum hit rate
10 0.7 21 0.6144 0.6288
20 0.7 45 0.6506 0.6555
30 0.7 62 0.6516 0.6557
20 0.6 77 0.6496 0.6505
20 0.8 65 0.6515 0.6547

1% is suggested, and here we select rm = 1%. The number
of crossover points is selected as k = 5. The replacement
cost constraint Costr is selected to be 0.3sK, where s is the
cache storage of a cell and K is the total number of cells.
Given different values of nP and rc with α = 0.8 and s =
100, Table I compares three metrics including the number of
generations needed to converge to the final state, the averaged
hit rate and the maximum hit rate of the final generation. To
ensure consistent results with less randomness, given a set of
nP and rc values, the averaged results of the GA running 20
times rather than a single run are listed in Table I. A population
size of 10 cannot preserve the population diversity, and the
converged value is much lower than that of nP = 20. As
the population size nP further increases from 20 to 30, the
averaged hit rate and the maximum hit rate remain essentially
unchanged. A variation in the crossover rate rc between 0.6
and 0.8 has basically no effect on the results, and rc = 0.7
leads to the fastest convergence. Thus, we select rc = 0.7 in
GA for the case studies presented in this paper. A sample of
the GA convergence curve is shown in Fig. 7.

E. Analysis of Optimal φ

The value of φ indicates the proportion we should cache
according to popularity. Fig. 6 shows the φ values of cell
groups with different levels of accuracy when α = 0.4 and
α = 1.2. Two key findings are listed as follows: (1) The φ
value decreases as the prediction accuracy increases, which
means that for cells with high predictability, we should have
greater trust in the prediction result, and vice versa; (2) For
the same group of cells, higher α results in larger φ. This

Adaptive Edge Caching based on Popularity and Prediction for Mobile Networks

paper N-19458.pdf- 7 -

Fig. 7. Convergence curve of GA at nP = 20, rc = 0.7.

indicates that when mobile users have higher similarity, the
performance of caching by popularity becomes better.

VII. EXPERIMENTS AND EVALUATION

In this section, we evaluate our proposed model on a real-
life dataset to further confirm its effectiveness. Case studies
on two cities in the southern part of China are provided. We
also analyze the influence of cache storage capacity and the
similarity degree of mobile users on the hit rate for different
methods.

A. Dataset Description

The real-life dataset, which was originally collected by
China Mobile™, is preprocessed to extract certain fields and
protect users’ privacy. In the dataset, we have 5,000 mobile
users from one province in the southern part of China (nearly
80,000 cells). The total size of the data is 11.1 GBytes. Each
user’s behavior is recorded every 5 minutes during the period
from 23:55 14/11/2015 to 23:50 05/12/2015, which means
that there are 288 time slots per day and three weeks (6,048
time slots) in total. For each user, we have the cell location,
service type ID (e.g., QQ, WeChat), and downlink/uplink
bytes at different timestamps. Considering the limitation of
the dataset, i.e., we only have the service type information
in the dataset but not the content request information, in our
experiments we assume that the content popularity follows the
Zipf distribution. All the users’ request information is obtained
by simulation based on the service type, and noise is added
to the prediction results.

B. Performance of Prediction Model

There have been many work in the area of prediction,
whereas in this paper, our main contribution is how to de-
sign the caching strategy based on popularity and prediction.
However, we can still obtain an improved prediction accuracy
by applying our proposed model. Here we evaluate the ef-
fectiveness of our proposed prediction model. Using datasets
from three cities, the prediction accuracy of four models,
i.e., the first-order, second-order, third-order Markov Model
and our proposed model, are compared. Here, the prediction
accuracy is defined as the ratio between the number of correct
predictions and the total number of predictions for all the
users.

TABLE II
COMPARISON OF PREDICTION ACCURACY

Model City A City B City C
1st-order Markov 0.56 +/- 0.20 0.53 +/- 0.17 0.59 +/- 0.22
2nd-order Markov 0.60 +/- 0.21 0.61 +/- 0.16 0.66 +/- 0.19
3rd-order Markov 0.51 +/- 0.22 0.57 +/- 0.18 0.62 +/- 0.21

Our proposed 0.60 +/- 0.21 0.65 +/- 0.16 0.69 +/- 0.18

Fig. 8. Averaged prediction accuracy of mobile users in the top 2,000 most
visited cells within city A.

As shown in Table II, the second-order Markov Model
achieves the highest prediction accuracy compared with other
orders. Thus, the second-order Markov Model is selected
as the basic prediction model before applying the proposed
improvement based on user clustering. The selection of the
second-order Markov Model is consistent with the conclusion
from other researches (e.g., [25]). The results also show that
our proposed method outperforms the other three methods in
terms of accuracy.

C. Case Study - City A

We use the data of the first two weeks as the training set,
and the third week as the test set. We build a Markov model
for users’ movements by the data in the training set, and test
the model on the test set to get our prediction result. The data
in the training set is adopted to build the second-order Markov
Model with user clustering improvement, and the data in the
test set is applied to test our proposed model. Our first case
study is on the data from city A. In city A, there are 7,796
cells in our data. Here, 1,000 cells with high visit frequency
and 462 users are taken into consideration, as shown in Fig. 8.

We set α = 1.6, N = 100, 000 and s = 10. Based on the
characteristics of the data set, we assume that 20% of the files
can be refreshed at the beginning of each time slot and the
refresh rate is 5 minutes. Fig. 9 shows the averaged cache hit
rates of different methods. The selected 1,000 cells are sorted
by the averaged prediction accuracy. Here we only consider the
uncertainty of users’ mobility, which implies that the request
of each user at each time is supposed to be known.

The results in Fig. 9 show that when the files are cached
by popularity, LFU or LRU, the hit rates of different cells are
similar, which are all around 0.82. The reason of the relatively
low hit rates is that these methods cannot differentiate the
predictability of different cells. By caching files using the
optimal strategy in our proposed method, the hit rates improve

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-19458.pdf- 8 -

Fig. 9. Averaged cache hit rate comparison among our method and three
benchmarks for city A when α = 1.6 and s = 10.

Fig. 10. Averaged cache hit rate comparison among our method and three
benchmarks for city B when α = 1.4 and s = 10.

substantially, especially for those cells with high prediction
accuracies. The (average) hit rate of the optimal caching
strategy found by our proposed method is 0.91.

D. Case Study - City B

In city B, there are 12,027 cells available in the data set.
Here, the top 2,000 most visited cells and 1,015 users are taken
into consideration. Fig. 1 shows the prediction accuracy of
each cell in the city. We use the same setting of parameters as
in Section VII-C, except that α = 1.4 for city B. The average
cache hit rates of our proposed method and the other three
benchmark methods are obtained and compared in Fig. 10.

The results of city B in Fig. 10 are similar to the results
of city A in Fig. 9. In city B, our proposed method still
outperforms the three benchmark methods. Compared with
city A, there exists a decrease of the average cache hit rates of
the three benchmark methods from 0.82 to 0.7 in city B, which
can be primarily attributed to the lower α value. The accuracy
of the optimal caching strategy by our proposed prediction
model in city B is also lower than city A.

E. Effect of Varying Content Popularity Distribution and Vary-
ing Storage Capacity

We compare our proposed method with the three benchmark
methods with varying storage sizes under four different α
values (α = 0.2, 0.6, 1.0, 1.4) for city A, as shown in Fig. 11.
We find that the hit rate turns higher as the storage size s
increases, and the hit rate also increases with a larger value
of α. The averaged hit rate of the optimal caching strategy
obtained by our proposed method is higher than that of the
other methods in all cases.

Fig. 11. Averaged cache hit rates with varying storage limit and varying α
value with perfect prediction on content requests.

Fig. 12. Averaged cache hit rates comparison with varying α value when
s = 125.

Fig. 12 shows the average hit rates of our optimal method
and the three other benchmark methods when the cache storage
capacity is s = 125. We can clearly see that our method is
always the best among all these four methods; especially when
α is small, the hit rate of our method is much higher than those
of the other methods. This demonstrates again that our method
can better deal with the heterogeneity of users.

If we assume that different cells have different prediction
accuracies on the content prediction, then the hit rate of our
algorithm will decrease slightly, since our algorithm can adap-
tively balance between popularity and prediction, as shown in
Fig. 13. In this experiment, we divide the cells randomly into
4 groups, and set the content request prediction accuracy as
0.3, 0.5, 0.7 and 0.9 respectively. Since the performance of
LFU, LRU and PC is not affected by the prediction accuracy,
in Fig. 13, only the results of our optimal method are shown.
By assuming a noise in the prediction accuracy, the hit rate
of our proposed method reduces slightly due to the decreased
predictability of users.

VIII. CONCLUSIONS

In this paper, we proposed an adaptive edge caching al-
gorithm for mobile networks to improve users’ experience
and reduce cost. In our algorithm, mobile users’ historical
behavior in terms of mobility and content requests is applied
to make predictions, and an optimization model is built based
on it. In the optimization model, the optimal caching strategy

Adaptive Edge Caching based on Popularity and Prediction for Mobile Networks

paper N-19458.pdf- 9 -

Fig. 13. Averaged cache hit rates of our proposed method with varying storage
limit and varying α value with/without perfect prediction on content requests.

is obtained by adaptively dividing the cache storage into
two parts, one based on popularity and the other based on
prediction. What’s more, a robust prediction model based on
a second-order Markov model with improvement by iVAT
clustering is proposed for mobile users’ behavior prediction.
Experiments on both simulation data and real-life data show
that our algorithm outperforms three benchmarks, LFU, LRU
and Popularity Caching in terms of the averaged hit rate. The
advantage of our model is more prominent when the storage
capacity is limited and the similarities of mobile users are
relatively low. The results demonstrate that our method is more
suitable for resource limited networks and more robust for the
heterogeneity of mobile users’ behavior.

In the future, some potential research directions are: (1)
Improve the user behavior prediction model by considering
the temporal characteristics, e.g., the effects of different time
periods of a day or different days of a week. (2) Propose a joint
prediction model for users’ movement and content request
behavior. In this paper, we predict users’ movements and
content requests separately, but there may exist a correlation
between these two behaviors. (3) Further increase the hit rate
by incorporating the temporal characteristics into the caching
model. In this paper, the users’ movement and content request
behavior in all the time periods are taken into consideration
as a whole. In the future, we may further improve the caching
model by considering different time periods of a day or
different days of a week separately.

ACKNOWLEDGMENTS

This work is partially supported by China Scholarship
Council.

REFERENCES

[1] K. Poularakis and L. Tassiulas, “Cooperation and information replication
in wireless networks,” Philosophical Transactions of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, vol.
374, 2016.

[2] G. Ma, Z. Wang, M. Zhang, J. Ye, M. Chen, and W. Zhu, “Understanding
performance of edge content caching for mobile video streaming,” IEEE
Journal on Selected Areas in Communications, vol. 35, pp. 1076–1089,
2017.

[3] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the
wireless edge: design aspects, challenges, and future directions,” IEEE
Communications Magazine, vol. 54, pp. 22–28, 2016.

[4] Y. Qiao, Z. Si, Y. Zhang, F. B. Abdesslem, X. Zhang, and J. Yang, “A
hybrid markov-based model for human mobility prediction,” Neurocom-
puting, vol. 278, pp. 99–109, 2018.

[5] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictability
in human mobility,” Science, vol. 327, pp. 1018–1021, 2010.

[6] S. Zhang, N. Zhang, P. Yang, and X. Shen, “Cost-effective cache
deployment in mobile heterogeneous networks,” IEEE Transactions on
Vehicular Technology, vol. 66, pp. 11 264–11 276, 2017.

[7] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mobile edge
computing: Survey and research outlook,” CoRR, pp. 1–30, 2017.

[8] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Cooperative
edge caching in user-centric clustered mobile networks,” IEEE Trans-
actions on Mobile Computing, vol. 17, pp. 1791–1805, 2018.

[9] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. Shen, “Dynamic
mobile edge caching with location differentiation,” in Proc. IEEE Global
Communications Conference (GLOBECOM’17), Singapore, 2017, pp.
1–6.

[10] L. Qiu and G. Cao, “Popularity-aware caching increases the capacity of
wireless networks,” in Proc. IEEE Conference on Computer Communi-
cations (INFOCOM’17), Atlanta, USA, 2017, pp. 1–9.

[11] S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content
caching,” in Proc. IEEE International Conference on Computer Com-
munications (INFOCOM’16), San Francisco, USA, 2016, pp. 1–9.

[12] N. Zhang, K. Zheng, and M. Tao, “Using grouped linear prediction
and accelerated reinforcement learning for online content caching,” in
Proc. IEEE International Conference on Communications Workshops
(ICC Workshops’18), Kansas City, USA, 2018, pp. 1–6.

[13] R. Wang, X. Peng, J. Zhang, and K. B. Letaief, “Mobility-aware caching
for content-centric wireless networks: modeling and methodology,”
IEEE Communications Magazine, vol. 54, pp. 77–83, 2016.

[14] D. Liu, C. Yang, and V. C. M. Leung, “When exploiting individual
user preference is beneficial for caching at base stations,” in Proc.
IEEE International Conference on Communications Workshops (ICC
Workshops’18), Kansas City, USA, 2018, pp. 1–6.

[15] S. Rashidi and S. Sharifian, “A hybrid heuristic queue based algorithm
for task assignment in mobile cloud,” Future Generation Computer
Systems, vol. 68, pp. 331–345, 2017.

[16] J. H. Holland, Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[17] K. Deb, “An efficient constraint handling method for genetic algorithms,”
Computer Methods in Applied Mechanics and Engineering, vol. 186, pp.
311–338, 2000.

[18] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. New York,
USA: Oxford University Press, Inc., 1996.

[19] T. D. Gwiazda, Crossover for single-objective numerical optimization
problems. Tomasz Gwiazda, 2006, vol. 1.

[20] K. Deep, K. P. Singh, M. L. Kansal, and C. Mohan, “A real coded genetic
algorithm for solving integer and mixed integer optimization problems,”
Applied Mathematics and Computation, vol. 212, pp. 505–518, 2009.

[21] J. C. Bezdek and R. J. Hathaway, “Vat: a tool for visual assessment of
(cluster) tendency,” in Proc. International Joint Conference on Neural
Networks (IJCNN’02), Honolulu, USA, 2002, pp. 2225–2230.

[22] L. Wang, U. T. V. Nguyen, J. C. Bezdek, C. A. Leckie, and R. Kotagiri,
“ivat and avat: Enhanced visual analysis for cluster tendency assessmen-
t,” in Proc. Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD’10), Hyderabad, India, 2010, pp. 16–27.

[23] L. Li and C. Leckie, “Trajectory pattern identification and anomaly
detection of pedestrian flows based on visual clustering,” in Proc.
Intelligent Information Processing VIII (IIP’16), Melbourne, Australia,
2016, pp. 121–131.

[24] L. Cao and M. Grabchak, “Smoothly truncated levy walks: Toward
a realistic mobility model,” in Proc. IEEE International Performance
Computing and Communications Conference (IPCCC’14), Austin, USA,
2014, pp. 1–8.

[25] S. Uppoor, “Understanding and exploiting mobility in wireless network-
s,” Ph.D. dissertation, Lyon, INSA, 2013.

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-19458.pdf- 10 -

