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Abstract—Time series with large discontinuities are common
in many scenarios. However, existing distance-based algorithms
(e.g., DTW and its derivative algorithms) may perform poorly in
measuring distances between these time series pairs. In this paper,
we propose the segmented pairwise distance (SPD) algorithm to
measure distances between time series with large discontinuities.
SPD is orthogonal to distance-based algorithms and can be
embedded in them. We validate advantages of SPD-embedded
algorithms over corresponding distance-based ones on both open
datasets and a proprietary dataset of surgical time series (of
surgeons performing a temporal bone surgery in a virtual reality
surgery simulator). Experimental results demonstrate that SPD-
embedded algorithms outperform corresponding distance-based
ones in distance measurement between time series with large
discontinuities, measured by the Silhouette index (SI).

Index Terms—segmented pairwise distance, distance-based
algorithms, time series, large discontinuities

I. INTRODUCTION

Time series are a ubiquitous form of data in scientific
disciplines. There may be value gaps in time series, which
are jumps of value orthogonal to the time axis. Time series
with large discontinuities (value gaps) are common in a variety
of scenarios, such as surgical procedures, human activity, etc.
It is quite challenging to measure distances between these time
series with the existence of such large discontinuities. Large
discontinuities can impede putting local characteristics into
the spotlight. Since distance measurement for time series is
the core of similarity analysis, classification and clustering,
we should address this issue of measuring distances between
time series with large discontinuities.

There are a large quantity of algorithms measuring distances
between time series, among which Euclidean distance and
dynamic time warping (DTW) along with their derivative
algorithms are the most widely used. Many classification
and clustering algorithms are based on Euclidean distance
when all elements have the same dimension or length [1]–
[4]. However, it can perform poorly when there is distortion
in time series along the time axis [5]. DTW is also widely
used for global distance measurement of time series, applied
in a diverse range of domains including gesture recognition
[6], [7], time series classification [8], trajectory clustering [9],
disease detection [10], etc. DTW can address distortion in time
series to certain extent by aligning two time series with indices
in monotonically increasing order. DTW is a global distance-
based algorithm which cannot fully extract local characteristics
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Fig. 1. Example of segmentation and alignment for time series with large
discontinuities using DTW and SPD-embedded DTW (SDTW).

of time series. Due to this, DTW is unsuitable for certain kinds
of data where local similarity is more significant than global
similarity.

In order to address the above issue, we propose the seg-
mented pairwise distance (SPD) algorithm, which can be em-
bedded in distance-based algorithms. Although both Euclidean
distance and DTW have difficulty in measuring distances
between time series with large discontinuities, we use DTW
and its derivative algorithms as our baselines, since DTW
performs comparatively better than Euclidean distance. Fig.
1 is an example to exhibit the difference between DTW and
SPD-embedded DTW (SDTW) when dealing with time series
with large discontinuities. DTW aligns two time series with
indices monotonically increasing, while SDTW can segment
time series based on large discontinuities and sum all distances
between the most similar segment pairs. As a result, SDTW
is able to detect similar time series sharing similar segment
pairs by obtaining small overall distances between them.

This paper mainly contributes to proposing a new algorithm,
SPD, to measure distances between time series with large
discontinuities. Moreover, there are two technical merits in
SPD: (1) SPD is orthogonal to distance measurement and can
be embedded in all distance-based algorithms; (2) SPD can
decide a unique segmentation threshold for every time series
in different datasets so that it can be applied to a variety of
datasets. We validate advantages of SPD-embedded algorithms
over corresponding distance-based ones on both open datasets
and the surgical dataset that we collect, where surgeries are
performed by expert surgeons on the same patient’s temporal
bone in the virtual reality surgery simulator. It will provide a
new challenging benchmark dataset for distance measurement
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of time series with large discontinuities1. In addition, all
techniques for speeding up distance-based algorithms can also
be applied to SPD-embedded algorithms, which is beyond the
scope of this paper.

II. RELATED WORK

A. Segmentation algorithms for time series

Many segmentation algorithms for time series are based
on regression subroutines [11]–[13]. There are three main
categories of regression-based segmentation algorithms, in-
cluding Sliding-Windows, Top-Down, and Bottom-Up algo-
rithms. They are utilized to address multiple segmentation
problems: generate piecewise representations (1) using only
K segments, (2) minimizing the piecewise error, (3) and
minimizing the total error in various scenarios [14]. [11]
caught segmentation points by combining the Lasso penalty
with dynamic programming. [15] first learned a sequence
of local relationship models that could best fit time series
data, and then combined changes of local relationships to
identify the operational behavior switching in the system level.
Regression-based segmentation algorithms have two main lim-
itations: (1) regression subroutines are not efficient if one just
needs segments of time series without regression; (2) linear
representations for univariate segments are not applicable in
high-dimensional multivariate time series.

There are also some segmentation algorithms for time series
without employing regression. [16] successfully segmented
multivariate time series with differential evolution. Later, the
fast low-cost online semantic segmentation (FLOSS) algorithm
segmented time series at a high level by detecting the regime
change [17]. In addition, Matrix Profile distance (MPdist) was
proposed to detect the similarity of two time series when
they share multiple similar subsequences based on Euclidean
distance [18]. However, these algorithms still have some
limitations: (1) they are not computationally efficient because
they traverse all possible subsequences; (2) there are some
hyperparameters (e.g., the length of subsequences in time
series and the quantile threshold in MPdist) to be decided
before measurement, which is domain dependent.

B. Euclidean distance, DTW and their derivatives

Both Euclidean distance and DTW have difficulty in mea-
suring distances between time series with large discontinu-
ities. Euclidean distance regards each time series as a high-
dimensional point, which is extensively applied as the distance
function in time series classification [1], clustering [2], [3], and
other scenarios. In addition, DTW and its derivative algorithms
can also measure distances between time series. Complexity
invariance was proposed to measure distances between time
series with varying complexities, which could be embedded in
DTW as the complexity-invariant DTW (CIDTW) algorithm
[19]. The shape of time series is also a significant feature.
[20] proposed the derivative DTW (DDTW) algorithm to align

1The code and dataset is available at https://github.com/Jacobi93/
Segmented-Pairwise-Distance.

time series using high level features of shape. Moreover, the
phase difference is also a potential problem because DTW
provides non-linear alignments. [21] proposed the weighted
DTW (WDTW) algorithm to penalize points with higher
phase difference, in order to achieve minimum distance dis-
tortion caused by outliers. The weighted version of DDTW
(WDDTW) was then proposed in [21]. These derivative al-
gorithms of DTW all perform competitively well in their
specific scenarios and exhibit their limitations in others. They
are all whole time series distance-based algorithms, which
measures distances between time series using all elements
in them. We do not consider those shapelet-based, interval-
based, or dictionary-based algorithms. They measure distances
between subsequences from whole time series with different
feature selection methods, which were compared and analyzed
comprehensively in [22].

Some research embedded segmentation techniques in DTW
for distance measurement as well. [23] implemented peak
identification and pairing for time series before DTW analysis.
The limitation is that the number of segments between two
time series must be the same, which is not ubiquitous in
many scenarios. In contrast, our proposed segmented pairwise
distance (SPD) algorithm can be embedded in any distance-
based algorithm and the numbers of segments of two time
series are not restricted to be the same. Another segmented-
based DTW (SBDTW) algorithm was proposed for similarity
measurement in urban transportation systems [24]. Point-
segment, prediction and segment-segment distances were de-
fined in SBDTW. The minimal distance of time series pairs
was computed by accumulating the minimum of three dis-
tances. Instead, SPD only segments time series based on their
large discontinuities. Following that, original distance-based
algorithms are employed on every segment pair from different
time series to obtain pairwise distances, which is then used
for calculating the overall distance between time series.

C. Local similarity

Some researchers also noticed the significance of local
similarity for time series. Local descriptors for recognizing
motion patterns in videos were presented to classify human
actions [25]. Internal self-similarities were captured by a local
self-similarity descriptor [26], which provided matching ca-
pabilities of complex visual data. Besides, all-pairs-similarity-
search algorithms were also proposed to evaluate similarity
joins for time series subsequences [27]. To extend this idea,
our work measures local similarity between time series with
large discontinuities using SPD-embedded algorithms.

III. SEGMENTED PAIRWISE DISTANCE ALGORITHM

This paper proposes the segmented pairwise distance (SPD)
algorithm to measure distances between time series with
large discontinuities. The SPD algorithm can be embedded in
all distance-based ones. Since DTW performs comparatively
better than Euclidean distance, we use DTW and its derivative
algorithms in our experiments. We embed SPD in DTW to

https://github.com/Jacobi93/Segmented-Pairwise-Distance
https://github.com/Jacobi93/Segmented-Pairwise-Distance


Algorithm 1 SDTW
Input: Time series A and B in length n1 and n2, q
Output: SDTW (A,B)

1: Calculate consecutive distances for A and B, obtain
segmentation thresholds based on q and sorted distance
distributions of A and B, respectively

2: Segment A and B into s1 segments (a1,a2, . . . ,as1 ),
and s2 segments (b1, b2, . . . , bs2 ) based on thresholds

3: Calculate DTW (ai, bj) for all i in [1, s1] and j in [1, s2]
to obtain the DTW matrix D in size of (s1, s2)

4: Dis1 =
∑s1

i=1 min(row(i))
5: Record the column numbers of min(row(i)) in step 4 and

delete recorded columns with s′2 columns remained in D’

6: Dis1 = Dis1 +
∑s′2

j=1 min(col(j))

7: D = DT , repeat steps 4-6 to obtain Dis2
8: SDTW (A,B) = min(Dis1,Dis2)

n1+n2

build the SDTW algorithm as an example, with details in
Algorithm 1.

A. Dynamic Time Warping

Before we go deep into our proposed SPD, it is necessary
to introduce DTW first. We select DTW and its derivative
algorithms as distance measurement baselines because DTW
performs comparatively better than Euclidean distance in mea-
suring distances between time series with large discontinuities.
DTW is flexible to align time series with variant lengths.
Equations (1) and (2) are recursive functions of DTW [5].
A and B are two time series in sequence (a1, a2, . . . , an1

)
and (b1, b2, . . . , bn2

). n1 and n2 are the number of elements
in A and B. d(ai, bj) is the distance (usually it is Euclidean
distance) defined between the ith element in A and the jth

element in B.

D(1:n1, 1:n2) = d(an1
, bn2

) +min[D(1:(n1 − 1),

1:(n2 − 1)), D(1:(n1 − 1), 1:n2), D(1:n1, 1:(n2 − 1))]
(1)

D(1:1, 1:1) = d(a1, b1) (2)

B. SPD-embedded Dynamic Time Warping

We are finally in the position to introduce the core contribu-
tion of our work. This paper proposes SPD to help distance-
based algorithms measure distances between time series with
large discontinuities. We embed SPD in DTW to build SDTW
as an example (Algorithm 1). In order to measure the SDTW
distance between two time series, we first calculate distances
of consecutive elements for each one of them, respectively.
The quantile q of sorted distance distribution decides the seg-
mentation threshold for each time series (step 1). The quantile
q is not completely domain agnostic. The knowledge of the
dataset can help set a reasonable q for distance measurement
between time series, although we find that it is insensitive
in range of [0.9, 0.99] in most scenarios by experiments.
q = 0.99 represents that the time series will be segmented
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Fig. 2. Example of distance measurement between time series with large
discontinuities using DTW and SPD-embedded DTW (SDTW).

where the distance between two consecutive elements is larger
than 99% of all in the time series. For example, if there are
about one thousand elements in the time series, it will be
segmented into 10 subsequences approximately. There is a
unique segmentation threshold for every time series when q is
determined.

After segmentation of two time series based on their thresh-
olds we obtain (step 2), we can calculate the DTW matrix for
every segment pair from two different time series based on the
DTW algorithm (step 3). Afterwards, all minimal distances
from every segment in A to any segment in B are found
and accumulated (step 4). There are probably some segments
in B, which are never paired by A in step 4. Then minimal
distances from those remaining segments in B to any segment
in A are then found and accumulated to obtain Dis1 (steps
5-6). Dis2 can be measured after transposing D and repeating
steps 4-6 (step 7). Finally, we can obtain the SDTW distance
between two time series A and B in step 8.

Here is an example of the comparison between DTW and
SDTW when calculating the distance between two time series
with large discontinuities (Fig. 2). Sequence A is (4, 5, 6,
1, 2, 3, 7, 8, 9). Sequence B is (1, 2, 3, 7, 8, 9, 4, 6,
5). We set the segmentation threshold to be 2 for each one
of them so that each time series can be segmented into 3
subsequences. From the local point of view, two time series
are very similar to each other but not exactly the same. Both
A and B have subsequences (1, 2, 3) and (7, 8, 9) while
there is a unique subsequence (4, 5, 6) in A and (4, 6, 5) in
B. SDTW outperforms DTW when analyzing local similarity
between two time series, which successfully detects similar
subsequence pairs from different time series.

The time complexity of DTW is O(n1n2). The
time complexity of SDTW is O(n1) + O(n2) +
O(

∑s1
i=1

∑s2
j=1 l(ai)l(bj))+O(s1s2), where O(n1)+O(n2)

is the time complexity for segmenting A and B (steps 1-2),
O(

∑s1
i=1

∑s2
j=1 l(ai)l(bj)) is that for calculating the DTW

matrix (step 3) and O(s1s2) is that for calculating the SDTW
distance based on the DTW matrix (steps 4-8). l(ai) is the
length of the ith subsequence in A and l(bj) is the length
of the jth subsequence in B. Since

∑s1
i=1 l(ai) = n1 and∑s2

j=1 l(bj) = n2, O(
∑s1

i=1

∑s2
j=1 l(ai)l(bj)) is equal to



O(n1n2). Because O(s1s2) < O(n1n2), the time complexity
of SDTW is O(n1n2) in the end, which is the same as that
of DTW although it takes a little longer to implement SDTW
than DTW in experiments. In addition, all techniques for
speeding up DTW can also be applied to SDTW, and SDTW
has the advantage of less space complexity over DTW. Both
of them are beyond the scope of this paper.

IV. DATASETS

A. The Cortical Mastoidectomy dataset

The Cortical Mastoidectomy (CM) dataset is collected with
the help of expert ear surgeons performing this operation
on the Virtual Reality Temporal Bone Surgery (VRTBS)
simulator [28]. The VRTBS simulator was developed as a
platform for temporal bone surgery training, including CM.
Expert surgeons can record their surgeries in the simulator so
that trainees can learn from them. Trainees can also practise
performing surgeries repetitively in the simulator before they
achieve expertise. Long time series of the surgical drilling bit
are recorded as voxel positions in the 3D space. Fig. 3 is an
example of a temporal bone after the completion of a CM
surgery on the simulator [29]. The vacant region in the center
is the drilled part of the mastoid from a temporal bone. Data
preprocessing is implemented for better distance measurement
because surgical time series collected in the simulator are
usually constrained with noise. First, all consecutive and
duplicated elements are deleted so that no repeated positions
are recorded. Second, we also delete positions without the
removal of the mastoid so that all changes of positions in
time series are effective actions. In the end, remaining time
series with varying lengths are saved for further distance
measurement. [30] proposed processing methods to deal with
varying-length time series, such as the uniform scaling, the
prefix and suffix padding, etc. We do not include them because
(1) there is no noticeable improvement and (2) DTW and its
derivatives are able to measure distances between time series
with varying lengths.

Surgeons remove the mastoid part by part so that time series
with large discontinuities are recorded. Surgeons have a variety
of ways to remove mastoid air cells in different styles. Time
series of the surgical drilling bit in every surgery are different
from each other from the global point of view. However, some
parts of them are analogous to each other from the local point
of view because surgeons tend to remove parts of the mastoid
in their own way when they perform CM surgeries. As the
surgery goes on, there are more and more stochastic actions
of removing the mastoid out of the temporal bone, which
is unavoidable to be recorded as stochastic elements in time
series. These stochastic elements can impede the discovery of
surgeries from the same surgeon severely. In order to alleviate
this problem, we truncate the first 1/5 of all time series to build
the CM dataset. 21 surgeries are collected from 7 surgeons
on the same temporal bone, with each surgeon performing
3 surgeries in their unique style. Therefore, there are 21 time
series pairs from the same surgeon and 189 pairs from different
surgeons in total. Surgical time series from the same surgeon

Fig. 3. Processed temporal bone image after the cortical mastoidectomy (CM)
surgery (bottom right is one surgeon performing a CM surgery in the VRTBS
simulator).

tend to share smaller distances between each other than those
from different surgeons.

To our knowledge, the CM dataset is a very challenging
benchmark dataset. Surgeries from the same surgeon can still
be different from each other from a global point of view (Fig.
4). Our goal is not to propose a novel algorithm and identify
every surgery from every surgeon without any mistake (we
believe that no algorithms can successfully do it right now).
We provide this benchmark dataset to help researchers explore
the possibility of distance measurement for time series with
large discontinuities. There are some significant characteristics
of the CM dataset:
• All surgical time series are collected from expert surgeons

in the VRTBS simulator. It is different from those time
series collected from sensors or other professional tools
because there are not only noise but also unavoidable
stochastic actions in them, which makes it more chal-
lenging to measure distances between these time series
pairs.

• Apart from the noise and unavoidable stochastic actions
in the CM dataset, there are large discontinuities in every
surgical time series. The detection of consecutive ele-
ments with large discontinuities is crucial for measuring
distances between them.

• All surgical time series collected in the CM dataset are
3D time series. while most open datasets are composed of
1D (e.g., stock price, ECD) or 2D (e.g., GPS trajectories)
time series.

B. Open datasets

There are not a lot of open datasets where time series
own large discontinuities. This should be one reason why few
research addressed the issue of measuring distances between
them before. However, it is still important to discuss about this
issue as they are common in some scenarios, such as surgical
procedures and human activity. We will release the CM dataset
as a supplement to existing datasets. It will be beneficial to
researchers who want to do further research on measuring
distances between time series with large discontinuities.

In order to validate the segmented pairwise distance (SPD)
algorithm, we should find some other open datasets and mod-
ify them if necessary. After thorough (may not be complete)
searching throughout the UCR Archive and other online data



Fig. 4. Cortical mastoidectomy surgery time series performed by seven surgeons with each performing three surgeries.

resources, two datasets are used for our experiments after
limited modification.

1) Activity Recognition dataset: The first dataset is the
Activity Recognition (AG) dataset [31]. AG is collected from
wearable accelerometers mounted on chests of 15 participants
performing 7 activities, such as standing, walking, going
updown stairs, etc. It provides challenges for identification and
authentication of people using motion patterns.

Although there are 7 different activities in the recorded
time series of every participant, there is still no large dis-
continuities in time series. In order to build time series with
large discontinuities as the benchmark dataset, we concatenate
different activities of the same participant to build new time
series for everyone. The activity standing and walking are
selected because their patterns are quite different from each
other in fluctuation amplitude and frequency. For every partic-
ipant, two new time series are built as (S1,W1, S2,W2) and
(W3, S3,W4, S4), where S stands for standing and W stands
for walking. They are randomly selected from subsequences
of time series representing the same participant with the same
length (500 elements in each subsequence and 2000 in total).
We partition 15 participants into 5 sub-datasets so that there
are 3 participants in each experiment in AG (from AR1 to
AR5 in Table I), with each participant having two newly-built
time series.

2) Indoor User Movement dataset: The second dataset is
the Indoor User Movement (IUM) dataset [32]. IUM contains
patterns of user movements in real-world office environments

from time series generated by a Wireless Sensor Network
(WSN), comprising 5 sensors: 4 anchors deployed in the
environment and 1 mote worn by the user. Target data in IUM
consists in a class label indicating whether the user’s time
series will lead to a room change or not. In particular, the
target class 1 is associated to the location changing movements
(156 sequences), while the target class -1 is associated to the
location preserving movements (158 sequences).

For the same reason mentioned above, we need to build
new time series to evaluate the performance of SPD. Every
movement is recorded by 4 anchors in IUM. We can concate-
nate them together and add constant values in the second and
fourth subsequences to create large discontinuities. We select
26 time series from IUM non-repetitively every time, with 13
from class 1 and the other 13 from class -1. As a result, the
IUM dataset is partitioned into 12 sub-datasets (from IUM1

to IUM12 in Table I).

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we will compare and analyze the perfor-
mance of SPD-embedded algorithms with their corresponding
distance-based ones on open datasets and the cortical mas-
toidectomy (CM) dataset collected by expert surgeons.

A. Silhouette index

To evaluate the performance of SPD-embedded algorithms
along with corresponding distance-based ones, we should test
if they measure distances between time series reasonably. The



internal cluster criteria are built to evaluate the performance of
clustering algorithms, which compare average within-cluster
distances and between-cluster distances obtained by different
algorithms [21]. There are a group of validity indices to
interpret and validate distance measurement of clustering algo-
rithms, including Silhouette index, Dunn index, DaviesBouldin
index, etc. In this paper, the Silhouette index (SI) is used as
an evaluation metric for our task [33]. Equations (3)-(7) define
SI, where t are time series in the dataset Dt. We can calculate
SI(ti) for every time series ti and the overall SI(Dt) can be
an estimation of the performance of distance-based algorithms
on the dataset. a(ti) is the average pairwise distance between
ti and any other time series in the same cluster while b(ti) is
the average pairwise distance between ti and any time series
in the neighbouring cluster. SI are in range of [−1, 1] and high
SI means appropriate distance measurement for clustering the
dataset.

a(ti) =
1

|Cti | − 1

∑
j∈Cti

,i6=j

D(ti, tj) (3)

b(ti) = min
k 6=i

1

|Ctk |
∑

tj∈Ctk

D(ti, tj) (4)

SI(ti) =
b(ti)− a(ti)

max(a(ti), b(ti))
, if |Cti | > 1 (5)

SI(ti) = 0, if |Cti | = 1 (6)

SI(Dt) =
1

|Dt|
∑
ti∈Dt

SI(ti) (7)

B. Experimental algorithms

We select 5 distance-based algorithms, namely DTW,
CIDTW, DDTW, WDTW and WDDTW mentioned in Section
II. We chose DTW as an example in Section III to exhibit how
SPD can be embedded in distance-based algorithms. Here are
other four algorithms which are to be compared in following
experiments.

1) CIDTW: Complexity invariance was proposed as a sup-
plement to the invariance family including amplitude invari-
ance, local scaling invariance, uniform scaling invariance,
phase invariance, occlusion invariance, and their combinations
[19]. The complexity invariance was achieved by the introduc-
tion of a correction factor CF for existing distance measures,
obtained by the complexity estimate CE. It can be embedded
in DTW as the complexity-invariant DTW (CIDTW) algorithm
defined by (8)-(10).

CIDTW (A,B) = DTW (A,B)× CF (A,B) (8)

CF (A,B) =
max(CE(A), CE(B))

min(CE(A), CE(B))
(9)

CE(A) =

√√√√n−1∑
i=1

(ai − ai+1)2 (10)

2) DDTW: The derivative DTW (DDTW) algorithm aligns
time series considering high level features of shape. It obtains
information about shapes by considering the first derivative of
time series [20]. DDTW preprocesses time series using (11),
where the undefined elements aD1 and aDn are obtained by
aD1 = aD2 and aDn = aDn−1. Distances between preprocessed
time series are then calculated by DTW.

aDi =
(ai − ai−1) + (ai+1 − ai−1)/2

2
, 1 < i < n (11)

3) WDTW: The phase difference is also a common prob-
lem because DTW provides non-linear alignments, which is
regarded as the phase invariance problem in the invariance
family. [21] proposed the weighted DTW (WDTW) algorithm
to penalize elements with larger phase difference using (12)-
(13), in order to achieve minimum distance distortion caused
by outliers. Equation (14) is the modified logistic weight
function (MLWF) proposed to systematically assign weights as
a function of phase difference. g is the penalty coefficient for
phase difference. There is no guarantee that SPD can improve
the performance of WDTW for any g on any dataset, but
we found positive results in most experiments. g = 0.01 is
selected as the penalty for WDTW shown in Table I.

D(1:n1, 1:n2) = wn1−n2
d(an1

, bn2
) +min[D(1:(n1 − 1),

1:(n2 − 1)), D(1:(n1 − 1), 1:n2), D(1:n1, 1:(n2 − 1))]
(12)

D(1:1, 1:1) = w1−1d(a1, b1) (13)

wi =
wmax

1 + exp (−g(i− nc))
(14)

4) WDDTW: The penalty for phase difference can be
extended to variants of DTW, including DDTW. The weighted
version of DDTW (WDDTW) was then proposed in [21]. We
use the same g for WDDTW in all experiments.

C. Results and analysis

We validate advantages of SPD by selecting 5 distance-
based algorithms with their corresponding SPD-embedded ver-
sions to measure pairwise distances on the CM, AR and IUM
datasets, respectively. All odd columns are results of existing
distance-based algorithms and all even columns are those
of corresponding SPD-embedded algorithms. The quantile of
sorted distance distribution is insensitive when it is in range
of [0.9, 0.99] in most scenarios. We set the quantile to be 0.99
in all experiments based on a priori knowledge of datasets.

On the CM dataset, all SPD-embedded algorithms perform
better than corresponding distance-based ones, with overall
improvement of 0.312 in average measured by SI. DDTW,
WDTW and WDDTW all perform poorly on the CM dataset.
Although their corresponding SPD-embedded algorithms im-
prove much based on their poor performance, they are still
worse than DTW. The poor performance of DDTW implies
that high level features of shape extracted by the first deriva-
tive of time series should impede the measurement of their



TABLE I
EXPERIMENTAL RESULTS ON ALL DATASETS MEASURED BY SI (SI IN RANGE OF [−1, 1]; CM: CORTICAL MASTOIDECTOMY DATASET; AG: ACTIVITY

RECOGNITION DATASET; IUM: INDOOR USER MOVEMENT DATASET).

DTW SDTW CIDTW SCIDTW DDTW SDDTW WDTW0.01 SWDTW0.01 WDDTW0.01 SWDDTW0.01

CM 0.054 0.139 0.156 0.226 −0.234 −0.044 −0.627 0.009 −0.673 −0.094

AR1 0.226 0.260 0.245 0.309 0.220 0.222 −0.198 0.223 −0.171 0.038
AR2 0.264 0.406 0.355 0.415 0.186 0.182 −0.216 0.138 −0.208 0.056
AR3 0.291 0.488 0.376 0.504 0.248 0.277 −0.199 0.315 −0.174 0.154
AR4 0.280 0.449 0.351 0.539 0.161 0.117 −0.193 0.203 −0.147 −0.063
AR5 0.091 0.459 0.180 0.511 0.060 0.144 −0.168 0.196 −0.144 −0.064

Overall 0.230 0.412 0.301 0.456 0.175 0.188 −0.195 0.215 −0.169 0.024

IUM1 0.020 0.140 0.013 0.169 0.023 0.026 0.023 0.137 0.028 0.059
IUM2 0.031 0.155 0.070 0.163 0.022 0.071 0.040 0.145 0.031 0.069
IUM3 0.013 0.232 0.017 0.143 −0.017 0.032 0.031 0.264 0.006 0.110
IUM4 0.076 0.295 0.074 0.318 −0.031 0.043 0.112 0.325 0.035 0.095
IUM5 0.059 0.385 0.069 0.348 0.007 0.051 0.129 0.424 0.071 0.201
IUM6 0.093 0.123 0.114 0.166 −0.010 0.037 0.120 0.109 0.051 0.066
IUM7 0.136 0.478 0.127 0.472 −0.061 0.087 0.199 0.451 0.069 0.113
IUM8 −0.043 0.112 −0.041 0.180 −0.084 0.043 0.116 0.135 0.078 0.128
IUM9 −0.019 0.366 −0.012 0.403 −0.082 0.093 0.111 0.338 0.076 0.150
IUM10 0.024 0.212 0.028 0.246 −0.058 0.052 0.145 0.239 0.080 0.104
IUM11 0.001 0.082 0.004 0.086 −0.045 0.013 0.107 0.127 0.066 0.074
IUM12 0.083 0.233 0.081 0.161 −0.056 0.130 0.163 0.241 0.078 0.185
Overall 0.040 0.234 0.045 0.238 −0.033 0.057 0.108 0.245 0.056 0.113

pairwise distances in the CM dataset. The poor performance
of WDTW and WDDTW implies that we should tolerate the
phase difference between time series when measuring their
pairwise distances in the CM dataset. SCIDTW performs
the best on the CM dataset, with CIDTW the second and
SDTW the third. SDTW does not defeat CIDTW but CIDTW
can be additionally improved by our proposed SPD as the
champion SCIDTW on the CM dataset. SDTW improves the
performance of DTW by 157% and SCIDTW improves the
performance of CIDTW by 45%, respectively.

On the AR dataset, most SPD-embedded algorithms perform
better than corresponding distance-based ones on sub-datasets,
with overall improvement of 0.19 in average measured by SI.
DDTW performs slightly worse than DTW, while WDTW
and WDDTW perform poorly on the AR dataset. Although
their corresponding SPD-embedded algorithms improve much
based on their poor performance, they are still worse than
DTW. The poor performance of DDTW implies that it is
not necessary to extract high level features of shape by the
first derivative of time series when measuring their pairwise
distances in the AR dataset. The poor performance of WDTW
and WDDTW implies that we should also tolerate the phase
difference between time series in the AR dataset. SCIDTW
performs the best on the AR dataset, with SDTW the second.
SDTW defeats CIDTW on the AR dataset. Both SCIDTW and
SDTW perform much better than all other algorithms. SDTW
improves the performance of DTW by 79% and SCIDTW
improves the performance of CIDTW by 51%, respectively.

On the IUM dataset, most SPD-embedded algorithms per-
form better than corresponding distance-based ones on sub-
datasets as well, with overall improvement of 0.134 in av-
erage measured by SI. However, almost all distance-based

algorithms perform badly on the IUM dataset. It is quite
necessary to use SPD-embedded algorithms in order to im-
prove the performance of corresponding distance-based ones
in measuring pairwise distances of time series in the IUM
dataset. SWDTW performs the best on the IUM dataset, with
SCIDTW the second and SDTW the third. SDTW, SCIDTW,
and SWDTW improves the performance of DTW, CIDTW, and
WDTW by 485%, 429%, and 127%, respectively. The top 3
algorithms share very close performance to each other, which
is one main reason why we do experiments on randomly-
selected sub-datasets. We can clearly see the distribution of
best performance on these sub-datasets when overall results
are close to each other.

In conclusion, all algorithms perform quite differently from
each other on different datasets. SPD-embedded algorithms
can help improve the performance of corresponding distance-
based algorithms dominantly on every dataset, even when
distance-based ones perform very badly. DTW is a widely used
algorithm, which is hard to beat by its derivative algorithms
(CIDTW, DDTW, WDTW and WDDTW). CIDTW performs
the best among 5 distance-based algorithms, which shows the
importance of achieving complexity invariance when measur-
ing distances between time series with large discontinuities.
Moreover, none of these distance-based algorithms are ubiqui-
tously well-performing ones and they can only perform well in
their specific scenarios. The poor performance of SWDDTW
on all datasets implies that complicated algorithms can not
make sure of good performance. It may not be necessary
to learn shape features of time series or consider the phase
invariance when measuring their pairwise distances all the
time. It is always necessary to obtain a priori knowledge of
scenarios in order to select suitable algorithms. In this scenario



where all time series own large discontinuities, SCIDTW
performs the best, followed by SDTW.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a new algorithm, the segmented pair-
wise distance (SPD), to measure distances between time series
with large discontinuities, which are common in many scenar-
ios. SPD is orthogonal to distance-based algorithms and can be
embedded in them. We validate advantages of SPD-embedded
algorithms over corresponding distance-based ones on both
open datasets and our collected cortical mastoidectomy (CM)
dataset. We provide the potential of distance measurement with
SPD-embedded algorithms in more challenging scenarios. In
the near future, we plan to (1) find an intelligent method
to decide the segmentation threshold for SPD on different
datasets and (2) consider the extension of SPD to surgical
time series identification, human activity recognition and other
challenging tasks.
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