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Abstract—Data visualization has always been a vital tool to
explore and understand underlying data structures and patterns.
However, emerging technologies such as the Internet of Things
(IoT) have enabled the collection of very large amounts of data
over time. The sheer quantity of data available challenges existing
time series visualisation methods. In this paper we present an
introductory analysis of time series clustering with a focus on
a novel shape-based measure of similarity, which is invariant
under uniform time shift and uniform amplitude scaling. Based
on this measure we develop a Visual Assessment of cluster
Tendency (VAT) algorithm to assess large time series data sets and
demonstrate its advantages in terms of complexity and propensity
for implementation in a distributed computing environment. This
algorithm is implemented as a cloud application using Spark
where the run-time of the high complexity dissimilarity matrix
calculations are reduced by up to 7.0 times in a 16 core computing
cluster with even higher speed-up factors expected for larger
computing clusters.

I. INTRODUCTION

Time series data are a common form of temporal data being
produced in ever increasing quantities driven by the pervasive
deployment of devices capable of continuous measurement.
The ability to interact with environments remotely and in real
time through large quantities of network-connected devices is
the essence of the Internet of Things (IoT) paradigm that has
seen significant growth in recent years. Time series analysis is
an important tool to analyse IoT data streams. Such an analysis
capability is a key enabler for optimising the performance of
dynamic systems under the control of the IoT.

An important aspect of IoT data analytics is using clus-
tering techniques to characterise the underlying distribution
of the observed measurement data. Within the context of IoT
applications, cluster estimation and clustering algorithms of
time series data present a significant computational challenge.
Streaming sensor data from distributed, voluminous sources
producing inherently high-dimensional time series presents
computational challenges to the calculation of similarity, the
estimation of cluster count and the cluster assignment pro-
cess. For example, pairwise relational similarity matrices of
10000 × 10000 entries would exceed commercial memory
limits, with even more resources required to calculate such
a matrix from raw time series. Overcoming this complexity is
a significant barrier for time series data streams from many
thousands or even millions of individual IoT devices.

To address these massive scales this paper focuses on
distributed approaches to aspects of clustering, touching on
the choice of similarity metric as well as efficient methods of

cluster count estimation and cluster assignment. Techniques
based on the Visual Assessment of cluster Tendency (VAT)
algorithm [1], [4] are the focus of this paper as they have been
demonstrated to produce clear depictions of cluster structure in
data sets using only a relational dissimilarity matrix as input.
More recent work on VAT has highlighted opportunities for
scaling to Big Data sets [3], [9], making them particularly
suitable to IoT scale application. However, all previously
demonstrated approaches assume that dissimilarity matrices
are readily available and centrally located, which are not trivial
assumptions for time series Big Data.

To address this issue we propose a distributed algorithm that
calculates the dissimilarity matrix from distributed time series
data using a novel similarity metric with modest complexity.
The algorithm is complemented by a scalable version of the
VAT algorithm that visualises a smaller representative sample
of the data, which we modify to allow for the distributed
selection of a representative sample from the data.

The key contributions of this paper are (i) the incorporation
of an efficient shape-based distance for use as a time series
dissimilarity metric, (ii) insight into methods of reducing
the computation time for relational dissimilarity data in a
distributed computing environment, and (iii) a summary of
the potential for applying the previous insights to scalable
VAT image calculation applications. We quantitatively assess
the performance using an Apache Spark application which
implements this system. The results obtained demonstrate
significant scaling-factor reductions in run time including 7.0
times reduction in dissimilarity matrix calculation for a 16
core computing cluster, relative to single core performance,
and reduction in VAT reordering time to negligible quantities.
The experiments also expose the impact of an iterative bottle-
neck in the VAT image generation that ultimately limits the
performance improvement obtained by parallelisation.

A brief introduction of the relevant background information
precedes a discussion of opportunities for a distributed ap-
proach to producing VAT images, followed by a a demonstra-
tion of the effectiveness of one such distributed approach based
on an empirical analysis of a cloud computing deployment.

II. BACKGROUND

To motivate the line of investigation presented, this section
discusses an initial overview of the core principles with a focus
on computational complexity and scalability.



Fig. 1. Generation of iVAT image from time series data set ECG5000
using Euclidean distance (top row) similarity metric and shape-based distance
(bottom row).

A. (Dis)similarity Metrics for Time Series

This paper focuses on similarity comparisons for time
series of equal lengths with uniformly spaced samples of a
single dependent variable. ‘Similarity’ metrics can be used
to compute a distance between two time series, the value
of which can be interpreted as a measure of dissimilarity,
with larger relative values indicating instances that are more
dissimilar.

Two fundamental metrics widely referenced in the literature
are Euclidean Distance (ED) and Dynamic Time Warping
(DTW) [8], [12], [13]. While the former has time complexity
O(m) for m-dimensional time series, the latter’s complexity
is O(m2), which is a significant hurdle for typically high-
dimensional time series. Recent work [10] introduced a shape-
based distance (SBD) as a computationally efficient similarity
measure that is tolerant to uniform amplitude scaling and
uniform time shifting.

Shape-based distance is based on normalised cross-
correlation (NCC). A uniform time shift invariant dissimilarity
metric can be obtained by using the maximum value of the
NCC sequence as:

dSBD(x, y) = 1−max (NCC(x, y)) (1)

By exploiting the convolution property that equates cross-
correlation in the time domain with multiplication in the
frequency domain, the implementation complexity is only
O(m logm), for m-dimensional time series, as the iterative
NCC calculation is replaced with the recursive Fast Fourier
Transform (FFT) algorithm.

This efficient SBD calculation is novel in the clustering
literature. Its attractive complexity and invariance to both
uniform time shift and uniform amplitude scaling motivates
it as a prime candidate for Big Data time series clustering.

B. Visual Assessment of Cluster Tendency

The VAT algorithm was introduced in [1] as a method
for reordering a dissimilarity matrix D to produce D∗, then
displaying the individual elements of the matrix as grayscale

pixels. Visual evidence of clusters is observed as darker
‘blocks’ on the matrix diagonal. Examples of this are seen in
Figure 1. Conceptually this grouping of darker components
occurs when similar instances are placed adjacent to one
another such that the individual dark pixels, representing
relatively low dissimilarity of the two corresponding instances,
appear grouped together.

A method for finding a contiguous adjacent ordering of
similar values is based on a modified version of Prim’s
Algorithm, which forms the minimum spanning tree (MST) of
a graph by iteratively adding nodes to the partially developed
MST with the smallest possible cost. In this context the
dissimilarity matrix D is represented as a fully connected
graph with nodes representing the data set instances and
interconnecting edges weighted by the corresponding value
in the dissimilarity matrix. VAT effectiveness is dictated by
the ability to discern well-defined dark blocks in the image.
Ideal clusters, having large inter-cluster separation and small
intra-cluster variance, are said to be compact separated (CS),
a desirable property that enhances the contrast of clustering
structure in VAT images [5]. Not only are CS clusters easier to
discern visually from a VAT image, but the correctly identified
cluster count, c, can be trivially used to form a single-linkage
(SL) c-partitioning of the data set. It is shown in [6] that SL
clustering always produces aligned clusters of a VAT image,
so in cases where CS clusters allow the cluster count to be
discerned unambiguously, automated SL partitioning, which
involves cutting the c largest edges in the MST, is an effective
clustering method.

The improved VAT (iVAT) algorithm [4] is an extension to
the VAT algorithm, which aims to clarify the image for human
interpretation, while using the same reordering identified in the
base VAT algorithm. This algorithm performs a transformation
on D∗, the VAT reordered dissimilarity matrix, to produce D′∗,
where dissimilarity values are transformed to a path-based
distance that quantifies the maximum single span cost of the
minimum weighted path connecting two nodes. The effect of
this additional transformation can be seen in figure 1. A major
challenge for both VAT and iVAT is their O(n2) complexity
for n× n dissimilarity matrices.

III. DISTRIBUTED ALGORITHM APPROACHES

In this section we present our application of VAT-assisted
cluster estimation for IoT-scale time series data. To meet the
Big Data challenge, we discuss different options for reducing
computation time through the distribution of component algo-
rithms. The two main components of our algorithm are (i) the
calculation of the dissimilarity matrix, which then provides
input for (ii) the calculation of the VAT image. The following
sections discuss the distribution of these component algorithms
separately.

A. Distribution of Dissimilarity Matrix Calculation

For a set of time series, T , containing n instances of length
m, the dissimilarity matrix, D, is formed through the pairwise
calculation of dissimilarity for each pair in T ×T . Calculating



Algorithm 1: BigDisSimMat
Input : T = {t1, t2, . . . , tn} - set of n time series

instances.
p - number of initial partitions in Spark.
d - choice of time series dissimilarity metric.

Output: Dn - n× n dissimilarity matrix.

Distribute T as a set of key-value
pairs in p partitions.

1 TRDD = parallelize({(i, ti) ∀ ti ∈
T}, partitions = p)
Calculate dissimilarity values from
the Cartesian product of all
key-value pairs.

2 Tcart = cartesian(TRDD) Creates p2

partitions.
3 Tdis = {((i, j), d(ti, tj)) ∀ ((i, ti), (j, tj)) ∈ Tcart}
Reduce Tdis to n row-indexed arrays
using combineByKey.

4 Trows = {(i, [d(ti, t1), . . . , d(ti, tn)])}
5 Collect unsorted rows of Trows.
6 Stacks arrays from Trows then sorts by row index i to

produce dissimilarity matrix Dn.

the similarity metric with complexity d(m) for each ordered
pair in the n× n matrix gives a computational complexity of
O(d(m)n2) for the full dissimilarity matrix calculation. For a
subset of T of size k ≤ n, any portion of the k×k sub-matrix
can be calculated independently and trivially recombined with
other partitioned sub-matrices to assemble the dissimilarity
matrix. This approach allows independent partitions to be
executed in a distributed manner, though the complexity of
the algorithm still remains O(d(m)n2).

B. Distribution of VAT Image Calculation

In this section an approximate approach for theoretically
reducing this complexity is presented.

Scalable VAT / scalable iVAT (sVAT / siVAT) has been
shown in [3], [7]. Rather than distributing the data and
computing the VAT image in parallel, this algorithm uses a
smaller representative sample of the original data and calcu-
lates the VAT image centrally. This method requires two user
specified parameters: c′ an initial overestimate of the number
of clusters, and n̂ an approximate size for the sampled data
set. The algorithm uses the cluster overestimate to identify
c′ distinguished instances, i.e., samples from the data set that
are guaranteed to represent each of the true clusters [3]. The
remaining data points are grouped into proto-clusters based
on their nearest distinguished point before a sample is taken
from each proto-cluster, which together form the sampled data
set. Importantly, the sampling process guarantees that the ratio
of samples per proto-cluster in the sampled set is at least the
same as the ratio of samples of the complete proto-cluster
relative to the full data set. This condition ensures the sample
is representative of the original data. Under these conditions,

Algorithm 2: Big siVAT
Input : T = {t1, t2, . . . , tN} - set of N time series

instances.
d - choice of time series dissimilarity metric.
c′ - overestimate of actual number of

clusters.
n̂ - approximate output sample size.

Output: D∗n - n× n iVAT image of sampled
dissimilarity matrix Dn

Distribute T as a set of key-value
pairs in p partitions.

1 TRDD = parallelize({(i, ti) ∀ ti ∈ T})
Iterative selection of keys, ms, of
c′ distinguished instances by
distributed calculation of
corresponding row, yms

, of
dissimilarity matrix.

2 m1 = 1, y1 = [d(t1, t1), . . . , d(t1, tN)]
3 for s← 2 to c′ do
4 yms = [d(tms , t1), . . . , d(tms , tN)]
5 yms

=
[min{yms

[1], yms−1
[1]}, . . . ,min{(yms

[N ], yms−1
[N ])}]

6 ms = argmax1≤j≤N{yms
[j]}

Centralised grouping of time series
with their nearest distinguished
objects.

7 S1 = S2 = . . . = Sk′ = ∅
8 for s← 1 to N do
9 l = argmin1≤j≤c′ d(xmj

)
10 Sl = Sl ∪ {s}

Randomly select data near each
distinguished object to define Dn.

11 for s← 1 to N do
12 nt = dn̂/N × |St|e
13 Randomly select sampled index S̃t from St.

14 S̃ =
⋃k

t=1 S̃t

15 Filter TRDD with S̃ to produce TS̃ .
16 Use Algorithm 1 to produce Dn from TS̃ .
17 Apply iVAT to Dn returning D∗n.

[3] and [7] demonstrate that a true VAT image is produced
for the dissimilarity matrix sampled in this way and that this
image is representative of the clustering structure in the full
data set provided that c′ ≥ c, the true number of clusters.
Under these conditions the data excluded from sampling can
be mapped to the clusters identified in the resulting VAT image
using a Nearest Prototype Rule (NPR), in which each out-of-
sample instance is assigned to a cluster in the same way as
the least dissimilar instance in the sampled image. It is shown
in [3] that this approach scales linearly with the number of
instances in the data set where the data set is very large, which
is appropriate for the Big Data problem addressed in this paper.



Fig. 2. iVAT image with identified clusters and time series as identified by the first two clusters on the iVAT image diagonal. Top row: Clustering using
Euclidean distance. Bottom row: Clustering using shape-based distance.

In addition to providing a method for cluster tendency
assessment, [7] and [9] trivially extend this concept to a single
linkage clustering method for Big Data sets in a method similar
to that outlined in Section II-B. This approach is shown to be
effective even for data sets with non-CS clusters, although in
these cases the cluster blocks in the VAT images are more
difficult to discern due to reduced contrast in the image. The
aspects surrounding VAT effectiveness are reassessed in the
context of time series similarity in Section IV-A.

C. A Spark Implementation

This presents the detailed algorithm and challenges involved
in mapping the dissimilarity matrix and siVAT approaches
covered in Sections III-A and III-B to a distributed computing
environment. Ultimately the main contributions of this work
are the assessment of the performance improvement of paral-
lelising the dissimilarity matrix calculation and the feasibility
of the scalable VAT approach for time series data based on
this approach.

Apache Spark was chosen as a platform for implementing
this system in a MapReduce environement. While Spark’s
ability to optimise stage execution is well-developed, design
decisions that aim to maximise in-memory operations by
reducing the amount of data shuffled between nodes can be
used to further tune performance.

The implementation of the dissimilarity matrix calculation
outlined in Section III-A is shown in Algorithm 1. Initially
the input times series data are distributed as a Resilient
Distributed Data set (RDD), Spark’s native distributed data
structure, of key-value pairs. Spark’s cartesian function is
used to transform this RDD to its Cartesian product allowing

pair-wise dissimilarity values to be calculated for the chosen
dissimilarity metric d. The initial keys and ordered key pairs
formed by the Cartesian product are necessary for correctly
ordering dissimilarity values when the dissimilarity matrix is
constructed. The n indices of the original time series data
form n2 ordered pairs, interpreted as (row, col) indices that
uniquely identify their position in the dissimilarity matrix.
Line 4 of Algorithm 1 demonstrates how combineByKey

uses these ordered pairs to develop individual rows of the
dissimilarity matrix, where each value of that row is placed in
position col of a row-specific array. The column-sorted rows
are then collected by the driver program where they are stacked
and sorted by row index to produce the full dissimilarity
matrix.

The implementation of siVAT introduced in [3] and sum-
marised in Section III-B is modified to allow for the dis-
tributed calculation of dissimilarity matrix rows necessary for
determining distinguished objects. This architecture allows for
very large time series data, stored in a distributed storage
system, to be processed. These modifications are shown in
Algorithm 2. Again, the time series data is distributed as
an RDD of p partitions, as in Algorithm 1, from which
the distributed calculation of rows, y, of the dissimilarity
matrix associated with each distinguished point is performed
and collected by the driver program. Each successive point
is determined by its dissimilarity with the previous point.
This necessarily iterative communication between the driver
program and the computing cluster creates a performance
bottleneck. Once all distinguished points are determined the
proto-cluster allocations and subsequent sampling index, S̃,
of size t are determined centrally by the driver program. The



dissimilarity matrix of the sampled data is then calculated
using Algorithm 1. This method of sampling impacts the level
of parallelisation as it is dependent on the uniformity of the
distribution of sampled instances across the computing cluster.
This point is discussed in more detail in Section IV-C.

IV. EXPERIMENTAL RESULTS

In this section a number of experiments on three time series
data sets are analysed to assess the suitability of the choice of
similarity metric and the performance improvement obtained
by distributing the VAT image calculation as proposed in
Section III. The time series data is taken from the UCR
Time Series Classification Archive [2] which provides sets
of labelled time series for the purposes of quantifying the
performance of classification and clustering approaches.

In the following experiments up to eight virtual machines
were available for building a Spark computing cluster, each
defined with two CPU cores, meaning that a maximum of 16
cores could be allocated for parallel use by the Spark appli-
cation. Three data sets were selected from [2] to demonstrate
different aspects of the system design. Firstly the ECG5000
data set, a very large data set consisting of 4500 instances of
140 dimensions, was chosen to demonstrate the effectiveness
of clusters generated by the modified sVAT approach. Second,
the LargeKitchenAppliances data set, with 375 instances of
length 720, was chosen for its predominantly asynchronous
time series instances to demonstrate the value of the shift-
invariance of the k-shape dissimilarity metric. Finally, the
FaceAll data set, with 1690 instances of 131 dimensions, was
chosen for its intermediate sample size, and hence computation
time, that facilitated repeated experiments when assessing the
effect of the distributed implementations of VAT and sVAT
algorithms on computation time.

A. Time Series Similarity Metrics

In this set of experiments the time series similarity metrics
discussed in Section II-A, namely Euclidean distance and the
novel shape-based distance, are compared for a number of dif-
ferent time series data sets to qualitatively assess the suitability
of the similarity metric choice under different conditions, see
Figures 1 and 2.

It can be seen that for the well-synchronised time series
data set ECG5000, the iVAT images based on ED and SBD
are capable of capturing the same major clustering structure,
though the ED metric provides a higher contrast image.

A similar comparison is made for the LargeKitchenAp-
pliances data set, which has significant uniform time shift
variation between instances. It is clear in this case the ED iVAT
image is a very poor indicator of clustering tendency with
almost no discernible clustering structure visible. With some
difficulty, minor clustering structure was extracted, however,
analysis of these clusters indicates they reveal less effective
groupings. The individual time series from the first two clus-
ters identified are plotted in Figure 2 showing how the ED clus-
tered instances are grouped by a measure of synchronisation.
In contrast the SBD iVAT image much more clearly identifies

Fig. 3. Computation time of the full NCC dissimilarity matrix for the FaceAll
data set as a function of computing cluster size.

clustering structure, and subsequent cluster analysis indicates
effective shape matching regardless of synchronisation. This is
a direct result of SBD’s invariance to time shifting. The shape-
based metric is a more intuitive similarity so SBD would likely
be considered the stronger metric for any data set that shows
low levels of synchronisation.

It is important to note that in all cases the identification of
clusters is highly subjective. In many cases rigorous inspection
is required to reveal clustering structure. In most cases some
subjective cut-off is required as to whether clustering blocks
should be further subdivided into finer resolution clusters. The
highlighted cluster boundaries in the SBD iVAT image of
Figure 2 are good examples of this. Some of the ambiguity
that arises is a result of outliers in the data with respect
to this dissimilarity metric. These real world data subtleties
mean compact separated clusters are unlikely, limiting the
applicability of automated single linkage clustering from VAT
images, mentioned in Section II-B.

B. Distributed Dissimilarity Matrix

These experiments aimed to determine the validity of the
dissimilarity matrices produced by Algorithm 1 as well as
measuring the execution time of the program as a function
of the size of the Spark computing cluster.

The dissimilarity matrices produced by Algorithm 1 are
identical to those produced by other implementations on
single machines, which validates the efficacy of the distributed
program. What follows is an analysis of the computation time
speed-up.

Critical to the analysis of dissimilarity matrix calculation in
Spark was the observation that the Cartesian product of a p
partition RDD forms a new RDD with p2 partitions. Each of
these partitions is mapped onto one of the computing cluster
cores allocated to the Spark application, so for maximum
parallelisation it is essential that p2 cores are available, one to
process each partition. If the number of cores available is less
than p2 some partitions will be queued until previous partitions
have been processed, resulting in reduced parallelisation. If
more than p2 cores are available only p2 cores will be allocated



Fig. 4. Impact of siVAT parameters on runtime - r is varied for fixed c′ = 5,
and c′ is varied for fixed r = 0.25. ‘FaceAll’ data set [2] on a nine core
computing cluster using SBD metric.

a partition, resulting in under-utilisation of the available CPU
resources.

With this in mind, four different computing cluster sizes
were analysed for their dissimilarity matrix compute time, as
seen in Figure 3. The computing cluster sizes were chosen to
match the p2 partitions for initial p ∈ {1, 2, 3, 4}. The results
show a significant improvement in computation time, with a
speed-up factor of 7.0 times for the 16 core case relative to
the 1 core case.

C. Scalable VAT Image Calculation Time

These experiments aimed to investigate how key parame-
ters of the sVAT algorithm influenced the execution time of
different components of the program. This broadly aimed to
understand if the sVAT image calculation was of comparable
complexity to the dissimilarity matrix development in an
implementation of Algorithm 2.

Figure 4 shows how sampling ratio, r, and the cluster
count seed, c′, impact the end-to-end computation time from
raw time series data to siVAT image. It is clear that, given
a fixed computing cluster configuration, the identification of
distinguished points and the final iVAT image calculation are
the algorithmic components most sensitive to c′ and r.

The sampling ratio, r, reduces the size of the dissimilarity
matrix passed to the iVAT algorithm. It is observed that
even a relatively small scaling ratio of 0.25 reduces the
distributed dissimilarity matrix calculation significantly and
the centralised VAT calculation time to an almost negligible
amount of the total program execution time.

For the dissimilarity matrix calculation, the relative speed-
up achieved by varying r from 1.0 (no sampling) to 0.5, and
0.5 to 0.25 is 2.8 and 2.1 respectively for the example shown,
though this varies depending on the sampling index, S̃. In
addition, the speed up is observed to be less than a factor of
4.0 expected for a two fold reduction in the size of the data
set.

To better understand these observations a comparison was
made between the computation time of a sampled dissimilarity

Fig. 5. Impact of sampling after distribution on distributed dissimilarity matrix
computation time. Both sets of experiments use sampling ratio of 0.1 on
‘FaceAll’ data set [2]. Implementation on nine core computing cluster using
SBD metric.

matrix, where sampling is performed after distribution of the
data as in Algorithm 1, with the computation time of a similar
matrix from the same data set where random sampling with
the same r was performed before the data was distributed and
subsequently passed to Algorithm 2. The results are shown
in Figure 5 which highlight that the computation time of a
data set sampled after distribution shows a notable increase in
the mean and variance of the dissimilarity matrix computation
time. These increases stem from the non-uniform distribution
of data across the computing cluster resulting from the ran-
dom sampling process. The importance of carefully specified
uniform partitions to maximise parallelisation was observed in
Section IV-B, a property that cannot be guaranteed when the
data set is sampled after partitioning.

The centralised VAT image calculation time is also impacted
significantly by r, with speed up of 7.7 and 5.1 observed
when varying r from 1.0 to 0.5, and 0.5 to 0.25, respectively,
which exceeds the expected speed-up of 4.0 times. This
discrepancy is likely attributable to the consumption of other
compute resources, such as memory and cache, for the larger
matrices, an effect which is alleviated as the size of the
input dissimilarity matrix reduces. These results highlight the
need for careful dimensioning of compute resources across the
computing cluster to fully capture the benefits of distributed
computation.

In the second part of Figure 4 the impact of the number
of cluster seeds, c′, clearly exposes the iterative bottleneck
that arises in Algorithm 2, previously highlighted in Section
III-C. For smaller sampling ratios the iterative identification of
distinguished instances is significant, forming a lower bound
on the total computation time that increases with the number of
cluster seeds. For data sets with many clusters this bottleneck
will be a key limitation on performance.

D. Inferred Clustering Using Down-sampled iVAT Images

Section IV-C quantifies factors affecting computation time
of sVAT for times series, while this section attempts to quali-



(a) (b)

(c) (d)

(e) (f)

Fig. 6. (a) siVAT image and (b) identified clusters for ECG5000 data set using shape-based distance similarity metric. (c) Cluster separated time series and
(d) distribution of class labels as given in ECG5000 data set for siVAT image. (e) Cluster separated time series and (f) distribution of class labels as given in
ECG5000 data set for out-of-sample time series instances, with cluster assignment inferred by nearest prototype rule. In (d) and (f) the distribution of class
labels in each cluster (red) is shown overlaid with the total class label distribution of the data set (grey).

tatively assess the effectiveness of time series clustering using
down-sampled iVAT images. This is achieved by introducing
the existing class labels provided with the UCR time series.
In many cases these class labels can be effectively mapped to
shape-based clusters. Examining distributions of class labels
within clusters identified by iVAT images is one way of
assessing the effectiveness of the iVAT image.

In Figure 6, the SBD similarity iVAT image for a repre-
sentative 0.1 sampling of the ECG5000 data set has been
generated and the clusters identified manually. Figures 6c and
6d show the time series and histogram of class labels for each
cluster identified. It is clear that clusters 1 and 3 distinctly
separate the majority of instances with class label 1 and 2,
respectively. It is clear that this is due to the distinct shape



of these classes. Cluster 2 and 4 isolate two small, distinct
groups of similarly shaped instances from class labels 4 and
2 respectively. Both clusters have a distinct shape from the
other instances identified of these classes in cluster 3. Cluster
5 consists of outliers, showing no uniform dark section in the
iVAT image nor clear shape similarity.

Figures 6e and 6f are the time series and histogram of class
labels of the out-of-sample instances of the ECG5000 data set,
as inferred by the nearest prototype rule. The well separated
clusters appear here again, with class labels 1 and 2 effectively
isolated by clusters 1 and 3 respectively.

For this data set the siVAT image is a very effective
method of identifying the major clusters, though less effective
at identifying the remaining, much smaller, classes 3 to 5.
Reflecting on Figure 1 it is unlikely that this would have been
improved in the full iVAT image as there is clear evidence of
outliers that are not associated with the large dark sections in
this image as well.

Very similar results are observed for the ED metric on
this data set, and examining other data sets it is evident that
the NPR rule inferred clustering agrees very well with the
original manual clustering of the down-sampled image even in
cases with more complex clustering structure. In the interest
of brevity these results are not shown here.

V. CONCLUSION

In this paper we presented a new algorithm for distributing
the high complexity calculation and reordering of relational
dissimilarity matrices for VAT analysis in a time series data
context. The algorithm is suitable for use in Big Data set-
tings where storage and processing of data is performed in
a distributed computing system. The algorithm incorporates
previous centralised approaches, extending their usefulness to
Big Data settings, as well as making use of a flexible, modest
complexity, shaped-based metric for time series comparison.

We demonstrated the efficacy of this approach using a Spark
implementation which highlighted the need for careful control
over partitioning of data sets, as well as an iterative bottleneck
that limits distribution potential in some cases where complex
clustering structure is being analysed.

Further work would involve a comparison of this parti-
tioning approach with the Cartesian Scheduler proposed in
[11] which claims significant performance improvements over
standard Spark Cartesian product implementations. We would
also like to extend this analysis to real world Big Data and
very large compute clusters to better understand the interplay
between the dissimilarity matrix calculation, the iterative bot-
tleneck and the down-sampled VAT image generation.
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