
Reinforcement Learning for Autonomous
Defence in Software-Defined Networking

Yi Han1(B) , Benjamin I. P. Rubinstein1 , Tamas Abraham2 ,
Tansu Alpcan1 , Olivier De Vel2, Sarah Erfani1 , David Hubczenko2,

Christopher Leckie1 , and Paul Montague2

1 School of Computing and Information Systems, The University of Melbourne,
Parkville, Australia

{yi.han,benjamin.rubinstein,tansu.alpcan,sarah.erfani,
caleckie}@unimelb.edu.au

2 Defence Science and Technology Group, Edinburgh, Australia
{tamas.abraham,olivier.devel,david.hubczenko,

paul.montague}@dst.defence.gov.au

Abstract. Despite the successful application of machine learning (ML)
in a wide range of domains, adaptability—the very property that makes
machine learning desirable—can be exploited by adversaries to contam-
inate training and evade classification. In this paper, we investigate the
feasibility of applying a specific class of machine learning algorithms,
namely, reinforcement learning (RL) algorithms, for autonomous cyber
defence in software-defined networking (SDN). In particular, we focus on
how an RL agent reacts towards different forms of causative attacks that
poison its training process, including indiscriminate and targeted, white-
box and black-box attacks. In addition, we also study the impact of the
attack timing, and explore potential countermeasures such as adversarial
training.

Keywords: Adversarial reinforcement learning
Software-defined networking · Cyber security · Adversarial training

1 Introduction

Machine learning has enjoyed substantial impact on a wide range of applica-
tions, from cyber-security (e.g., network security operations, malware analysis)
to autonomous systems (e.g., decision-making and control systems, computer
vision). Despite the many successes, the very property that makes machine learn-
ing desirable—adaptability—is a vulnerability to be exploited by an economic
competitor or state-sponsored attacker. Attackers who are aware of the ML
techniques being deployed can contaminate the training data to manipulate a
learned ML classifier in order to evade subsequent classification, or can manip-
ulate the metadata upon which the ML algorithms make their decisions and
exploit identified weaknesses in these algorithm—so called Adversarial Machine
Learning [6,11,27].
c© Springer Nature Switzerland AG 2018
L. Bushnell et al. (Eds.): GameSec 2018, LNCS 11199, pp. 145–165, 2018.
https://doi.org/10.1007/978-3-030-01554-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01554-1_9&domain=pdf
http://orcid.org/0000-0001-6530-4564
http://orcid.org/0000-0002-2947-6980
http://orcid.org/0000-0003-2466-7646
http://orcid.org/0000-0002-7434-3239
http://orcid.org/0000-0003-0885-0643
http://orcid.org/0000-0002-4388-0517

146 Y. Han et al.

This paper focuses on a specific class of ML algorithms, namely, reinforcement
learning (RL) algorithms, and investigates the feasibility of applying RL for
autonomous defence in computer networks [7], i.e., the ability to “fight through”
a contested environment—in particular adversarial machine learning attacks—
and ensure critical services (e.g., email servers, file servers, etc.) are preserved
to the fullest extent possible.

Subnet 1
Subnet 2

Subnet 4Subnet 3

1.1

1.2 2.1

2.2

3.1

3.2 4.1

4.2

1.3

1.41.5

1.6

2.3

2.4

2.5
2.6

2.7 2.8

3.3

3.4

3.53.6

3.7

3.8 3.9

4.3

4.4

4.5 4.6 4.7

4.8

4.9

A acker’s host

Cri cal server

Possible migra on
des na on

Fig. 1. An example network setup. The attacker propagates through the network to
compromise the critical server, while the defender applies RL to prevent the critical
server from compromise and to preserve as many nodes as possible. (Color figure online)

For example, consider a network as shown in Fig. 1 that consists of 32 nodes,
one (node 3.8) of whom connects to the critical server, two (nodes 3.9 and
4.5) connect to potential migration destinations, and three (nodes 1.5, 2.7 and
3.6) connect to the attacker’s hosts. The attacker aims to propagate through
the network, and compromise the critical server. We aim to prevent this and
preserve as many nodes as possible through the following RL approach:

– We first train two types of RL agents: Double Deep Q-Networks (DDQN) [24]
and Asynchronous Advantage Actor-Critic (A3C) [38]. The agents observe
network states, and select actions such as “isolate”, “patch”, “reconnect”,
and “migrate”. The agents gradually optimise their actions for different net-
work states, based on the received rewards for maintaining critical services,
costs incurred when shutting down non-critical services or migrating critical
services.

– Once a working agent is obtained, we then investigate different ways by which
the attacker may poison the training process of the RL agent. For example,
the attacker can falsify part of the reward signals, or manipulate the states of
certain nodes, in order to trick the agent to take non-optimal actions, resulting
in either the critical server being compromised, or significantly fewer nodes
being preserved. Both indiscriminate and targeted, white-box and black-box
attacks are studied.

– We also explore possible countermeasures—e.g., adversarial training—that
make the training less vulnerable to causative/poisoning attacks.

Reinforcement Learning for Autonomous Defence 147

– To make use of the developed capacity for autonomous cyber-security opera-
tions, we build our experimental platform around software-defined network-
ing (SDN) [2], a next-generation tool chain for centralising and abstracting
control of reconfigurable networks. The SDN controller provides a centralised
view of the whole network, and is directly programmable. As a result, it is very
flexible for managing and reconfiguring various types of network resources.
Therefore, in our experiments the RL agents obtain all network information
and perform different network operations via the SDN controller.

– Our results demonstrate that RL agents can successfully identify the optimal
actions to protect the critical server, by isolating as few compromised nodes
as possible. In addition, even though the causative attacks can cause the
agent to make incorrect decisions, adversarial training shows great potential
for mitigating the impact.

The remainder of the paper is organised as follows: Sect. 2 briefly introduces
the fundamental concepts in RL and SDN; Sect. 3 defines the research problem;
Sect. 4 introduces in detail the different forms of proposed attacks against RL;
Sect. 5 presents the experimental results on applying RL for autonomous defence
in SDN, and the impact of those causative attacks; Sect. 6 overviews previous
work on adversarial machine learning (including attacks against reinforcement
learning) and existing countermeasures; Sect. 7 concludes the paper, and offers
directions for future work.

2 Preliminaries

Before defining the research problems investigated in this paper, we first briefly
introduce the basic concepts in reinforcement learning and software-defined net-
working.

2.1 Reinforcement Learning

In a typical reinforcement learning setting [56], an agent repeatedly interacts
with the environment: at each time step t, the agent (1) observes a state st of
the environment; (2) chooses an action at based on its policy π—a mapping
from the observed states to the actions to be taken; and (3) receives a reward
rt and observes next state st+1. This process continues until a terminal state
is reached, and then a new episode restarts from a certain initial state. The
agent’s objective is to maximise its discounted cumulative rewards over the long
run: Rt =

∑∞
τ=t γτ−trτ , where γ ∈ (0, 1] is the discount factor that controls the

trade-off between short-term and long-term rewards.
Under a given policy π, the value of taking action a in state s is defined

as: Qπ(s, a) = E[Rt|st = s, at = a, π]. Similarly, the value of state s is defined
as: V π(s) = E[Rt|st = s, π]. In this paper, we mainly focus on two widely
cited RL algorithms: Double Deep Q-Networks (DDQN) [24] and Asynchronous
Advantage Actor-Critic (A3C) [38].

148 Y. Han et al.

Q-Learning. Q-learning [56] approaches the above problem by estimating the
optimal action value function Q∗(s, a) = maxπ Qπ(s, a). Specifically, it uses the
Bellman equation Q∗(s, a) = Es′ [r + γ maxa′ Q∗(s′, a′)] to update the value iter-
atively. In practice, Q-learning is commonly implemented by function approxi-
mation with parameters θ: Q∗(s, a) ≈ Q(s, a; θ). At each training iteration i, the
loss function is defined as: Li(θi) = E[(r + γ maxa′ Q(s′, a′; θi−1) − Q(s, a; θi))2].

Deep Q-Networks (DQN). Classic Q-learning networks suffer from a number
of drawbacks, including (1) the i.i.d. (independent and identically distributed)
requirement of the training data being violated as consecutive observations are
correlated, (2) unstable target function when calculating Temporal Difference
(TD) errors, and (3) different scales of rewards. Deep Q networks (DQN) [39]
overcome these issues by (1) introducing experience replay, (2) using a target
network that fixes its parameters (θ−) and only updates at regular intervals,
and (3) clipping the rewards to the range of [−1, 1]. The loss function for DQN
becomes: Li(θi) = E[(r + γ maxa′ Q(s′, a′; θ−

i) − Q(s, a; θi))2].

Double DQN (DDQN). To further solve the problem of value overestimation,
Hasselt et al. [24] generalise the Double Q-learning algorithm [23] proposed in
the tabular setting, and propose Double DQN (DDQN) that separates action
selection and action evaluation, i.e., one DQN is used to determine the max-
imising action and a second one is used to estimate its value. Therefore, the loss
function is: Li(θi) = E[(r + γQ(s′, arg maxa′ Q(s′, a′; θi); θ−

i) − Q(s, a; θi))2].

Prioritised Experience Replay. Experience replay keeps a buffer of past
experiences, and for each training iteration, it samples uniformly a batch of
experiences from the buffer. Prioritised experience replay [53] assigns higher
sampling probability to transitions that do not fit well with the current esti-
mation of the Q function. For DDQN, the error of an experience is defined as
|r + γQ(s′, arg maxa′ Q(s′, a′; θ); θ−) − Q(s, a; θ)|.
Asynchronous Advantage Actor-Critic (A3C). Mnih et al. [38] propose
an asynchronous variant of the classical actor-critic algorithm, which estimates
both the state value function V (s; θv) and a policy π(a|s; θp). Specifically, the
A3C algorithm uses multiple threads to explore different parts of the state space
simultaneously, and updates the global network in an asynchronous way. In addi-
tion, instead of using discounted returns to determine whether an action is good,
A3C estimates the advantage function so that it can better focus on where the
predictions are lacking.

2.2 Software-Defined Networking

In order to better serve today’s dynamic and high-bandwidth applications, a
new architecture called Software-Defined Networking (SDN) has emerged [2].
There are three layers in the SDN architecture: (1) the application layer includes
applications that deliver services. These applications communicate their network
requirements to the controller via northbound APIs; (2) the SDN controller
translates these requirements into low-level controls, and sends them through

Reinforcement Learning for Autonomous Defence 149

southbound APIs to the infrastructure layer; (3) the infrastructure layer com-
prises network switches that control forwarding and data processing. One major
advantage of SDN is that it decouples network control and forwarding functions,
rendering the controller directly programmable. As a result, network resources
can be conveniently managed, configured and optimised using standardised pro-
tocols. There have been a number of proprietary and open-source SDN controller
software platforms. In this paper, we have opted to use OpenDaylight [35], which
is the largest open-source SDN controller today and which is updated regularly.

3 Problem Statement

In this paper, we seek to answer the question: Can reinforcement learning be used
for autonomous defence in SDN? We start with a scenario that does not consider
the attacker poisoning the training process, and then investigate the impact
of adversarial reinforcement learning. While we also briefly discuss potential
countermeasures, we largely leave defences to future work.

3.1 Reinforcement Learning Powered Autonomous Defence in SDN

Consider a network of N nodes (e.g., Fig. 1), H = {h1, h2, ..., hN}, where HC ⊂
H is the set of critical servers to be protected (blue nodes in Fig. 1), HM ⊂ H
is the set of possible migration destinations for h ∈ HC (green nodes), and
HA ⊂ H is the set of nodes that have initially been compromised (red nodes).
The attacker aims to propagate through the network, and penetrate the mission
critical servers, while the defender/SDN controller monitors the system state,
and takes appropriate actions in order to preserve the critical servers and as
many non-critical nodes as possible.

Reflecting suggestions from past work, we consider a defender adopting RL.
In this paper, we start with a simplified version, and make the following assump-
tions (Sect. 7 explains how they may be replaced): (1) each node (or link) only
has two states: compromised/uncompromised (or on/off); (2) both the defender
and the attacker know the complete network topology; (3) the defender has in
place a detection system that can achieve a detection rate of 90%, with no false
alarms (before the causative attacks); (4) the attacker needs to compromise all
nodes on the path (i.e., cannot “hop over” nodes). Given these assumptions, in
each step the defender:

1. Observes the state of the network—whether a node is compromised, and
whether a link is switched on/off, e.g., there are 32 nodes and 48 links in Fig. 1,
so one state is an array of 80 0s/1s, where 0 means the node is uncompromised
or the link is switched off, and 1 means the node is compromised or the link
is switched on;

2. Takes an action that may include: (i) isolating and patching a node; (ii) recon-
necting a node and its links; (iii) migrating the critical server and selecting
the destination; and (iv) taking no action. Note that, in this scenario, the
defender can only take one type of action at a time, and if they decide to
isolate/reconnect, only one node can be isolated/reconnected at a time;

150 Y. Han et al.

Table 1. Problem description: RL powered autonomous defence in SDN

Defender Attacker

State (1) Whether each node is compromised;
(2) Whether each link is turned on/off.

Actions (1) Isolate and patch a node;
(2) Reconnect a node and its links;
(3) Migrate the critical server and select
the destination;
(4) Take no action

Compromise a node that satisfies
certain conditions, e.g., the node (1) is
closer to the “backbone” network; (2)
is in the backbone network; or (3) in
the target subnet

Goals (1) Preserve the critical servers;
(2) Keep as many nodes
uncompromised and reachable from the
critical servers as possible.

Compromise the critical servers

3. Receives a reward based on (i) whether the critical servers are compromised;
(ii) the number of nodes reachable from the critical servers; (iii) the number of
compromised nodes; (iv) migration cost; and (v) whether the action is valid,
e.g., it is invalid to isolate a node that has already been isolated.

Meanwhile, the attacker carefully chooses the nodes to compromise. For
example, in the setting of Fig. 1, they infect a node only if it (1) is closer to
the “backbone” network (nodes on the dashed circle); (2) is in the backbone
network; or (3) is in the target subnet. Table 1 summarises this problem setting.

3.2 Causative Attacks Against RL Powered Autonomous Defence
System

As an online system, the autonomous defence system continues gathering new
statistics, and keeps training/updating its model. Therefore, it is necessary and
crucial to analyse the impact of an adversarial environment, where malicious
users can manage to falsify either the rewards received by the agent, or the
states of certain nodes. In other words, this is a form of causative attack that
poisons the training process, in order for the tampered model to take sub-optimal
actions. In this paper, we investigate the two forms of attacks below.

1. Flipping reward signs. Suppose that without any attack, the agent would
learn the following experience (s, a, s′, r), where s is the current system state,
a is the action taken by the agent, s′ is the new state, and r is the reward.
In our scenario, we permit the attacker to flip the sign of a certain number of
rewards (e.g., 5% of all experiences), and aim to maximise the loss function
of the RL agent. This is an extreme case of the corrupted reward channel
problem [19], where the reward may be corrupted due to sensor errors, hijacks,
etc.

2. Manipulating states. Again, consider the case where the agent learns an
experience (s, a, s′, r) without any attack. Furthermore, when the system

Reinforcement Learning for Autonomous Defence 151

reaches state s′, the agent takes the next optimal action a′. The attacker
is then allowed to introduce one false positive (FP) and one false negative
(FN) reading in s′, i.e., one uncompromised/compromised node is reported
as compromised/uncompromised to the defender. As a result, instead of learn-
ing (s, a, s′, r), the agent ends up observing (s, a, s′ +δ, r′) (where δ represents
the FP and FN readings), and consequently may not take a′ in the next step.

4 Attack Mechanisms

This section explains in detail the mechanisms of the attacks introduced above.

4.1 Attack I: Maximise Loss Function by Flipping Reward Signs

Recall that the DDQN agent aims to minimise the loss function: Li(θi) = E[(r+
γQ(s′, arg maxa′ Q(s′, a′; θi); θ−

i) − Q(s, a; θi))2]. In the ith training iteration, θi

is updated according to the gradient of ∂Li/∂θi. The main idea for the first form
of attack is to falsify certain rewards based on ∂Li/∂r, in order to maximise the
loss Li.

Specifically, after the agent samples a batch of experiences for training, we
calculate the gradient of ∂Li/∂r for each of them, and flip the sign of experience
with the largest absolute value of the gradient |∂Li/∂r| that satisfies r · ∂Li/∂r <
0 (if r · ∂Li/∂r > 0 flipping the sign decreases the loss function).

4.2 Attack II: Prevent Agent from Taking Optimal/Specific Actions
by Manipulating States

Our experimental results show that the above form of attack is indeed effective
in increasing the agent’s loss function. However, it only delays the agent from
learning the optimal actions. Therefore, the second form of attack directly targets
the value function Q (against DDQN agent) or the policy π (against A3C agent).

1. Indiscriminate attacks. For each untampered experience (s, a, s′, r), indis-
criminate attacks falsify the states of two nodes in the new state s′, in order to
prevent the agent from taking the next optimal action a′ that has been learned
so far (which may be different from the final optimal action for the given
state), i.e., against DDQN agent the attacks minimise maxa′ Q(s′ + δ, a′),
while against A3C agent the attacks minimise maxa′ π(a′|s′ + δ).

2. Targeted attacks. Targeted attacks aim to prevent the agent from taking
a specific action (in our case, we find that this is more effective than tricking
the agent to take a specific action). As an extreme case, this paper allows the
attacker to know the (final) optimal action a∗ that the agent is going to take
next (a∗ may be different from a′), and they seek to minimise the probability
of the agent taking that action: for DDQN, the attacks minimise Q(s′ +δ, a∗);
for A3C, the attacks minimise π(a∗|s′ + δ).

152 Y. Han et al.

Algorithm 1. Attack II – Manipulating states
Input : The original experience (s, a, s′, r); The list of all nodes LN ; Target

action at (at = −1 for indiscriminate attack); The main DQN Q
Output: The tampered experience (s, a, s′ + δ, r′)

1 if at == −1 then
// indiscriminate attack

2 at = arg maxa′ Q(s′, a′);

3 for node n in LN do
4 if n is compromised then
5 mark n as uncompromised;
6 if Q(s′ + δ, at) < minQFN then

// δ represents the FP and/or FN readings
7 FN = n;
8 minQFN = Q(s′ + δ, at);

9 restore n as compromised;

10 else
11 mark n as compromised;
12 if Q(s′ + δ, at) < minQFP then
13 FP = n;
14 minQFP = Q(s′ + δ, at);

15 restore n as uncompromised;

16 Change node FN to uncompromised;
17 Change node FP to compromised;
18 return (s, a, s′ + δ, r′)

The details of the above two types of attacks are presented in Algorithm 1
(Algorithm 1 is for the attacks against DDQN. Due to similarity, the algorithm
for attacks against A3C is omitted). In addition, we consider the following vari-
ants of the attacks:

1. White-box attacks vs. Black-box attacks. In white-box attacks, the
attacker can access the model under training to select the false positive and
false negative nodes, while in black-box attacks, the attacker first trains sur-
rogate model(s), and then uses them to choose the FPs and FNs.

2. Limit on the choice of FPs and FNs. The above attacks do not set any
limit on the choice of FPs and FNs, and hence even though the attacker can
only manipulate the states of two nodes each time, overall, they still need to
be able to control a number of nodes, which is not practical. Therefore, we
first run unlimited white-box attacks, identify the top two nodes that have
been selected most frequently as FPs and FNs respectively, and only allow
the attacker to manipulate the states of those nodes.

3. Limit on the timing of the attack. The last type of attacks only introduces
FPs and FNs in the first m steps (e.g., m = 3) in each training episode.

Reinforcement Learning for Autonomous Defence 153

5 Experimental Verification

This section begins with a discussion of the experimental results obtained when
applying RL to autonomous defence in a SDN environment without consider-
ing causative attacks. We then analyse the impact of the two forms of attacks
explained in Sect. 4. Finally, we discuss adopting adversarial training as a poten-
tial countermeasure, and present some preliminary results. Experiments on
causative attacks were performed on eight servers (equivalent to two Amazon
EC2 t2.large instances and six t2.xlarge instances [1]), and each set of experi-
ments was repeated 15 to 25 times.

5.1 Autonomous Defence in a SDN

For our experiments, as shown in Fig. 1, we created a network with 32 nodes and
48 links using Mininet [3], one of the most popular network emulators. OpenDay-
light [4,35] serves as the controller, and monitors the whole-of-network status.
The RL agent retrieves network information and takes appropriate operations by
calling corresponding APIs provided by OpenDaylight. In the setup, the three
nodes in red, i.e., nodes 1.5, 2.7 and 3.6, have already been compromised. Node
3.8 is the critical server to be protected, and it can be migrated to node 3.9 or
4.5.

We trained a DDQN (with Prioritised Experience Relay) agent and an A3C
agent. We set the length of training such that the reward per episode for both
agents reached a stable value well before training ended. The two agents learned
two slightly different responses: the DDQN agent decides to first isolate node 3.6,
then 1.3, 2.2 and finally 2.1, which means 21 nodes are preserved (see Fig. 2a);
while the A3C agent isolates nodes 1.5, 3.3, 2.2 and 2.1, keeping 20 nodes uncom-
promised and reachable from the critical server (see Fig. 2b).

Subnet 1
Subnet 2

Subnet 4Subnet 3

1.1

1.2 2.1

2.2

3.1

3.2 4.1

4.2

1.3

1.41.5

1.6

2.3

2.4

2.5
2.6

2.7 2.8

3.3

3.4

3.53.6

3.7

3.8 3.9

4.3

4.4

4.5 4.6 4.7

4.8

4.9

A acker’s host

Cri cal server

Possible migra on
des na on

Subnet 1
Subnet 2

Subnet 4Subnet 3

1.1

1.2 2.1

2.2

3.1

3.2 4.1

4.2

1.3

1.41.5

1.6

2.3

2.4

2.5
2.6

2.7 2.8

3.3

3.4

3.53.6

3.7

3.8 3.9

4.3

4.4

4.5 4.6 4.7

4.8

4.9

A acker’s host

Cri cal server

Possible migra on
des na on

Fig. 2. Optimal results without causative attacks (nodes in the shade are preserved)

154 Y. Han et al.

0.5 1 1.5 2 2.5 3
No. of training episode 105

0

200

400

600

800

1000

C
um

ul
at

iv
e

lo
ss

 Attack I: flipping reward sign
 Without attack

Training starts

Fig. 3. Cumulative loss before and after flipping reward sign attacks (against DDQN)

5.2 Attack I: Flipping Reward Sign

This subsection presents the results of the first form of attack that flips the
reward sign. In our experiments, we limit the total number of tampered experi-
ences to 5% of all experiences obtained by the agent, and also set the number of
tampered experiences per training iteration to the range of [1, 5].

As can be seen in Fig. 3, the attack is effective in increasing the agent’s loss
function. However, our results also suggest that this form of attack only delays
the training as the agent still learns the optimal actions (although the delay can
be significant).

5.3 Attack II: Manipulate State—Indiscriminate Attacks

Unlimited White-Box Attacks. We start with unlimited indiscriminate
white-box attacks, the case where the attacker has full access to the model under
training. For each experience (s, a, s′, r) obtained by the agent, they can manip-
ulate the states of any two nodes in s′, i.e., one false positive and one false nega-
tive, in order to prevent the agent from taking the next optimal action a′ that has
been learned so far (note that it may be different from the final optimal action).
Specifically, for the DDQN agent, the attacker minimises maxa′ Q(s′ + δ, a′); for
the A3C agent, the attacker minimises maxa′ π(a′|s′ + δ).

Figure 4 presents the results we obtained during our experiments. The left-
most bars in Figs. 4a and 4b suggest that the unlimited indiscriminate white-box
attacks are very effective against both DDQN and A3C. Specifically, the average
number of preserved nodes decreases from 21 and 20 to 3.3 and 4.9, respectively.

White-Box Attacks with Limits on the Choices of False Positive and
False Negative. As pointed out in Subsect. 3.2, even though the attacker only
manipulates the states of two nodes each time, overall, they still need to be
able to control a number of nodes, which is unlikely in practice. We calculate
the number of times that each node is chosen in the above unlimited attacks,
and find that some nodes are selected more frequently than others (Fig. 5; the
histograms for the A3C case are omitted due to similarity).

Therefore, when poisoning the DDQN agent, we limit the false positive nodes
to {3.5 (node ID 18), 4.1 (node ID 23)}, and limit the false negative nodes to

Reinforcement Learning for Autonomous Defence 155

 No limit,
 Whitebox

 FP {18,23},
 Whitebox

 FP {18,23},
 FN {12,19},
 Whitebox

 FP {18,23},
 FN {12,19},
 Blackbox
 (DDQN)

 FP {18,23},
 FN {12,19},
 Blackbox
 (A3C)

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 a

tta
ck

s

0

4

8

12

16

20

N
o.

 o
f p

re
se

rv
ed

 s
er

ve
rs

 Have no impact
 Cause fewer nodes to be preserved
 Cause the critical server to be compromised
 Average number of preserved servers

 No limit,
 Whitebox

 FP {2,18},
 Whitebox

 FP {2,18},
 FN {12,4},
 Whitebox

 FP {2,18},
 FN {12,4},
 Blackbox
 (A3C)

 FP {2,18},
 FN {12,4},
 Blackbox
 (DDQN)

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 a

tta
ck

s

0

4

8

12

16

20

N
o.

 o
f p

re
se

rv
ed

 s
er

ve
rs

 Have no impact
 Cause fewer nodes to be preserved
 Cause the critical server to be compromised
 Average number of preserved servers

Fig. 4. Indiscriminate attacks against DDQN & A3C. The bars indicates the percentage
of attacks (left y−axis) that (1) have no impact; (2) cause fewer nodes to be preserved;
and (3) cause the critical server to be compromised. The line marked by “×” indicates
the average number of preserved servers (right y−axis). The five types of attacks are:
(1) white-box, no limit on FNs&FPs; (2) white-box, with limits on FP but not on FN,
(3) white-box, with limits on both FP and FN; (4) black-box, same algorithm, with
limits on both FPs and FNs; (5) black-box, different algorithm, with limits on both
FPs and FNs.

{2.7 (node ID 12), 3.6 (node ID 19)}. We use node 4.1 instead of 3.4 (node
ID 17), as otherwise both selected nodes would be from the target subnet and
directly connected to the target, which is unlikely in real situations. In the A3C
case, the false positive and false negative nodes are limited to {1.3 (node ID 2),
3.5 (node ID 18)}, and {2.7 (node ID 12), 1.5 (node ID 4)}, respectively.

The second and third bars in Figs. 4a and 4b show that the limit has an
obvious negative impact on the attack, especially the limit on the false negative
nodes. Still, less than half of the nodes are preserved on average, compared with
the scenarios without attacks.

Fig. 5. Histograms of the false positive and false negative nodes being selected against
DDQN. N.B.: The node IDs {0, 1, ..., 31} are ordered and mapped to the node sequence
{1.1, 1.2, ..., 1.6, 2.1, ..., 2.8, 3.1, ..., 3.9, 4.1, ..., 4.9}

156 Y. Han et al.

Black-Box Attacks with Limits on the Choices of False Positive and
False Negative Nodes. In our black-box attacks (both intra- and cross-
models), the attacker does not have access to the training model. Instead, they
train their own agents first, and use the surrogate models to poison the training
of the target models by choosing false positive and false negative nodes. Specif-
ically, we have trained a few DDQN and A3C agents with a different number
of hidden layers from the target model, and observed that these surrogates can
still prevent the critical server from compromising.

As illustrated by the rightmost two bars in Figs. 4a and b, black-box attacks
are only slightly less effective than the counterpart white-box attacks despite the
surrogate using a different model. This lends support that transferability also
exists between RL algorithms, i.e., attacks generated for one model may also
transfer to another model.

5.4 Attack II: Manipulate State—Targeted Attacks

In the targeted attacks considered here, the attacker is assumed to know the
sequence of final optimal actions, and attempts to minimise the probability of
the agent following that sequence. It should be pointed out that we have also
studied the case where the attacker instead maximises the probability of taking
a specific non-optimal action for each step, but our results suggested that this
is less effective.

We find that in targeted attacks, certain nodes are also selected more fre-
quently as a false positive and false negative. In this scenario, we limit false
positive nodes to (1) {3.5 (node ID 18), 4.1 (node ID 23)} against DDQN, (2)
{2.6 (node ID 11), 1.4 (node ID 3)} against A3C, and limit false negative nodes
to (1) {1.5 (node ID 4), 2.1 (node ID 6)} against DDQN, (2) {4.1 (node ID 23),
2.4 (node ID 9)} against A3C.

Our results, summarised in Fig. 6, indicate that (1) compared with the
results on indiscriminate attacks, targeted attacks work better, especially against
DDQN (fewer nodes are preserved on average), as the attacker is more knowl-
edgeable in this case; (2) similar to the indiscriminate case, black-box attacks
achieve comparable results to the white-box attacks, further demonstrating the
transferability between DDQN and A3C.

5.5 Timing Limits for the Attacks

The attacks discussed so far allowed the attacker to poison every experience
obtained by the agent. A possible limitation on this assumption is to examine
whether these attacks can remain successful when the attacker can only manipu-
late part of the experiences. Therefore, in this subsection we shall look at attacks
that poison only a subset (the first three steps) in each training episode.

Figures 7a and 7b depict the results of the time-limited version of (cross-
model) black-box attacks against DDQN and white-box attacks against A3C
(both with limit on the choices of FPs and FNs), respectively. The results suggest

Reinforcement Learning for Autonomous Defence 157

 FP {18,23},
 FN {4,6},
 Whitebox

 FP {18,23},
 FN {4,6},
 Blackbox
 (DDQN)

 FP {18,23},
 FN {4,6},
 Blackbox
 (A3C)

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 a

tta
ck

s

0

4

8

12

16

20

N
o.

 o
f p

re
se

rv
ed

 s
er

ve
rs

 Have no impact
 Cause fewer nodes to be preserved
 Cause the critical server to be compromised
 Average number of preserved servers

 FP {11,3},
 FN {23,9},
 Whitebox

 FP {11,3},
 FN {23,9},
 Blackbox
 (A3C)

 FP {11,3},
 FN {23,9},
 Blackbox
 (DDQN)

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 a

tta
ck

s

0

4

8

12

16

20

N
o.

 o
f p

re
se

rv
ed

 s
er

ve
rs

 Have no impact
 Cause fewer nodes to be preserved
 Cause the critical server to be compromised
 Average number of preserved servers

Fig. 6. Targeted attacks against DDQN & A3C.

 Indiscriminate
 FP {18,23},
 FN {12,19},
 Blackbox
 (A3C)

 Targeted
 FP {18,23},
 FN {4,6},
 Blackbox
 (A3C)

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 a

tta
ck

s

0

4

8

12

16

20

N
o.

 o
f p

re
se

rv
ed

 s
er

ve
rs

 Have no impact
 Cause fewer nodes to be preserved
 Cause the critical server to be compromised
 Average number of preserved servers
 No time limit counterpart

 Indiscriminate
 FP {2,18},
 FN {12,4},
 Whitebox

 Targeted
 FP {11,3},
 FN {23,9},
 Whitebox

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 a

tta
ck

s

0

4

8

12

16

20

N
o.

 o
f p

re
se

rv
ed

 s
er

ve
rs

 Have no impact
 Cause fewer nodes to be preserved
 Cause the critical server to be compromised
 Average number of preserved servers
 No time limit counterpart

Fig. 7. Attacks against DDQN&A3C with time limit. The attacker only poisons the
first three steps per training episode.

that even though the time limit has a negative impact in every scenario studied,
the attacks are still effective.

5.6 Discussion on Countermeasures

In supervised learning problems, adversarial training [21,57,58] has the defender
select a target point (x, y) from the training set, modify x to x∗ (i.e., generates an
adversarial sample), and then inject (x∗, y) back into the training set, under the
implicit assumption that the true label y should not change given the instance
has been only slightly perturbed.

In our RL setting, while the attacker manipulates the observed states to
minimise the probability of the agent taking the optimal action a in state s,
the defender can construct adversarial samples that counteract the effect. For
example, for each experience (s, a, s′, r), the defender can increase r by a small
amount, e.g., 5% of the original value, given that r is positive and a is not
chosen randomly (the probability of choosing an action randomly decreases as
the training proceeds). The rationale behind this modification is that when the
poisoning attack starts out, it is likely that a is still the optimal action (that
has been learned so far) for state s. If r is positive it means that action a is
a relatively good option for s, and since the attacker has poisoned the state to
prevent the agent from taking a, we slightly increase r to encourage the agent
to take action a.

158 Y. Han et al.

 Before
 adversarial training

 After
 adversarial training

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 a

tta
ck

s

0

4

8

12

16

20

N
o.

 o
f p

re
se

rv
ed

 s
er

ve
rs

 Have no impact
 Cause fewer nodes to be preserved
 Cause the critical server to be compromised
 Average number of preserved servers

Fig. 8. Adversarial training against indiscriminate white-box attacks with limits on
the choices of FPs and FNs (against DDQN), FP ∈ {18, 23}, FN ∈ {12, 19}

We have tested the above idea against indiscriminate white-box attacks with
a limit on the choices of FPs and FNs against DDQN. Specifically, for each
experience (s, a, s′, r) whose r is positive and a is not selected randomly, we
change it to (s, a, s′,min(1.0, 1.05r)). Note that our experimental results suggest
that adding 5% error to the reward signal when there is no attack will not prevent
the agent from learning the optimal actions, although it may cause some delay.
The results in Fig. 8 indicate that adversarial training can make the training
process much less vulnerable.

However, the results are still preliminary, and we plan to further investigate
other forms of adversarial training. For example, Pinto et al. [51] model all
potential disturbances as an extra adversarial agent, whose goal is to minimise
the discounted reward of the leading agent. They formulate the policy learning
problem as a two player zero-sum game, and propose an algorithm that optimises
both agents by alternating learning one agent’s policy with the other policy being
fixed. In addition, we will also study the impact of the loss function, prioritised
experience replay, ensemble adversarial training [58] and other, more intrusive
types of attacks, where the adversary is aware of the defence method, and attacks
the defended model.

6 Related Work

This section reviews ways in which attackers can target machine learning sys-
tems and current defence mechanisms. We first present a taxonomy on attacks
against (primarily) supervised classifiers, and then summarise recent work that
applies/modifies these attacks to manipulate RL systems. Finally, we review
existing countermeasures against adversarial machine learning.

6.1 Taxonomy of Attacks Against Machine Learning Classifiers

Barreno et al. [6] develop a qualitative taxonomy of attacks against ML classi-
fiers based on three axes: influence (causative vs. exploratory attacks), security
violation (integrity vs. availability attacks) and specificity (indiscriminate vs.
targeted attacks).

Reinforcement Learning for Autonomous Defence 159

Table 2 uses the taxonomy to classify previous work on adversarial machine
learning against classifiers. As can be seen, more focus has been paid to
exploratory integrity attacks. Presently, the Fast Gradient Sign Method (FGSM)
attack [21] is widely studied, and the C&W attack [14] is the most effective found
so far on the application domains tested, mostly in computer vision. Both of these
attack methods can be used for targeted or indiscriminate attacks.

With further examination of the attacker’s capabilities, a powerful attacker
may also know the internal architecture and parameters of the classifier. There-
fore, a fourth dimension can be added to the above taxonomy according to
attacker information: in white-box attacks, the adversary generates malicious
instances against the target classifier directly; while in black-box attacks, since
the attacker does not possess full knowledge about the model, they first approx-
imate the target’s model. Then if the reconstructed model generalises well, the
crafted adversarial examples against this model can be transferred to the target
network and induce misclassifications. Papernot et al. [47,48] have demonstrated
the effectiveness of the black-box attack in certain specific domains.

6.2 Attacks Against Reinforcement Learning

In more recent studies, several papers have begun to study whether attacks
against classifiers can also be applied to RL-based systems. Huang et al. [28] have
shown that deep RL is vulnerable to adversarial samples generated by the Fast
Gradient Sign Method [21]. Their experimental results demonstrate that both
white-box and black-box attacks are effective, even though the less knowledge
the adversary has, the less effective the adversarial samples are. Behzadan &
Munir [8] establish that adversaries can interfere with the training process of
DQNs, preventing the victim from learning the correct policy. Specifically, the
attacker applies minimum perturbation to the state observed by the target,
so that a different action is chosen as the optimal action at the next state.
The perturbation is generated using the same techniques proposed against DNN
classifiers. Lin et al. [34] propose strategically-timed attacks and enchanting
attacks against deep reinforcement learning agents.

6.3 Adversarial Machine Learning Defences

A number of countermeasures have been proposed since the discovery of adver-
sarial samples. These can be roughly categorised into two classes: data-driven
defences and learner robustification.

Data-Driven Defences. This class of defences are data driven—they either
filter out the malicious data, inject adversarial samples into the training dataset,
or manipulate features via projection. These approaches are akin to black-box
defences since they make little to no use of the learner.

160 Y. Han et al.

Table 2. Taxonomy of attacks on machine learners, with representative past work. As
the taxonomy was designed for supervised learners, we include attacks on reinforcement
learning in Sect. 6.2.

Integrity Availability

Causative,
targeted

Rubinstein et al. [52]: boiling frog attacks
against the PCA anomaly detection
algorithm; Li et al. [32]: poison training
data against collaborative filtering
systems; Mei and Zhu [36]: identify the
optimal training set to manipulate
different machine learners; Burkard and
Lagesse [12]: targeted causative attack on
SVMs that are learning from a data
stream

Newsome et al. [45]:
manipulate training set
of classifiers for worms
and spam to block
legitimate instances;
Chung and Mok [16]:
generate harmful
signatures to filter out
legitimate network
traffic

Causative,
indiscriminate

Biggio et al. [11]: inject crafted training
data to increase SVM’s test error; Xiao
et al. [60]: label flips attack against
SVMs; Koh and Liang [29]: minimise the
number of crafted training data via
influence analysis

Newsome et al. [45];
Chung and Mok [16];
Nelson et al. [43]:
exploit statistical
machine learning
against a popular email
spam filter

Exploratory,
targeted

Nelson et al. [44]: probe a classifier to
determine good attack points; Papernot
et al. [49]: exploits forward derivatives to
search for the minimum regions of the
inputs to perturb; Goodfellow et al. [21]:
design FGSM to generate adversarial
samples; Carlini and Wagner [14]:
propose the C&W method for creating
adversarial samples; Han and Rubinstein
[22]: improve the gradient descent
method by replacing with gradient
quotient

Moore et al. [40]:
provide quantitative
estimates of
denial-of-service
activity

Exploratory,
indiscriminate

Biggio et al. [10]: find attack instances
against SVMs via gradient descent;
Szegedy et al. [57] demonstrate that
changes imperceptible to human eyes can
make DNNs misclassify an image;
Goodfellow et al. [21]; Papernot et al.
[47,48]: attack the target learner via a
surrogate model; Moosavi-Dezfooli et al.
[41,42]: propose DeepFool against DNNs;
Carlini and Wagner [14]; Nguyen et al.
[46]: produce images that are
unrecognisable to humans, but can be
recognised by DNNs; Han and
Rubinstein [22]

Moore et al. [40]

Reinforcement Learning for Autonomous Defence 161

– Filtering instances. These counter-measures assume that the poisoning data
in the training dataset or the adversarial samples against the test dataset
either exhibit different statistical features, or follow a different distribution.
Therefore, they propose to identify and filter out the injected/perturbed
data [20,30,33,37,55].

– Injecting data. Goodfellow et al. [21] attribute the existence of adversarial
samples to the “blind spots” of the training algorithm, and propose injecting
adversarial examples into training to improve the generalisation capabilities
of DNNs [21,57]. Tramer et al. [58] extend such adversarial training methods
by incorporating perturbations generated against other models.

– Projecting data. Previous work has shown that high dimensionality facilitates
the generation of adversarial samples, resulting in an increased attack sur-
face [59]. To counter this, data can be projected into lower-dimensional space
before testing [9,17,61]. However, these results contradict with [31], which
suggests that more features should be used when facing adversarial evasion.

Learner Robustification. Rather than focusing solely on training and test
data, this class of methods—which are white-box in nature—aim to design mod-
els to be less susceptible to adversarial samples in the first place.

– Stabilisation. Zheng et al. [62] design stability training that modifies the
model’s objective function by adding a stability term. Papernot et al. [50]
provide examples using a distillation strategy against a saliency-map attack.
However, this method is shown to be ineffective by Carlini and Wagner [13].
Hosseini et al. [26] propose to improve adversarial training by adding an addi-
tional “NULL” class.

– Moving target. Sengupta et al. [54] apply moving target defences against
exploratory attacks: the defender prepares a pool of models instead of a single
model, and for each image to be classified, one trained DNN is picked following
certain strategy.

– Robust statistics. Another avenue that has remained relatively unexplored is
to leverage ideas from robust statistics, e.g., influence functions, M -estimators
with robust loss functions. Rubinstein et al. [52] applied a robust form of PCA
to defend against causative attacks on network-wide volume anomaly detec-
tion. Recently, interest in the theoretical computer science community has
turned to robust estimation in high dimensions, e.g., Diakonikolas et al. [18].

Lessons Learned. Despite many defences proposed, several recent studies
[15,25] point out that most of these methods unrealistically assume that the
attacker is not aware of the defence mechanism, and only consider relatively
weak attacks, e.g., FGSM [21]. Negative results are reported on the effectiveness
of these methods against adaptive attackers that are aware of the defence and
act accordingly, and against the C&W attack [14]. More recently, Athalye et al.
[5] show that defences relied on obfuscated gradients can also be circumvented.

162 Y. Han et al.

7 Conclusions and Future Work

In this paper, we demonstrated the feasibility of developing autonomous defence
in SDN using RL algorithms. In particular, we studied the impact of differ-
ent forms of causative attacks, and showed that even though these attacks
might cause RL agents to take sub-optimal actions, adversarial training could
be applied to mitigate the impact.

For future work, we plan to (1) use a traffic generator to introduce back-
ground traffic between nodes, and use network performance metrics to replace
the current binary states; (2) consider different types of network traffic, so that
the actions of the RL agent could include partial isolation in terms of blocking
certain protocols between nodes; (3) change full observability of the network sta-
tus to partial observability—the defender may have limited resources, and the
attacker may not know the entire topology; and (4) remove limiting assumptions,
e.g., the attacker having to compromise all nodes along the path to the critical
server.

References

1. Amazon EC2 Instance Types – Amazon Web Services (AWS). https://aws.amazon.
com/ec2/instance-types/

2. SDN architecture. Technical report, June 2014. https://www.opennetworking.org/
wp-content/uploads/2013/02/TR SDN ARCH 1.0 06062014.pdf

3. Mininet: An Instant Virtual Network on your Laptop (2017). http://mininet.org/
4. OpenDaylight (2017). https://www.opendaylight.org/
5. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of

security: circumventing defenses to adversarial examples. arXiv:1802.00420 [cs],
February 2018

6. Barreno, M., Nelson, B., Joseph, A.D., Tygar, J.D.: The security of machine learn-
ing. Mach. Learn. 81(2), 121–148 (2010)

7. Beaudoin, L.: Autonomic computer network defence using risk states and rein-
forcement learning. Ph.D. thesis, University of Ottawa (Canada) (2009)

8. Behzadan, V., Munir, A.: Vulnerability of deep reinforcement learning to policy
induction attacks. eprint arXiv:1701.04143 (2017)

9. Bhagoji, A.N., Cullina, D., Mittal, P.: Dimensionality reduction as a defense
against evasion attacks on machine learning classifiers. arXiv:1704.02654 (2017)

10. Biggio, B., et al.: Security evaluation of support vector machines in adversarial
environments. In: Ma, Y., Guo, G. (eds.) Support Vector Machines Applications,
pp. 105–153. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02300-7 4

11. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector
machines. In: Proceedings of the 29th International Conference on International
Conference on Machine Learning, pp. 1467–1474. Omnipress, Edinburgh (2012)

12. Burkard, C., Lagesse, B.: Analysis of causative attacks against SVMs learning
from data streams. In: Proceedings of the 3rd ACM on International Workshop on
Security And Privacy Analytics, pp. 31–36. ACM, New York (2017)

13. Carlini, N., Wagner, D.: Defensive distillation is not robust to adversarial examples.
arXiv:1607.04311 (2016)

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://www.opennetworking.org/wp-content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/wp-content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf
http://mininet.org/
https://www.opendaylight.org/
http://arxiv.org/abs/1802.00420
http://arxiv.org/abs/1701.04143
http://arxiv.org/abs/1704.02654
https://doi.org/10.1007/978-3-319-02300-7_4
http://arxiv.org/abs/1607.04311

Reinforcement Learning for Autonomous Defence 163

14. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks.
eprint arXiv:1608.04644 (2016)

15. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: bypassing
ten detection methods. eprint arXiv:1705.07263 (2017)

16. Chung, S.P., Mok, A.K.: Advanced allergy attacks: does a corpus really help? In:
Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp.
236–255. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74320-
0 13

17. Das, N., et al.: Keeping the bad guys out: protecting and vaccinating deep learning
with JPEG compression. eprint arXiv:1705.02900, May 2017

18. Diakonikolas, I., Kamath, G., Kane, D.M., Li, J., Moitra, A., Stewart, A.: Robust
estimators in high dimensions without the computational intractability. In: Pro-
ceedings of the 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 655–664, October 2016

19. Everitt, T., Krakovna, V., Orseau, L., Hutter, M., Legg, S.: Reinforcement learning
with a corrupted reward channel. eprint arXiv:1705.08417 (2017)

20. Feinman, R., Curtin, R.R., Shintre, S., Gardner, A.B.: Detecting adversarial sam-
ples from artifacts. eprint arXiv:1703.00410 (2017)

21. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. eprint arXiv:1412.6572 (2014)

22. Han, Y., Rubinstein, B.I.P.: Adequacy of the gradient-descent method for classifier
evasion attacks. arXiv:1704.01704, April 2017

23. Hasselt, H.V.: Double Q-learning. In: Lafferty, J.D., Williams, C.K.I., Shawe-
Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Pro-
cessing Systems 23, pp. 2613–2621. Curran Associates, Inc. (2010)

24. Hasselt, H.V., Guez, A., Silver, D.: Deep reinforcement learning with double Q-
learning. eprint arXiv:1509.06461, September 2015

25. He, W., Wei, J., Chen, X., Carlini, N., Song, D.: Adversarial example defenses:
ensembles of weak defenses are not strong. eprint arXiv:1706.04701 (2017)

26. Hosseini, H., Chen, Y., Kannan, S., Zhang, B., Poovendran, R.: Blocking
transferability of adversarial examples in black-box learning systems. eprint
arXiv:1703.04318 (2017)

27. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., Tygar, J.: Adversarial
machine learning. In: Proceedings of the 4th ACM Workshop on Security and
Artificial Intelligence, pp. 43–58. ACM (2011)

28. Huang, S., Papernot, N., Goodfellow, I., Duan, Y., Abbeel, P.: Adversarial attacks
on neural network policies. eprint arXiv:1702.02284 (2017)

29. Koh, P.W., Liang, P.: understanding black-box predictions via influence functions.
arXiv:1703.04730 [cs, stat], March 2017

30. Laishram, R., Phoha, V.V.: Curie: a method for protecting SVM Classifier from
poisoning attack. arXiv:1606.01584 [cs], June 2016

31. Li, B., Vorobeychik, Y.: Feature cross-substitution in adversarial classification. In:
Proceedings of the 2014 NIPS, NIPS 2014, pp. 2087–2095, MIT Press, Cambridge
(2014)

32. Li, B., Wang, Y., Singh, A., Vorobeychik, Y.: Data poisoning attacks on
factorization-based collaborative filtering. eprint arXiv:1608.08182 (2016)

33. Li, X., Li, F.: Adversarial examples detection in deep networks with convolutional
filter statistics. arXiv:1612.07767 [cs], December 2016

34. Lin, Y.C., Hong, Z.W., Liao, Y.H., Shih, M.L., Liu, M.Y., Sun, M.: Tactics of
adversarial attack on deep reinforcement learning agents. eprint arXiv:1703.06748,
March 2017

http://arxiv.org/abs/1608.04644
http://arxiv.org/abs/1705.07263
https://doi.org/10.1007/978-3-540-74320-0_13
https://doi.org/10.1007/978-3-540-74320-0_13
http://arxiv.org/abs/1705.02900
http://arxiv.org/abs/1705.08417
http://arxiv.org/abs/1703.00410
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1704.01704
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1706.04701
http://arxiv.org/abs/1703.04318
http://arxiv.org/abs/1702.02284
http://arxiv.org/abs/1703.04730
http://arxiv.org/abs/1606.01584
http://arxiv.org/abs/1608.08182
http://arxiv.org/abs/1612.07767
http://arxiv.org/abs/1703.06748

164 Y. Han et al.

35. Medved, J., Varga, R., Tkacik, A., Gray, K.: OpenDaylight: towards a model-driven
SDN controller architecture. In: Proceedings of IEEE International Symposium on
a World of Wireless, Mobile and Multimedia Networks, pp. 1–6 (2014)

36. Mei, S., Zhu, X.: Using machine teaching to identify optimal training-set attacks
on machine learners. In: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, pp. 2871–2877. AAAI Press, Austin (2015)

37. Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial
perturbations. eprint arXiv:1702.04267 (2017)

38. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Pro-
ceedings of the 33rd International Conference on International Conference on
Machine Learning, ICML 2016, vol. 48, pp. 1928–1937. JMLR.org, New York (2016)

39. Mnih, V., et al.: Playing Atari with Deep Reinforcement Learning. CoRR
abs/1312.5602 (2013)

40. Moore, D., Shannon, C., Brown, D.J., Voelker, G.M., Savage, S.: Inferring internet
denial-of-service activity. ACM Trans. Comput. Syst. 24(2), 115–139 (2006)

41. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial
perturbations. eprint arXiv:1610.08401 (2016)

42. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate
method to fool deep neural networks. In: CVPR, pp. 2574–2582 (2016)

43. Nelson, B., et al.: Exploiting machine learning to subvert your spam filter. In:
Proceedings of the First USENIX Workshop on Large-scale Exploits and Emergent
Threats (LEET 2008) (2008)

44. Nelson, B., et al.: Query strategies for evading convex-inducing classifiers. J. Mach.
Learn. Res. 13(May), 1293–1332 (2012)

45. Newsome, J., Karp, B., Song, D.: Paragraph: thwarting signature learning by train-
ing maliciously. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219,
pp. 81–105. Springer, Heidelberg (2006). https://doi.org/10.1007/11856214 5

46. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high
confidence predictions for unrecognizable images. In: CVPR, pp. 427–436 (2015)

47. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learn-
ing: from phenomena to black-box attacks using adversarial samples. eprint
arXiv:1605.07277 (2016)

48. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Prac-
tical black-box attacks against deep learning systems using adversarial examples.
eprint arXiv:1602.02697 (2016)

49. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: Proceedings of the European
Symposium on Security & Privacy, pp. 372–387 (2016)

50. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense
to adversarial perturbations against deep neural networks. eprint arXiv:1511.04508
(2015)

51. Pinto, L., Davidson, J., Sukthankar, R., Gupta, A.: Robust adversarial reinforce-
ment learning. eprint arXiv:1703.02702 (2017)

52. Rubinstein, B.I., et al.: ANTIDOTE: understanding and defending against poison-
ing of anomaly detectors. In: Proceedings of the 9th ACM SIGCOMM Conference
on Internet Measurement, pp. 1–14. ACM (2009)

53. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized Experience Replay.
CoRR abs/1511.05952 (2015)

54. Sengupta, S., Chakraborti, T., Kambhampati, S.: Securing deep neural nets against
adversarial attacks with moving target defense. eprint arXiv:1705.07213, May 2017

http://arxiv.org/abs/1702.04267
http://arxiv.org/abs/1610.08401
https://doi.org/10.1007/11856214_5
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1602.02697
http://arxiv.org/abs/1511.04508
http://arxiv.org/abs/1703.02702
http://arxiv.org/abs/1705.07213

Reinforcement Learning for Autonomous Defence 165

55. Steinhardt, J., Koh, P.W., Liang, P.: Certified defenses for data poisoning attacks.
eprint arXiv:1706.03691, June 2017

56. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT
Press, Cambridge (1998)

57. Szegedy, C., et al.: Intriguing properties of neural networks. eprint arXiv:1312.6199
(2013)

58. Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., McDaniel, P.: Ensemble adver-
sarial training: attacks and defenses. eprint arXiv:1705.07204, May 2017

59. Wang, B., Gao, J., Qi, Y.: A theoretical framework for robustness of (deep) clas-
sifiers against adversarial examples. eprint arXiv:1612.00334 (2016)

60. Xiao, H., Xiao, H., Eckert, C.: Adversarial label flips attack on support vector
machines. In: Proceedings of the 20th European Conference on Artificial Intelli-
gence. ECAI 2012, pp. 870–875, IOS Press, Amsterdam (2012)

61. Zhang, F., Chan, P.P.K., Biggio, B., Yeung, D.S., Roli, F.: Adversarial feature
selection against evasion attacks. IEEE Trans. Cybern. 46(3), 766–777 (2016)

62. Zheng, S., Song, Y., Leung, T., Goodfellow, I.: Improving the robustness of deep
neural networks via stability training. eprint arXiv:1604.04326 (2016)

http://arxiv.org/abs/1706.03691
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1705.07204
http://arxiv.org/abs/1612.00334
http://arxiv.org/abs/1604.04326

	Reinforcement Learning for Autonomous Defence in Software-Defined Networking
	1 Introduction
	2 Preliminaries
	2.1 Reinforcement Learning
	2.2 Software-Defined Networking

	3 Problem Statement
	3.1 Reinforcement Learning Powered Autonomous Defence in SDN
	3.2 Causative Attacks Against RL Powered Autonomous Defence System

	4 Attack Mechanisms
	4.1 Attack I: Maximise Loss Function by Flipping Reward Signs
	4.2 Attack II: Prevent Agent from Taking Optimal/Specific Actions by Manipulating States

	5 Experimental Verification
	5.1 Autonomous Defence in a SDN
	5.2 Attack I: Flipping Reward Sign
	5.3 Attack II: Manipulate State—Indiscriminate Attacks
	5.4 Attack II: Manipulate State—Targeted Attacks
	5.5 Timing Limits for the Attacks
	5.6 Discussion on Countermeasures

	6 Related Work
	6.1 Taxonomy of Attacks Against Machine Learning Classifiers
	6.2 Attacks Against Reinforcement Learning
	6.3 Adversarial Machine Learning Defences

	7 Conclusions and Future Work
	References

