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Abstract—Contrast patterns are itemsets that frequently occur
in one dataset while not in the other. These patterns have been
successfully applied to many data mining domains, such as
prediction, classification and clustering. However, none of the
previous studies has considered extracting contrast patterns
from different types of datasets. In this paper, we introduce
a new type of contrast pattern, Conditional Contrast Patterns
(CCPs), which are a subset of traditional Contrast Patterns
(CPs) in one kind of dataset conditioned on a property of these
patterns in another kind of dataset. Accordingly, we propose
an algorithm based on tree search for mining CCPs, which can
compress the datasets into a tree representation. We evaluate
our proposed method in comparison with other two methods
(Brute force and Apriori-based methods) on a synthetic dataset
as well as a real-life retail dataset. The results show that
CCPs are more informative and actionable for decision makers
than normal CPs, and our tree-based algorithm has the best
performance in terms of efficiency.

1. Introduction

Contrast data mining aims to quantify and describe the
differences between two given multivariate datasets, where a
contrast pattern is defined as a pattern that occurs frequently
in one dataset and infrequently in the second dataset [1].
Finding such changes or contrast patterns in datasets is
useful in many applications, such as urban traffic manage-
ment [8] [9], medical diagnosis [13], customer analysis [10]
[12], and anomaly detection [11]. However, current research
in the literature cannot answer questions like If we have data
from multiple types of data sources, how can we extract
interesting patterns by considering different datasets at the
same time? or Can we find patterns where there has been a
big change in one type of dataset but not much of change
in the other?.

There have been many contrast pattern mining methods
proposed in the literature, such as border based [2], tree
structure based [3], and Zero-Suppressed Binary Decision
Diagrams [4]. The border based method can represent many
Emerging Patterns (EPs, a kind of contrast pattern) by using
borders. The tree structure based method is inspired by the
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Frequent Pattern (FP) tree method [6]. In [4], the ZBDD
method was proposed to deal with high dimensional data.
However, none of them has considered mining contrast
patterns by utilizing different kinds of data sources.

Alternatively, to produce a high-quality representation
and improve the generalization performance [17], one can
use datasets from multiple sources. Most existing multi-
source (or multi-view) learning methods mainly focus on
how to incorporate knowledge extracted from multiple
databases [18]. In that approach, different types of data
from multiple sensors are integrated to obtain more detailed
information using fusion techniques, instead of extracting
contrast patterns. Therefore, to benefit from multiple types
of data sources in contrast pattern mining we introduce a
new type of pattern, called Conditional Contrast Patterns
(CCPs), which aims to find more interesting contrast pat-
terns by utilizing supplementary data sources (i.e., different
types of data) and conditioning contrast factors.

One typical application of our proposed CCP is customer
analysis. For example, in a retail environment, shop man-
agers may be interested in finding the relationships or
differences between sales data and customers behavior. If we
use traditional contrast data mining techniques, we can only
use one type of data, e.g., sales data, and find combinations
of products that are frequently purchased together on one
day but not on another day. However, by using conditional
contrast pattern mining, we can make use of both sales data
and customers behavior data to find sets of products where
there has been an increase in sales but not much increase
in the number of customers, which represents a stronger
buying intention of customers. These patterns can be more
interesting and helpful for decision makers.

In this paper, we propose a Conditional Contrast Pattern
tree (CCP-tree) search method, which has two steps:
(1) CCP-tree construction, and (2) CCP mining. In the first
step, we build a CCP-tree by scanning every instance in the
datasets. A CCP-tree, similar to the frequent pattern tree,
builds a compressed representation of the input data. Then
each instance in the datasets can be mapped onto a path in
the tree, and the node in the CCP-tree has fields to record
the counts in different datasets. In the second step, by using
depth-first search and applying three predefined subjective
conditions of a CCP, we are able to extract all the CCPs.
These conditions ensure that the patterns we find are not



only the CPs in one kind of data, but also exhibit required
properties in another kind of data.

Contributions. The main contributions of our paper are
as follows:

• We introduce and define a novel class of pattern,
called Conditional Contrast Patterns (CCPs). Three
conditions for mining CCPs are also proposed. This
class of pattern differs from other existing types of
patterns - it is a subset of contrast patterns, and it
can be more informative and instructive for decision
makers since it utilizes information from additional
related data sources.

• We propose a conditional contrast pattern tree based
method for mining CCPs. The counts in all datasets
are recorded by the CCP-tree. This method is com-
plete, meaning that all item sets satisfying our con-
ditions can be found using our method.

• The proposed method is efficient. The complexity
of mining CCPs does not depend on the number of
instances.

• We evaluate our method and compare its perfor-
mance with two baseline methods on a synthetic
dataset. The results demonstrate better efficiency
of our method in comparison with the other two
methods.

• We also apply our method to one real life retail
dataset, which includes the transaction data and
customer behavior of each customer in a retail store
in Melbourne. The results show the practicality of
our proposed method.

2. Related Work

Contrast patterns are often defined as patterns whose
support differ significantly among the datasets that are under
study, which were first proposed by Bay and Pazzani [1]. If
the supports of all the frequent item sets in two datasets are
very similar, then we can say there is no significant change
between these two datasets, and vice versa. These patterns
have been successfully applied to many areas. For example,
in the work of [8], frequent emerging networks are detected
to discover the impact of road closures on traffic flows.

In the literature, various kinds of contrast patterns have
been proposed, such as Jumping Emerging Patterns (JEPs)
[7], Strong Jumping Emerging Patterns (SJEPs) [3] and
Fuzzy EPs (FEPs) [5]. Jumping emerging patterns [7] are
defined as itemsets whose support changes suddenly from
zero in one dataset to nonzero in another dataset, i.e., the
growth rate is infinity. Strong jumping emerging patterns [3]
are subsets of emerging patterns, such that the support of the
second dataset should be above a threshold and the subset
of a SJEP is not a SJEP. The authors in [3] also proposed
Noise-tolerant EPs (NEPs) and Generalized NEPs (GNEPs).
In [5], FEPs is proposed as a combination of the concepts of
fuzzy logic and emerging patterns [2] [15]. In [16], shared
emerging patterns are proposed for mining the similarity of
two datasets.

A key challenge for mining contrast patterns is how
to reduce the computational complexity. A brute-force
approach for mining contrast patterns is to enumerate all
combinations of items and calculate their respective supports
in each dataset, and then find contrast patterns according
to the change in these supports. However, this method is
not efficient because of the number of candidate itemsets.
Therefore, in the literature, many different kinds of contrast
mining methods have been proposed in terms of the data
structures used in the mining algorithms. These contrast
pattern algorithms can be categorized into: (i) border based
[2], (ii) tree based [3], and (iii) zero-suppressed binary
decision diagram (ZBDD) based [4]. In [2], a suite of
emerging patterns mining algorithms is proposed, which
discover a class of EPs by manipulating only the borders
of two collections. This algorithm can finish quickly even
when the number of EPs is large, since the discovered EPs
can be represented using the borders. Tree-based contrast
data mining is based on the use of a tree structure [15]. This
method takes advantage of a tree representation to compress
the input datasets by sharing patterns with common prefixes.
Therefore, it only searches itemsets that are known to occur
in the dataset. In several studies [3], this method has been
found to work well in practice. A zero-suppressed binary
decision diagram (ZBDD) based method is proposed in [4].
This method can store input data or output patterns in a
highly compressed form, and is advantageous for mining
high dimensional datasets.

Although many different kinds of contrast patterns have
been proposed in previous work, none of the methods has
considered utilizing multiple types of data sources. In our
study, we mainly focus on how to find interesting contrast
patterns from multiple data sources. In the information
domain, most information fusion techniques only focus on
how to fuse data from multiple sources [14]. However, little
work has been done on how to find contrast patterns based
on other types of data sources.

3. Problem Statement

Finding interesting patterns is useful to decision makers,
especially from multiple types of data sources. Our aim is
to find interesting contrast patterns by utilizing additional
related data sources. Contrast patterns are itemsets whose
support change significantly from one dataset to another. In
this paper, we are interested in finding contrast patterns that
change significantly in one data source, while the change
in another data source is not notable. We introduce a new
concept, a Conditional Contrast Pattern (CCP), which con-
sist of a baseline and a set of conditional contrast factors,
where small changes make big differences.

Suppose we have two different kinds of datasets D =
{D1, D2} and S = {S1, S2}, where subscript 1/2 indicate
negative/positive dataset respectively. For instance, in a re-
tail dataset, suppose we have obtained two datasets from
different sources. The first dataset D is retail transaction
data. Each transaction contains the products bought by
one customer. The second dataset S contains spatial data,



which records the trajectory of each customer. Both of these
datasets consist of data from two time periods, negative
time period 1 and positive time period 2, as shown in
Table 1. In the negative data, there are two datasets, D1

and S1, generated from transaction data and trajectory data,
respectively, and in the positive data, we have D2 and S2.

Let I = {i1, i2, ..., in} be the set of all items in each type
of dataset. Each instance in the datasets contains a subset
of items chosen from I , and a collection of items is defined
as an itemset X . For example, in the example shown in
Table 1, there are 4 items in the itemset, I = {a, b, c, d}.
Instance {b, c} in dataset D1 means that one customer
bought products of categories b and c in time period 1, while
another instance {b, c} in dataset S1 means in time period 1
a customer visited zones where products of category b and
c are sold. Here, we should notice that {b, c} in D1 and
{b, c} in S1 probably track two different customers. There
are 15 possible candidate itemsets. They are {a}, {b}, {c},
{d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c},
{a, b, d}, {a, c, d}, {b, c, d}, and {a, b, c, d}.

The count of an itemset is the number of instances
containing it in the dataset. In this paper, the support of
an itemset supp(X) is defined as the absolute occurrence
frequency (i.e., the count of an itemset) instead of the
definition of relative proportion used in some literatures.
The counts of all the itemsets are shown later in Table 2.

Definition 3.1: The growth rate of an itemset in D is:

GrowthD(X) =


SuppD2

(X)

SuppD1
(X) SuppD1

(X) 6= 0

∞ SuppD1(X) = 0 & SuppD2(X) 6= 0

1 SuppD1(X) = 0 & SuppD2(X) = 0

(1)

Definition 3.2: The ratio of an itemset between D and
S is:

RatioD|S(X) =


GrowthD(X)
GrowthS(X) GrowthS(X) 6= 0

∞ GrowthS(X) = 0 & GrowthD(X) 6= 0

1 GrowthS(X) = 0 & GrowthD(X) = 0

1 GrowthS(X) =∞ & GrowthD(X) =∞

(2)

Definition 3.3: Given two different kinds of datasets
D = {D1, D2} and S = {S1, S2}, where D and S both
contain one negative and one positive dataset, a conditional
contrast pattern from D1 to D2 is an itemset X that
satisfies the following conditions:

C1. SuppD2(X) ≥ minsupp;
C2. GrowthD(X) ≥ mingrowth;
C3. RatioD|S(X) ≥ minratio

The first condition C1 means the support of CCP X
is greater than a user defined threshold minsupp. This
constraint ensures that the pattern should be contained in a
minimum number of transactions in dataset D. Condition
C2 guarantees that the support of the pattern increases
significantly in dataset D. The first two conditions make sure
that the patterns we find are CPs in dataset D. In the last
condition, we constrain the ratio between the growth rates of
patterns in datasets D and S. This ensures the growth rate
of X in dataset D is significantly greater than its growth
rate in dataset S.

TABLE 1. EXAMPLE OF DATASETS OF TWO TIME PERIODS FROM TWO
DIFFERENT DATA SOURCES

D1 D2 S1 S2

{b, c} {a, b, c, d} {b, d} {a, b}
{b} {a, b, d} {c} {b}
{a, b} {a} {a} {c, d}
{d} {a, b} {b, c} {b, c}

Our aim is to find all patterns whose support increased
significantly in the transaction dataset, while not changing
much in the spatial dataset. For example, for itemset {a},
its growth rate in dataset D is GrowthD({a}) = 4/1 =
4, while in dataset S, its growth rate is only 1.0, which
means there is no significant increase in the number of visits
to the area selling product a. Therefore, {a} is regarded
as a CCP. Knowledge of such a product is important as it
represents a product when the conversion rate of customers
has improved. For itemset {c, d}, the growth rate of it in
dataset D is GrowthD({c, d}) = 1/0 =∞, and the growth
rate of it in dataset S is still ∞. It is not a CCP, since it
does not satisfy condition C3.

4. CCP Tree-based Method

In this section, we propose a novel method for mining
Conditional Contrast Patterns (CCPs) based on a CCP tree,
which is similar to a Pattern tree [3]. The main difference is
that in a CCP tree we need to record values for two different
kinds of datasets. There are two steps in our algorithm:
constructing the CCP tree and finding CCPs. First, we
provide the definition of CCP tree.

4.1. Definition of CCP tree

A CCP tree is a compressed representation of the input
data. It can be constructed by reading the data sets one
transaction at a time and mapping each transaction onto
a path in the tree. Since different transactions may have
common items, their paths may overlap. Fig. 1 shows a
CCP tree constructed by using the datasets in Table 1.
Each node N in the CCP tree contains an ordered set of
items. Suppose we have m items in node N , then each
node can be denoted as N.items[i], i = 1, ...,m. Each item
has 6 fields: items.name, item.countD1, item.countD2,
item.countS1, item.countS2 and item.child. In the
field of an item, item.name records the item name;
item.countD1, item.countD2, item.countS1 and
item.countS2 are the count of the item in datasets D1,
D2, S1 and S2 respectively; pointer item.child stores all
the children nodes of the current item. The root of the CCP
tree is also a node that contains items, which is different
from the null root for an FP tree.

4.2. Construction of CCP tree

To illustrate the process of constructing a CCP tree, we
use the example provided in Table 1.



Figure 1. CCP tree of the example data set

(i) Datasets D1 and D2 are scanned once to determine
the support count of each singleton item. Infrequent items
can be discarded in this process. The remaining items are
sorted in descending order of support counts, and the item
names and support information are stored in a header table.
If we set the minimum support to 1.0, we can obtain the
ordered item list: b : 6→ a : 5→ d : 3→ c : 2.

(ii) The second pass is made to construct the CCP tree.
For example, for the case in Table 1, we have the first
transaction in D1, {b, c}. We first sort each transaction by
the ordered item list. In this case, it is still {b, c}. Then a
node with one item {b, 1, 0, 0, 0, p.child} is created as the
root node, and a node with item {c, 1, 0, 0, 0, {}} is stored
as the child node of item b. For the second transaction in
D1, we scan the current tree to check if there is an existing
path. Because the root node already contains item b, we
only increase its field countD1, i.e., the node is updated
to {b, 2, 0, 0, 0, p.child}. For transaction {a, b}, it can be
sorted as {b, a}. Similarly, item b in the root node is updated
to {b, 3, 0, 0, 0, p.child}, and this time, item a is added to
item bs children, which means that item b has a new child
item {a, 1, 0, 0, 0, {}}. For the last transaction {d}, since
there is no d in the root node, the root node has a new
item {d, 1, 0, 0, 0, {}}. This scanning process continues until
every transaction in datasets D1, D2, S1 and S2 has been
mapped onto one of the paths in the CCP tree. The final
CCP tree is shown in Fig. 1, and the pseudo code is shown
in Algorithm 1 and Algorithm 2.

4.3. Mining CCPs

After building the CCP tree, we mine CCPs from the
tree. To obtain the count of each itemset, we propose to use
the merging subtree algorithm, which is inspired by [3]. The
main idea is that the subtree of the current item should be
merged with the tree where the current item is located before
we decide whether an itemset is a CCP. For example, before
we check whether {b} is a CCP or not, we need to merge bs
subtree N to the original tree T . We check all the itemsets
using a Depth First Search (DFS) strategy. This means that
after checking {b}, we need to check itemset {b, a} (list
order is b → a → d → c). Because item {a}’s subtree is
not empty, its subtree should be merged with tree N. Thus,

Algorithm 1: create tree(D1, D2, S1, S2, minsupp)
Input: All the datasets and minimum support

threshold of D2

Output: The final CCP tree
T = {};
for trans in D2 do

count the frequency of each singleton item;
delete item in D2 with frequency lower than minsup;
sort remaining items;
for trans in D1, D2, S1 and S2 do

sort trans;
insert tree(trans, T );

return T

Algorithm 2: insert tree(P , T )
Input: One sorted transaction P ; T is a CCP tree
Output: The updated pattern tree T
search T for T.item[i] = P [0];
if T.item[i] is not found then

insert p at the appropriate place in T obeying the
order, denoted as T.item[i];
T.item[i].countD1 = 0; T.item[i].countD2 = 0;
T.item[i].countS1 = 0; T.item[i].countS2 = 0;

increase
T.item[i].countD1, countD2, countS1, DountS2 by
1 according to the class label of the instance;
if P [1 :] is not empty then

if T.item[i]’s subtree is empty then
create a new node N as T.item[i]’s subtree;

let N ← T.item[i]’s subtree;
call insert tree(P [1 :], N );

for all the itemsets including item b, the order of checking
should be {b}, {b, a}, {b, a, d}, {b, a, d, c}, {b, d}, {b, d, c}
and {b, c} in our case, as shown in Fig. 2. The pseudo code
of merge tree is shown in Algorithm 4.

For every item in the header table, if we find it in the
current root node of the tree and it has subtree, merge its
subtree into the current tree. Then we add the item to an
accumulation itemset β = α ∪ T.item[i], which records
the itemset we are checking. If the item satisfies our CCP
conditions, the itemset β is a CCP. Then we keep searching
its subtree if the item satisfies the first condition C1 and its
subtree is not empty. Here, we use condition C1 to decide
whether to check the superset of itemsets, because condition
C1 is anti-monotone. If β does not satisfy the minimum
support threshold, neither will its superset. The algorithm
stops when all items in the header table have been checked.

The final merged tree is shown in Fig. 2, from which we
can see that the counts of all the itemsets are consistent with
the statistics of the counts of all possible itemsets shown
in Table 2. Here we set minsupp = 1, mingrowth = 2,
minratio = 2. This consistency demonstrates that by using
our method, we can obtain the correct counts of each item-



set. After applying our conditions, we derive 10 CCPs from
all the itemsets. They are {a}, {a, b, d}, {a, b, d, c}, {a, b, c},
{a, d}, {a, d, c}, {a, c}, {b, d}, {b, d, c} and {d}. We can
see that pattern {c, d} is a jumping emerging pattern in
the transaction dataset, while it is not a conditional contrast
pattern, since it does not satisfy condition C3.

Algorithm 3: mine tree (T , α, minsupp, mingrowth,
minratio, headerTable)

Input: T is a pattern tree, α is an accumulating
itemset, minsupp, mingrowth and minratio
are the minimum support, minimum growth
rate, and minimum ratio, which are designed
by the user, headerTable stores the sorted
singleton item list

Output: A set of CCPs
for item in headerTable do

if item is found in T ’s items T.item[i] then
if T.item[i]′s subtree M is not empty then

merge tree(M , T );
β = α ∪ T.item[i];
if T.item[i] satisfies CCP conditions then

generate an CCP β of D2;
if T.item[i]’s subtree N is not empty and
T.item[i].countD2 ≥ minsupp then

mine tree(N , β, minsupp, mingrowth,
minratio, headerTable);

Algorithm 4: merge tree(T1, T2)
Input: T1 and T2 are two pattern trees
Output: An updated tree T2 after being merged with

T1
for each item of T1, T1.item[i] do

search T2 for T2.item[j] = T1.item[i];
if T2.item[j] is found then

update T2.item[j] by adding the count of
T1.item[i] correspondingly;

else
copy and insert T1.item[i] with its counts
and child node at the right place in T2, and
denoted as T2.item[j];
continue;

if T1.item[i]’s subtree M is not empty then
if T2.item[j]’s subtree is empty then

create a new node N as T2.item[j]’s
subtree;

N ← T2.item[j]’s subtree;
call merge tree(M ,N );

4.4. Analytical Results

4.4.1. Space complexity. During runtime, we not only need
to store the counts of each node, but also the pointers be-

TABLE 2. COUNTS OF ALL ITEMSETS OF FOUR DATASETS

a b c d ab ac ad bc bd cd abc abd acd bcd abcd

D1 1 3 1 1 1 0 0 1 0 0 0 0 0 0 0
D2 4 3 1 2 3 1 2 1 2 1 1 2 1 1 1
S1 1 2 2 1 0 0 0 1 1 0 0 0 0 0 0
S2 1 3 2 1 1 0 0 1 0 1 0 0 0 0 0

Figure 2. Final merged tree of the illustrative dataset

tween nodes. This may result in higher storage requirement.
To solve this problem, we can adopt the method proposed
in [3] and [6], which partitions the data set into a set of
projected data sets and mine patterns for each projected
dataset.

4.4.2. Computational complexity. A detailed analysis of
the time complexity for the CCP tree based algorithm is
shown below.

Construction of CCP tree: Firstly, we need to scan all the
datasets once to obtain the header table. In the second scan,
for each transaction, we need to find the right position for
each item in the transaction to insert in the current CCP tree.
Assuming that Nt is the total number of transactions, w is
the average transaction width, and the algorithm complexity
of sorting items is O(w · log(w)), then the computational
complexity of constructing the CCP tree is O(w ·log(w)Nt).

Mining CCPs: The best case happens when all the
transactions have the same set of items, which means the
CCP tree contains only a single branch of nodes. If all
the candidates satisfy the CCP conditions, the algorithm
complexity will be O(2w). In the worst case, all the possible
itemsets appear in the transactions and their counts are all
greater than the minimum support threshold. In this case, we
build the biggest CCP tree. Assuming that d is the number
of singleton items, the computational complexity of mining
CCPs is O(d · 2d−1) in the worst case. This can be derived
from the recurrence relation below:

F (d) = 2F (d− 1) + 2d−1 for d > 1,
F (1) = 1.
In practice, since not all the patterns will exist in trans-

actions and not all the patterns satisfy condition C1, the
computational complexity will be lower than the worst case
O(d · 2d−1).

4.4.3. Completeness proof. The construction of CCP tree
is exhaustive, and all the counts in different datasets are



recorded in the tree node. This preserves complete informa-
tion for CCP mining. By merging the tree, we can obtain
the exact counts for each itemset. In our mining algorithm,
all possible itemsets are checked except some itemsets that
may be pruned by using condition C1, since this condition
is anti-monotone. We also test the accuracy of our method
using a brute-force method, which checks all combinations
of items. The experiments show that the results of these two
methods are the same.

5. Performance Evaluation

In this section, we evaluate the performance of our CCP
tree based method. We describe the synthetic and the real
life dataset in section 5.1, and baseline methods in section
5.2. Then we compare our method with other methods in
terms of efficiency and quality for synthetic data in Section
5.3. In the last section, we show the results derived from
the real dataset.

All experiments are performed on a laptop with 2.6
GHz Intel R© CoreTM i7−5600U CPU, 16 GB memory, and
Windows 7 64bit Enterprise operating system. The programs
are coded in Python (version 3.6.0).

5.1. Synthetic dataset

For synthetic data, we simulate a store with Np zones in
terms of the product categories. Suppose that we have five
categories of customers, who have different probabilities in
buying different products. Note that a costumer may visit a
set of zones and purchase several categories. The probability
of a customer belonging to category j buying products in
zone i is Pb(i, j), which is chosen arbitrarily, and the value
chosen has no effect on the evaluation of our algorithm.

The chance that a customer of category j entered zone
i, Pv(i, j) is decided by a sale ratio, Ratio, namely:

Pv(i, j) = Pb(i, j) ·Ratio,

wherein Ratio(j) ≥ 1. Then we can get the probabilities
of customers visiting different areas according to the formu-
la above. We also suppose that the probabilities of different
categories of customers P (Cate(j)) are equal. For example,
if there are 5 categories of customers, P (Cate(j)) = 0.2 for
j = 1, ..., 5.

By changing the parameter Ratio, we can generate
dataset D and S of two different time periods. For example,
setting Ratio = 1.1, we can generate dataset D1 and S1.
Similarly, setting Ratio = 1.2, we can generate another two
datasets D2 and S2.

5.2. Real dataset – Melbourne retail shop

In this dataset, 78 days of transaction data and spatial
data in one store located in Melbourne were collected from
November 2015 to February 2016. In the store, a set of sen-
sors are installed, which monitor the position of individual
customers over time by detecting the WiFi MAC address

of a customer’s mobile phone. Note that some customers
may not have a mobile phone, or WiFi is not activated on
their phones. We assume that the proportion of this kind
of customer is constant among different days. Since in our
problem, we only pay attention to the change of the number
of customers, these customers in constant proportion will
have no effect on our results. Each trajectory represents
one customer visiting the store, and each transaction means
one customer buying product(s) in the store. Based on the
category of items on the shelf, the store is divided into
eight polygon zones, with the cashier zone excluded. The
trajectory of one customer is composed of a sequence of 2D
points with a unique WiFi MAC address. Based on which
zone each 2D point occurs in, each trajectory is translated
to a set of zones. Then, a threshold of total dwell time
(30 seconds in current case) is applied to discard customers
with a short dwell time. Also, trajectories occurred out of
business hours are considered as those generated by staff,
which are removed. Transaction data with a negative amount
indicates a refund, which should not be taken into account
in our experiment. In all, there are 215, 748 valid trajectories
and 109, 752 valid transactions. The name and detailed
layout of the store cannot be revealed for confidentiality
reason. The names of the 8 zones in the store are also
anonymous.

5.3. Evaluation

5.3.1. Baseline mining methods. We compare our pro-
posed method with two other methods: brute-force method,
Apriori-based method. The brute-force method considers all
the combinations of items. It scans the datasets every time
it calculates the counts of all the itemsets. Since the first
proposed condition satisfies the anti-monotone property, we
can apply the Apriori principle to help us reduce the number
of possible candidate itemsets.

5.3.2. Results for synthetic data. To evaluate the efficiency
of our method, we compared the running time of the three
approaches. Fig. 3 shows the running time of the three
methods as the number of transactions in each dataset varied
from 100 to 20, 000. Other parameters setting are: Np = 15,
minsupp = 2, mingrowth = 2, minratio = 2.

We can see that the running time of brute-force method
increased dramatically as the number of transactions increas-
es. Here, we only provide the results of Brute-force with less
than 3000 transactions. When the number of transactions
is below 3000 transactions, the Apriori-based method has
comparable run time with CCP-tree based method. However,
as the number of transactions further increases, the Apriori-
based method becomes slower, while the running time of
our proposed method stays almost stable.

We also compared the number of patterns we can find
using CCP-tree based method and CP-tree based method
[3]. The numbers of CPs and CCPs are also shown in Fig.
3 as the number of transactions in each dataset increased
from 100 to 20, 000. We can see that the number of CCPs
are less than the number of CPs, since we filter CCPs from



Figure 3. CCP mining time v.s. number of transactions of synthetic data

Figure 4. number of CCP and CP v.s. number of transactions of synthetic
data

CPs by utilizing information from other datasets. The growth
rate of the number of CCPs is also slower than CPs. This is
because as the number of transactions increased, there would
be more patterns that satisfy the conditions of CPs, while
for CCPs, the number of transactions has little influence on
the number of CCPs we can find.

Table 3 shows the running time of the three methods as
the number of items varies. Here the number of transactions
in each dataset is 3000. The brute-force method is still the
slowest. With only 15 items, its running time can be 61
times longer than the other two methods. When the number
of items is no more than 20, the Apriori-based method is
a little faster than the CCP-tree based method. While when
the number of items reached 25, the CCP-tree based method
is about 1.5 times faster than the Apriori-based method.

5.3.3. Results for Melbourne retail shop. In a retail envi-
ronment, emerging patterns of purchased items are often an-
alyzed to provide sales strategies. Intuitively, sale increases
relate to more customers visits. It is the patterns whose sales
change significantly but with little variation in customers

TABLE 3. RUNNING TIME DEPENDING ON THE NUMBER OF ITEMS ON
SYNTHETIC DATA

Running time(s)
15 items 20 items 25 items

Brute-force 371.98 - -
Apriori 5.95 94.67 1384.49

CCP tree 6.08 95.24 986.83

(a) Running time comparison

(b) Number of CCPs and CPs

Figure 5. Results on real data - transaction data and spatial data of
customers

TABLE 4. DESCRIPTION OF THE FIVE TESTS ON REAL DATA:
TRANSACTION DATA AND SPATIAL DATA OF CUSTOMERS

Test Data set Number of Transactions
Negative Positive D1 D2 S1 S2

1 26/12/15-
28/12/15

22/12/15-
24/12/15 2,397 7,366 4,706 8,340

2 25/01/16-
31/01/16

01/02/16-
07/02/16 9,910 12,195 19,754 29,372

3 Sundays Mondays 18,129 19,156 34,566 36,965
4 Sundays Saturdays 18,129 18,852 34,566 35,300
5 Tuesdays Mondays 17,147 19,156 33,281 36,965

visits that are of special interest. These patterns fit well with
our proposed conditional contrast patterns (CCPs), and can
be obtained using our CCP tree based mining algorithm.

We select 5 representative time periods from the data
to test the performance of our algorithm. The first time
periods in comparison are 26/12/2015 − 28/12/2015 and
22/12/2015 − 24/12/2015, which are 3 days after the
Christmas Day and 3 days before it. The second com-
parison are 01/02/2016 − 07/02/2016 and 25/01/2016 −
31/01/2016, which are one week before the start of school
and one week after it. The last three comparisons are Sun-
days and Mondays, Sundays and Saturdays, and Mondays
and Tuesdays. The description of the time period is shown
in Table 4.

Then we get five sets of datasets {D = D1 ∪D2, S =
S1 ∪ S2}. The detailed numbers of transactions in D1,
D2, S1 and S2 are shown in Table 4. In these experi-
ments, the parameter thresholds settings are minsupp = 5,
mingrowth = 2, minratio = 2.

The running time of the three methods is shown in Fig.



5a. As shown in Fig. 5a, in all the five tests, the running
time of Brute-force is the longest, and it strongly depends
on the number of transactions. The Apriori-based method
is much better than Brute-force, but it also depends on the
number of transactions. Our method is the fastest, with all
the running times less than 0.5 second, and the number of
transactions has little influence on it.

The number of CCPs and CPs are shown in Fig. 5b. We
can see that the number of CCPs is less than CPs, which
means that we extract fewer contrast patterns by utilizing
two kinds of datasets and these patterns are more informative
and actionable for decision makers. We also notice that in
test 1 and test 2, although the number of transactions is less
than the number of transactions in test 3, test 4 and test
5, the number of CCPs in the first two cases is larger than
the number in the last three cases. This means that the time
periods under contrast are more different than other time
periods.

6. Conclusion

In this paper, we have introduced a new kind of contrast
pattern, conditional contrast patterns. In contrast to normal
contrast patterns, CCPs are able to use information from
other data sources. We also have proposed a conditional
contrast pattern tree based algorithm for mining CCPs. By
comparing our method with two other baseline methods
(brute-force method and Apriori-based method) on synthetic
data, we have evaluated the efficiency of our method. The
results show that our CCP tree based method is the most
efficient one among these methods. Two real world cases
relating to customers behaviours have been applied to further
explain our proposed method.

Overall, we believe that we have proposed a useful and
interesting contrast pattern for multi-source mining, and
our proposed CCP method is practical in analysing data
from retail environments. Also, we believe CCPs can be
applied to other areas, such as classification. In the future,
we would like to develop more time efficient methods, such
as approximate methods, for mining CCPs.
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