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Abstract. Modern network traffic classification approaches apply machine 
learning techniques to statistical flow properties, allowing accurate classifica-
tion even when traditional approaches fail. We base our approach to the task on 
a state-of-the-art semi-supervised classifier to identify known and unknown 
flows with little labelled training data. We propose a new algorithm for map-
ping clusters to classes to target classes that were previously difficult to classi-
fy. We also apply alternative statistical features. We find our approach has an 
accuracy of 95.10%, over 17% above the technique on which it is based. Addi-
tionally, our approach improves the classification performance on every class. 

1 Introduction 

Network traffic classification is an important task for a range of network-related are-
as, including network management, surveillance, and security. Traffic classification 
has traditionally been performed by inspecting port numbers. However, this is often 
ineffective due to the number of applications using non-unique and non-standard port 
numbers [1]. Deep-packet inspection avoids reliance on port numbers, but demands an 
up-to-date database of application signatures and has significant computational com-
plexity, often making the approach unfeasible for real-world use [2]-[3].  

Machine learning techniques have been gaining popularity for their ability to effec-
tively classify network applications using only statistical flow features [1]-[3] and 
without the drawbacks of more traditional approaches. The open problem we address 
is how to improve the accuracy of traffic classification from applications that have 
been difficult to classify using only statistical traffic flow properties. 

In this paper, we apply a semi-supervised machine learning technique to automati-
cally identify network applications using only statistical traffic flow properties. Our 
approach is based on a leading semi-supervised traffic classification approach [4], 
which can handle flows generated by unknown applications. We propose two innova-
tions to this method in order to further increase its effectiveness.  First, our approach 
introduces an alternate algorithm for identifying applications, Second, we propose 
introducing feature selection into the system model. Based on an empirical evaluation 
on a standard benchmark dataset, we show that our approach has an accuracy of 



95.10%, an increase of over 17% against the technique on which it is based [4]. Addi-
tionally, our approach improves the classification performance on every class. 

2 Related Work 

Current research into traffic classification has shown various supervised, unsuper-
vised, and semi-supervised machine learning techniques to be viable approaches. 
Supervised machine learning approaches [5], [6] have been shown to achieve particu-
larly high classification effectiveness. However, these approaches can only predict 
predefined classes found in the training data. Unsupervised learning approaches [7]-
[8] classify from clusters of unlabelled training flows. While using unlabelled data 
means they can handle known and unknown classes, mapping clusters to classes re-
mains a key challenge.  

Semi-supervised approaches aim to address the problems of both supervised and 
unsupervised approaches. Erman et al. [2] developed an effective semi-supervised 
approach for classifying network applications, combining K-Means clustering with 
probabilistic assignment. Using a small set of labelled flows with a larger unlabelled 
set, clusters with labelled flows can automatically be mapped to classes. Clusters 
without labelled flows represent unknown classes. The key advantage of this tech-
nique is simple class mapping and handling of unknown classes. With few labelled 
instances, however, clusters are often incorrectly labelled "unknown". A recent exten-
sion to this approach by Zhang et al. [4] countered this weakness by automatically 
extending the labelled portion of training data. This was done by identifying correlat-
ed flows – flows sharing the same destination IP address and port, and protocol – and 
sharing labels between them. This approach was shown to significantly increase the 
labels available and thus better label clusters. Furthermore, applying compound clas-
sification to correlated test flows further improved effectiveness. It was shown to 
outperform standard and state-of-the-art machine learning algorithms, including deci-
sion trees, K nearest neighbours, Bayesian networks, and the Erman et al. approach. 

While the Zhang et al. approach is a leading semi-supervised approach for traffic 
classification, certain traffic classes still proved challenging to identify. We aim to 
target these classes for an overall more consistently effective classifier. 

3 Problem Statement 

We are given a set of training flows T = {ti | i = 1, 2, ... n} and a set of testing flows 
X = {xj | j = 1, 2, ... m}, generated on a single network. Each flow represents a bidi-
rectional series of packets between two hosts, sharing the same source and destination 
addresses, port numbers, and protocol. Each flow has been generated by some known 
or unknown traffic class c. For each known class c, a subset of T exists such that Tc = 
{Lc ∩ Uc} and || Lc || << || Uc ||, where Lc is the set of pre-labelled flows of class c and 
Uc is the set of unlabelled flows of class c. For any unknown class c, the subset of T 
containing flows of class c is Tc = {Uc}. That is, none of its flows are pre-labelled.  



From T, we aim to create classifier f (x) = c such that when a flow x is given, a traf-
fic class c is predicted. The traffic class c indicates that flow x was generated by a 
specific known class, or that it was generated by some unknown classes.  

4 Our Proposed Approach 

Figure 1 illustrates the details of our approach. The flow label propagation algo-
rithm is first applied to a large training set containing a small number of labelled 
flows per class. The flow label propagation algorithm uses the correlated flows prop-
erty of network traffic described in Section 2 to automatically increase the number of 
labelled flows. Feature selection algorithms are then applied to this larger labelled set 
to identify the strongest features. Next, clustering is performed on all training data, 
and then labelled flows are used to identify clusters as classes. Finally, the nearest 
cluster classifier predicts flow classes.  

  
Fig. 1. System Model. 

This system model is based on Zhang et al. [4], with some key alterations. Like 
[4], this model's main advantage is its ability to appropriately handle flows generated 
by unknown applications. Creating and identifying “unknown” clusters achieves this. 
However, we propose an alternative cluster labelling algorithm for increased effec-
tiveness. After flow label propagation, we also introduce feature selection to identify 
a stronger feature set. Label propagation can greatly increase the amount of labelled 
data available, allowing feature selection algorithms to work more effectively. Thus 
this step can again increase the classification success. Below we describe our alterna-
tive cluster labelling algorithm, followed by our feature selection approach. 

4.1 Fuzzy Cluster Labelling Algorithm 

The cluster labelling algorithm introduced below is our proposed alternative to the 
algorithm used in [2], [4]. Their algorithm is a simple majority vote; the label for 
some cluster i is the most common label in i. If i has no labelled flows, then it is an 
unknown cluster. We follow the same principle, but our algorithm has two key differ-
ences. First, “unknown” is treated as a traffic class. Second, clusters can be labelled as 
multiple traffic classes. For this reason we dub the algorithm fuzzy cluster labelling.  



Input: training flows T; set of k clusters trained on T 
Output: traffic class labels, labelsi, for each cluster ci 
for i = 1 ← k  
  cij = number of flows labelled as class j in cluster ci 
  labelsi = [argmaxj(cij)] 
  foreach traffic class j  
   if j not in labelsi and cij * threshold > y: 
    append j to labelsi 

Algorithm 1.  Fuzzy Cluster Labelling  

The algorithm requires a reasonable number of pre-labelled flows per class, which 
is achieved in our model by first applying the label propagation from [4]. The thresh-
old ensures we assign additional cluster labels in the case of no clear majority. Other-
wise we give it just one label. The labels are then naturally decided between during 
compound classification. The compound classification stage classifies all correlated 
test flows together via a majority vote of class labels. Using this algorithm, each test 
flow can therefore vote for multiple potential classes. 

4.2 Feature Selection 

Irrelevant or unnecessary features can negatively impact the success of machine 
learning algorithms [9]. Thus, feature selection methods aim to reduce the feature set 
to the most relevant subset. For classifying network flows, it is standard for statistical 
features to be used [3]. However, in our semi-supervised context, we have too few 
pre-labelled flows for feature selection to be effective. This problem is alleviated by 
first applying flow label propagation to the dataset. Once this is applied, there is a 
more reasonable pool of labelled data for feature selection algorithms to use. We re-
duce an initial set of 40 statistical features by applying the extra trees classifier algo-
rithm [10], selected for its efficiency and simplicity, to identify a feature subset.  

5 Experimental Evaluation 

This section evaluates our proposed method against the Zhang method on which it 
is based, as this method has been shown to outperform other standard and state-of-
the-art approaches.  

5.1 Data Set Description 

Table 1. Traffic class breakdown in the sample of the wide dataset used. 

Traffic Class # of Training Flows # of Testing Flows 
HTTP 24,000 6,000 

BitTorrent 2,448 613 
DNS 24,000 6,000 



SMTP 24,000 6,000 
SSH 24,000 6,000 

HTTPS 15,370 3,843 
 
The data used in this experiment originates from a publicly available wide 

(http://mawi.wide.ad.jp/mawi/) network traffic trace. The data used is a sample from 
traffic captured in March 2008. NetMate [11] is used to convert packets into flows 
and compute various features. This dataset was then separated into a training set of 
approximately 114,000 flows and a testing set of approximately 28,500 flows. While 
we acknowledge identifying ground truth classes through standard port numbers will 
introduce some error, this is a common labelling approach used in the literature, and 
the error introduced is expected to be small [12]. A maximum of 24,000 training 
flows and 6,000 testing flows were selected at random per class to prevent over-
representation. Table 1 shows a complete breakdown of classes used. 

5.2 Evaluation Metrics 

Two standard metrics are used to evaluate the performance of the proposed meth-
od. The first method is accuracy, i.e., the number of correctly classified flows out of 
all classifications made. This metric is used to evaluate overall classifier performance. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"##$%&'( !"#$$%&%'( !"#$%
!"#$% !"#$%& !" !"#$%

 (1) 

The second metric used is F-measure, i.e., the weighted harmonic mean of preci-
sion and recall. Precision is defined as the ratio of flows correctly classified as a class 
to all flows classified as that class. Recall is defined as the ratio of flows classified as 
some class to all flows truly belonging to that class.  

 𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  ! × !"#$%&%'( × !"#$%%
!"#$%&%'( ! !"#$%%

 (2) 

The F-Measure is used to evaluate the performance for each class individually. 

5.3 Experimental Setup 

For each experiment, we use 100 pre-labelled flows per known traffic class (HTTP, 
BitTorrent, SSH, and HTTPS). We select DNS and SMTP as unknown classes with 
no pre-labelled flows. We use k-Means as our clustering algorithm. The number of 
clusters for both Zhang’s method and the proposed method is set to k = 500, and each 
experiment is repeated 5 times with results averaged. The large k chosen is appropri-
ate since using a large number of clusters has been shown to result in pure clusters for 
network traffic [8], and the Zhang et al. method has been shown to be robust when 
varying the number of clusters [4]. The features used in our implementation of the 
Zhang approach are 20 statistical features described in [4].  



5.4 Results of Fuzzy Cluster Labelling  

The results of the fuzzy cluster labelling algorithm (with a threshold of 2.5) against 
the original Zhang et al. labelling can be seen in Figure 2. The same statistical fea-
tures from [4] were used in both experimental setups. The labelling threshold parame-
ter was varied between 2.0 and 3.0 and the impact was largely negligible.  

 
Fig. 2. F-Measure per traffic class when applying alternate cluster labelling methods. 

Our proposed labelling algorithm resulted in an increase in F-Measure for every 
class. For classes where the Zhang approach performed well, there was always a 
slight, albeit sometimes insignificant, improvement. For example, the algorithm pro-
duced an increase in F-Measure of just 0.071 and 0.021 for HTTP and HTTPS classes 
respectively. For classes where the Zhang approach did not perform as well, our algo-
rithm made more noticeable improvement. The unknown class improved from 0.733 
to 0.980, an increase of 0.247. The BitTorrent class improved from 0.222 to 0.750, an 
increase of 0.528. We note that the BitTorrent class performed much better in [4] than 
in our implementation of the Zhang's approach. We attribute this to using different 
samples of the same dataset and having few training and test instances for this class. 

5.5 Results of Fuzzy Labelling and Feature Selection 

Table 2. Final feature set used after feature selection. 

Feature Category Description # Of Features 
Bytes (Forwards) Minimum, maximum, and standard deviation of packets. 3 

Bytes (Backwards) Mean, maximum, and standard deviation of packets. 3 
Inter Packet Time 

(Forwards) 
Minimum, mean, maximum, and standard deviation of 

inter packet time in the forward direction. 
4 

Inter Packet Time 
(Backwards) 

Mean, maximum, and standard deviation of inter packet 
time in the reverse direction. 

3 

Duration Duration of the flow. 1 
Flag Whether there was a PSH flag in the forward direction. 1 

Headers Total size of the headers in each direction. 2 

 

Applying feature selection reduced an initial set of 40 statistical features to the 17 
described in Table 2. Applying both the new feature subset and the proposed cluster-



ing algorithm together completes our approach. The combined impact can be seen in 
Figure 3. Figure 3(a) shows the overall accuracy found is an increase from 77.77% to 
95.10%, a significant increase of over 17% against [4].  

The effect on F-Measure in Figure 3(b) shows that our approach improved the F-
Measure for each class when again compared against [4]. The HTTP class increased 
by 0.087 to an F-Measure of 0.913. The F-Measure for the SSH class was 0.997, and 
0.860 for HTTPS. These rose by a very minor 0.002 and 0.043 respectively. The un-
known class grew from 0.733 to 0.980, and BitTorrent from 0.225 to 0.821. 

 
Fig. 3. Overall accuracy and F-Measures of the Zhang et al. approach against our approach. 

Using our alternative feature improved only marginally over the Zhang feature set. 
However, each class performed as well or better than before. Most significantly, the 
BitTorrent class grew by a further 0.070. The HTTP and HTTPS classes found minor 
improvements of 0.013 and 0.016 respectively. The other classes remained as before. 

6 Analysis and Discussion 

The results in Section 5 demonstrate that our approach can significantly improve 
traffic classification effectiveness against a state-of-the-art method. The overall accu-
racy improvement of over 17% demonstrates the potential of our approach. 

The proposed fuzzy cluster labelling algorithm made the most significant impact. 
There are two reasons for this. First, the Zhang approach ignores unlabelled flows 
when labelling, while we make use of them. Many of the unlabelled instances are 
truly of the unknown class, hence our cluster labelling accounts for this. Otherwise 
there is strong bias towards known classes, even when clusters are overwhelmingly 
unknown. While this incorrectly treats some unlabelled known class flows as un-
known, we counter this error with label propagation, multiple labels, and compound 
classification.  The second reason for improvement is to allow multiple labels per 
cluster. The labelling method in [2], [4] would label entire clusters based on its most 
common labelled class. However, there are circumstances when it does not make 
sense to apply this method. While we expect pure clusters in this domain with a large 
k [8], a brief analysis showed some clusters had as low as 35% purity. In these cases, 
majority labelling fails to represent the cluster, and thus explains why multiple labels 
allow such improvement. Our results show that a good choice of threshold can im-
prove the performance of every class. This parameter ensures that pure clusters confi-



dently vote once, while less pure clusters are given multiple class votes. The classes 
that were already classified effectively remained successful. Meanwhile, classes that 
were previously frequently mislabelled exhibited more significant improvement. Ad-
ditionally, fuzzy clustering labelling is seen as efficient in terms of computational 
complexity. Let n represent the number of flows in a cluster, and c represent the num-
ber of traffic classes. The total time complexity for our labelling algorithm is thus O(n 
+ c). There are typically very few classes c compared to flows n. Thus, this is approx-
imately equivalent to the O(n) of the method from [2], [4].  

7 Conclusion 

This paper presented a new take on an existing semi-supervised approach for net-
work traffic classification. An overall accuracy of approximately 95% demonstrated 
the effectiveness of our approach to traffic classification. Furthermore, an improve-
ment in F-Measure for every class demonstrated the effectiveness of fuzzy cluster 
labelling. This allowed our approach to consistently outperform the state-of-the-art 
method on which it is based. The alternative feature set considered also demonstrated 
how stronger feature subsets could be considered to further improve effectiveness. 
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