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Abstract—With the emergence of data streaming applications
that produce large data in motion, anomaly detection in non-
stationary environments has become a major research focus.
The high volume of the data besides its unknown and unstable
behaviour over time, limits the application of traditional anomaly
detection methods that have been designed for stationary data.
Moreover, basic assumptions of many existing works in the
adaptive anomaly detection domain, such as the availability
of labelled data over time or dealing with a known type of
change in the data, are not valid for real-life applications. In
this paper, we propose an unsupervised ensemble based anomaly
detection method using One Class Support Vector Machines
(OCSVMs). The proposed method is able to detect potential
changes in the distribution of the normal data and adapts itself
accordingly, without requiring any external feedback, e.g., ground
truth labels. Moreover, it is able to automatically select a proper
set of recent instances during learning phases, and a proper
set of models during prediction phases by identifying active
concepts. We evaluate our proposed method against state-of-
the-art adaptive anomaly detection methods that can be applied
in an unsupervised manner, on both real and synthetic non-
stationary data. The results show that with considerably lower
computational cost, our method outperforms the other methods.

I. INTRODUCTION

Many existing anomaly detection (AD) methods assume that
the underlying distribution of normal data is static and enough
data is available for training an accurate model with acceptable
generalisation error [1]. However, streaming applications, like
monitoring systems, continuously generate large volumes of
data that may evolve over time. Storing the past data and pro-
cessing it with multiple passes is often difficult or impossible
due to its memory requirements and high processing demand.
Even if it is possible, the stored data may not be a good
representative of future normal patterns. As a result, a model
that is trained on only a part of the data suffers from any
changes in the unknown underlying distribution that generates
the normal data. These problems can be categorized as follows:
1) Concept evolution: considering the normal data as a
concept, we define evolution as a situation in which new
aspects of the concept appear over time, which renders the
current model less accurate. In this case, the model is blind
on a part of the concept that increases the false negative rate
(FNR) regarding the target (normal) class, and a mechanism is

needed to detect and learn these new aspects of the concept.
2) Concept transformation: a concept may transform grad-
ually (concept drift) or suddenly (concept change) over time
that can turn anomalous patterns into normal ones, and vice
versa. This may affect both the false positive rate (FPR) and
FNR in either way. In this case, even providing the whole
data set does not guarantee high accuracy, because changes
in normal behaviour might not be detected by processing the
whole data set as a single batch.

Concept evolution and transformation bring new challenges
to AD methods. First, these methods should be equipped
with an adaptation strategy. This challenge has been dealt
with using two major strategies in the data classification
context [2]: (1) incremental or online learning by updating
an existing model on each new available instance of data, and
(2) training a new model on a fixed or variable size sliding-
window of recent data (weighted or unweighted), which is
done continuously or after detecting a change point. Each
strategy has its own pros and cons, and it is not trivial to design
a method that works for all possible situations. For example,
the former case suffers if the concept changes rapidly and
suddenly. In the latter case, finding an optimal window size
is problematic [2]. Second, any strategy that is adopted to
cope with concept evaluation or transformation should only
be dependent on a limited set of recent data instances, as it is
not possible to store and process all previous data. Thus, the
challenge of choosing the right set of recent instances plays a
vital role in the final accuracy. Finally, it is often impossible
to label streaming or time-series data due to its high volume
and dynamic nature, which limits the usage of any adaptive
supervised AD method [3, 4, 5, 6] in practice.

Moshtaghi et al. [7] have proposed an unsupervised on-
line adaptive AD method to cope with the aforementioned
challenges. However, their method uses a continuous retrain-
ing strategy, which means it has high computational cost.
Moreover, the complexity and dimensionality of the data set
can affect the accuracy of their proposed method. Tan et
al. [8] proposed a window-based adaptive AD method to
reduce computation, but finding an optimal size for the sliding
window and access to a validation set or a clean set of positive
samples limits their proposed method.



In this paper, we propose a new window based unsupervised
adaptive AD method, called Ensemble-based Self-Adaptive
OCSVM (ESA-OCSVM), to deal with the aforementioned
challenges in the following ways:

1) ESA-OCSVM applies a novel unsupervised change
point detection method to avoid continuous learning.
This change detection mechanism is independent of
any external feedback, e.g., a validation set or any
statistical change point detection test on the raw data.
ESA-OCSVM keeps the track of recent instances using
a sliding window of fixed size. It can decide which data
from the sliding window is related to a current concept
and should be used for training a new model, which
obviates the need for finding an optimal size for the
sliding window.

2) Our proposed method is unsupervised in the adaptation
phase, because our recently proposed unsupervised pa-
rameter estimation method for OCSVMs [9], namely
Quick Model Selection (QMS), is used to train each
model in a timely manner and without any need for
labeled data.

3) ESA-OCSVM is memory efficient, as any model that
is trained on a few thousand instances provides a sparse
solution. In other words, the model is only dependent on
a small subset of the training instances, called support
vectors, and the rest of the training set can be forgotten.
This feature makes it possible to create an ensemble to
deal with both concept evolution and concept transfor-
mation at the same time, which can be used to detect
anomalies in a timely manner.

In the next two sections, we review the related work and
present the relevant background and our problem statement.
Our ESA-OCSVM method is proposed in Section IV, and
evaluated against the traditional hyper-plane batch OCSVM
[10], and state-of-the-art adaptive and unsupervised AD meth-
ods in Section V.

II. RELATED WORK

Existing online [7] and periodic-retraining based [8, 11,
12, 13] adaptive AD methods are either dependent on having
feedback on the actual labels of all or a part of the seen
instances, or adopt a continuous learning (i.e., blind) strategy.
However, manually labelling the instances of a data stream is
quite expensive and is not guaranteed in real-world applica-
tions. Moreover, continuous learning, even if is implemented
efficiently, does not provide any interpretation about potential
change points in the data that can be even more important for
analysis.

In this section, we briefly review the existing unsupervised
and semi-supervised adaptive AD methods, and interested
readers are referred to [14, 2, 15, 16] for more comprehensive
surveys on anomaly detection and supervised drift adaptation.
Zhang et al. [13] and Krawczyk et al. [12] proposed OCSVM-
based approaches to deal with concept drift. They applied a
continuous retraining strategy to utilize temporal correlation
between recent data and keep an up-to-date model. However,

retraining in the latter case was performed on weighted data
while the former case used a fixed-size sliding window of
recent samples. Since Krawczyk et al. [12] fed the classifier
with only normal instances during the retraining phase, the
reported results are valid only when a nearly clean set of
positive samples is always available for retraining. Masud et al.
[11] proposed a batch-incremental ensemble based method that
used a clustering approach to learn a new model on every non-
overlapping window of recent data. Anomaly detection was
done as a byproduct of clustering, and a labelled validation
set of recent data was required to check the validity of the
current ensemble of models. Tan et al. [8] employed a window-
based algorithm called Half-Space Tree adaptive (HSTa) that
builds a HST forest using positive samples that fall inside each
non-overlapping sliding window. HSTa forgets any previously
trained HST after observing all the instances of the current
window. Continuous retraining, finding an optimal size for the
sliding window and access to a validation set or a clean set of
positive samples limits the applicability of all these methods.

In contrast to the aforementioned window based methods,
Moshtaghi et al. [7] proposed a method called Forgetting
Factor Iterative Data Capture Anomaly Detection (FFIDCAD)
that employed a continuous learning strategy to incrementally
estimate an elliptical boundary that covers the normal data.
This online AD method is unsupervised and its performance
is independent from the actual labels of the instances. While
FFIDCAD only requires one pass over each instance of data
and works fairly well on simple data structures, its perfor-
mance decreases for some complicated or high-dimensional
data sets. Another limitation of this method is its sensitivity to
a burst of anomalies: 1) the burst causes a false alarm, because
the alarm is triggered when a fixed number of consecutive
points are detected as anomalies, and 2) the adopted blind
learning strategy treats the burst as normal instances and comes
up with an invalid boundary after observing the burst.

III. PROBLEM STATEMENT AND BACKGROUND

In this section, we provide a formal statement of the
problem, and briefly review the hyper-plane OCSVM method
for anomaly detection as the basis of our proposed method.

A. Problem Statement

Given a data set D comprising observations Xi ∈ Rd,
where i = 1, 2, ..., as feature vectors that are captured in a
time-ordered manner, the aim is to analyse this data in the
order it is received to detect and mark anomalies and normal
observations using −1 and +1 labels, respectively. An initial
part of the data set D0 of size WT is captured and available
at the beginning, while the remainder of the data will arrive
in batches of size WB over time (see Figure 1). The first part
of the data set D0 is used for learning an initial model M0.
Note that there is no labelled data available either during the
initial training phase (stabilization period) or later when the
data arrives in batches.

The process or the underlying distribution that generates
the normal data (i.e., the concept) is unknown and non-



Fig. 1. Illustration of the initial data set D0, batches and the sliding window
for a given data stream.

stationary, which means the data is prone to concept evolution
or transformation:

1) Considering Pt as the underlying process that generates
the normal data until time t, there may be new emerging
patterns generated by Pt+1 from time t+1, where Pt 6=
Pt+1.

2) Pt may gradually or suddenly turn into Pt+1 (Pt 6=
Pt+1), with or without a transition period.

The learning task is to detect rare instances, which deviate
from the current process that generates the normal data.
Changes in the unknown underlying distribution of normal
data may occur and make the model M0 inaccurate at some
point. Subsequently, a periodic retraining and adaptation strat-
egy is needed to cope with the changes in the concept.

Next, we briefly review the hyper-plane OCSVM method
for anomaly detection.

B. One-Class Support Vector Machines (OCSVMs)

The hyperplane OCSVM or ν-SVM [10] algorithm is a
one-class classification method that finds a boundary around
dense areas comprising the normal data [1]. In OCSVM, a
training set of Xi ∈ Rd, where i = 1, 2, ..., l feature vectors
are projected to a potentially higher dimensional space using
a feature map ϕ. Then, the algorithm finds a hyper-plane
that separates the projected examples from the origin with the
maximum possible margin. The primal quadratic problem that
the OCSVM classifier solves is as follows:

min
ω,ξ,ρ

1

2
‖ω‖2 +

1

νl

l∑
i=1

ξi,

subject to (ω.ϕ(Xi)) ≥ ρ− ξi,
(1)

where ω ∈ Rd and 0 < ν ≤ 1. In addition, ξi ≥ 0 are
slack variables that relax the problem constraints and allow
some examples to fall outside the model boundary, which
are treated as outliers. By using a kernel function ϕ, like
a Gaussian kernel (k(x, y) = e−γ‖x−y‖

2

) with the kernel
parameter γ, it is possible to apply the kernel trick and separate
normal data points and outliers that are not linearly separable
in the input space. After the training phase, the label of any
unseen data x is simply predicted using the decision function
f(X) = sign((ω.ϕ(X))− ρ).

One of the important properties of OCSVMs is that the ν
parameter is an upper bound on the fraction of outliers and a
lower bound on the fraction of support vectors. In practice,
this parameter and the kernel parameter γ are unknown.

Fig. 2. Illustration of the detection windows on the consecutive predicted
labels.

These parameters can be estimated using cross-validation,
however this method is computationally expensive and needs
a labelled training set. In contrast, QMS [9] combines K
nearest neighbours (K-NN) and OCSVMs to estimate these
parameters in an unsupervised and timely way. It uses the
average distances to the K nearest neighbours for each training
instance to estimate the data density around the instance. The
γ parameter is set in a way that reflects the density of potential
normal instances. The ν parameter is set based on the fraction
of the training instances that have substantially lower density.

IV. PROPOSED APPROACH: ENSEMBLE-BASED SELF
ADAPTIVE OCSVM (ESA-OCSVM)

In this section, we explain the different elements of our
proposed unsupervised adaptive AD method as follows: Pa-
rameter settings - For any training set, an estimation of the
best OCSVM parameter settings PS∗ = {γ∗, ν∗} is found
in a timely manner and without access to the actual labels
using the QMS method. Memory - A sliding window of size
WS keeps track of the most recent data and the older data
outside this window is forgotten (see Figure 1). The size of
this window can be adjusted by the user based on the memory
constraints. Change detection - This module is designed to
detect change points in an unsupervised manner based on the
sequential analysis of the outlier percentage in consecutive
batches, which is explained in more detail in Section IV-A.
Learning - To cover all possible scenarios of changes in the
concept, we propose to create an ensemble of models trained
on non-overlapping subsets of the data instances. One of our
main contributions in this paper is proposing a novel method
to select the data that should be used in training a new model
when a change point is detected. This process is explained in
Section IV-B.

A. Change Point Detection

To prevent deterioration in the accuracy of anomaly detec-
tion in a non-stationary environment, our aim is to design
a module to detect changes using the predicted labels. To
this end, a sequential change point detection approach is
applied on consecutive non-overlapping detection windows
DWj (j = 1, 2, ....) of size WD. A given window DWj

represents predicted labels of the instances in the interval
∆j = [(j − 1) × WD + 1, j × WD]. All the definitions so
far are visualised in Figure 2.

Let Oj denotes the fraction of detected outliers in the
detection window DWj . During a transition between two



Algorithm 1 ESA-OCSVM: Change Point Detection Module
1: //initialization
2: set µ̃, ε and h using D0, CS0 = 0, flag = 0
3: j = ln = WT /WD //ln: index of last negative trend in CSj

4: //for each detection window DWj

5: loop
6: Oj =

∑
i∈∆j

(li == −1)/WD

7: CSj = Oj − (µ̃+ ε) + CSj−1 //CUSUM test
8: if CSj < 0 then
9: CSj = 0

10: ln = j
11: end if
12: if CSj > h then
13: flag = 1, CSj = 0, changeIndex = ln
14: end if
15: j = j + 1
16: end loop

Algorithm 2 ESA-OCSVM: Learning Module
1: //initialization
2: PS∗0 = γ∗0 , ν

∗
0 //estimated using QMS on D0

3: build M0 on D0 using PS∗0 parameter settings
4: delete PS∗0 and D0

5: E = {M0}, index = 0, li = WT //li: time-stamp of last learned instance
6: loop
7: if flag = 1 then
8: flag = 0, changeStart = changeIndex×WD

9: if li < changeStart then
10: index = index+ 1
11: li = ct //the current time-stamp
12: end if
13: Dtmp = instances in memory with time-stamp ≥ changeStart
14: PS∗tmp = γ∗tmp, ν

∗
tmp //estimated using QMS on Dindex

15: build Mindex on Dtmp

16: delete PS∗tmp and Dtmp

17: E = E ∪Mindex

18: if index == N then
19: index = N − 1, and remove the oldest model from E
20: end if
21: end if
22: end loop

successive data distributions Pt and Pt+1 that occurs at an
unknown point t ∈ ∆j=m, we expect a substantial number
of normal instances to be labelled as outliers. Consequently,
the mean value of the {Oj}∞j=1 random sequence, gradually
or suddenly, increases from µ̃ to µ̃ + ε at interval ∆m. In
our proposed method, this observation signals a change point,
which leads to learning a new model.

Considering the dynamic nature of noise over different time
periods and data sets, a robust approach for detecting trends in
the univariate random sequence {Oj} is needed to distinguish
fluctuations in the anomaly rate from actual change points. To
this end, we apply a nonparametric cumulative sum (CUSUM)
test for statistical change point detection on {Oj}, which is
formulated as follows [17, 18]:

Oj = µ+ κjI(j < m) + (ε+ ηj)I(j ≥ m), (2)

where I(·) is the indicator function and ε > 0. Random
sequences {κj} and {ηj} are calculated on predicted labels
li∈∆j before and after the change interval ∆m, respectively,
such that E[κj ] = E[ηj ] = 0, where E denotes the expected
value. This implies that before the change interval ∆m, the
value of the cumulative sum defined as CSj = max[0, Oj −
(µ̃ + ε) + CSj−1] stays around zero [19]. As a result, if
CS exceeds a pre-defined threshold h > 0 at some point, a

Fig. 3. Change detection and learning: (a) an example of a detected change
that illustrates the important points, and (b) the corresponding selected data
for training a new model.

change point is detected. These steps are shown in Algorithm
1. Considerable work has been done to date to set the values
of the µ̃, ε and h parameters to get an acceptable detection
rate and low false alarm rate. In the Empirical Evaluation
Section we have used the initial observed data D0 to set these
parameters based on [19].

B. Learning and Prediction

The learning procedure is explained in Algorithm 2. The
main contribution of our method in learning and prediction
is building an ensemble of models that is able to cope with
both concept evolution and transformation problems in a single
framework. This framework is able to automatically (1) select
a related set of instances from the sliding window when a
change is detected, and (2) choose a proper set of models
from the ensemble for the purpose of doing anomaly detection.
In case of concept evolution, building the ensemble makes it
possible to remember previously seen patterns while learning
new ones. In case of concept transformation, dependent to the
pace of changes, old models are forgotten because the size
of the ensemble is limited. In addition, as OCSVMs generate
sparse solutions, all previously learned data can be forgotten,
which means our learning and prediction methods are memory
efficient and fast.

Our ESA-OCSVM algorithm initialises an ensemble E by
the first trained model M0. The size of the ensemble E is
limited to N models, which is adjusted based on available
memory for storing the models. Every time a change point is
detected, a new model is trained and added to the ensemble.
When the ensemble is full, the oldest model is deleted. Figure
3(a) shows how the data is selected every time a change
point is detected. No data before the last time that a negative



trend in CS is observed, indicated by the change index in
Figure 3(a), should be used in training a new model. This
interval for a given example is shown in Figure 3(b). The
intuition behind this strategy is to choose a set of instances
that with higher probability are related to the current concept.
For example, a change in form of a concept drift, gradually
increases the value of the CS, and requires a longer time to be
detected. In contrast, an emerging pattern or a sudden change
may increase this value abruptly, and can be detected sooner.
In the former case, instances related to the new concept are
distributed over a longer period of time. However, in the latter
case, the most recent instances are highly related and the older
data should not be used for training a new model. We propose
that the elapsed time from the last observed negative trend
in the value of CS up until the time that a change point is
detected is also longer in the former case in comparison with
the latter one. Thus, our heuristic uses the aforementioned trick
to dynamically select a set of available instances that represent
the new concept, and dispenses with finding an optimal sliding
window size.

Another challenge to adapt with both concept evolution and
transformation is to identify if a detected change is ended and
the state is stable. This challenge is important, for consecutive
alarms that arise because of an ongoing change, can cause
several successive training. This problem misleads the learning
and prediction processes by generating similar and inaccurate
models. To solve this problem, we propose that the first
negative trend in the value of CS after detecting a change
point can be a good indicator of entering the stable mood. If
no negative trend after the detected change point is observed,
the training sets of a newly trained model and the most recent
model in the ensemble overlap. In this case, this model is
substituted by the new model. By applying this technique,
the ensemble is managed automatically to avoid the stated
problem.

To make sure that a proper set of models are selected for
prediction, only models that can see at least half of the data are
used. This technique makes our ESA-OCSVM able to select
models that are highly related to a current concept.

In the next section, we evaluate our proposed ESA-OCSVM
method alongside with the existing unsupervised adaptive
AD methods for both concept evolution and transformation
scenarios.

V. EMPIRICAL EVALUATION

We evaluate our proposed ESA-OCSVM in comparison
to the FFIDCAD [7] and HSTa [8] adaptive AD methods,
because to the best of our knowledge, they are state-of-the-
art methods that can be applied in an unsupervised manner.
In addition to these methods, a continuous retraining strategy
is applied for the OCSVM algorithm. This method, hereafter
Basic Ensemble-based Adaptive OCSVM (BEA-OCSVM),
uses all instances inside every non-overlapping sliding window
of size WS to create a fixed-size ensemble of OCSVM models
trained on the recent instances. BEA-OCSVM is implemented
to show that our proposed change detection and data selection

TABLE I
SUMMARY OF THE DATA SETS

Data set #Features #Instances
O-News-P 59 39,644
GSAD-S1 8 31,910
GSAD-S9 8 31,910
Shuttle 9 58,000
Forest 54 30,000
USPS 256 7,291
LG-S10 6 38,860
IBRL-S9 4 45,204
STB-S13 7 29,485
Banana 3 22,000

algorithms substantially improve the accuracy in comparison
with blind retraining of the OCSVM. Finally, a batch version
of the OCSVM is applied when 20%, 40%, and 80% of the
whole examined data sets, are available for training a new
batch model. The aim of this experiment is to demonstrate
that even being able to access and process all of the past data
does not necessarily result in higher accuracy.

The comparison is made based on two measures: (1) the
accuracy of the examined methods over time, and (2) the frac-
tion of batches that have caused retraining. The last measure
is important because it reflects the computational demand of
the different methods in dealing with the concept evolution
and transformation.

A. Experimental Setup

The parameters of the QMS method are set based on [9]. For
simplicity, the size of the sliding window WS and the initial
training set WT are considered equal as well as the size of the
detection window WD and batches WB . The latter cases are
set to 100 instances. The former cases, WS = WT = 2, 000,
and the size of the ensemble N = 6 are chosen according to
[11], to show that the performance of our ESA-OCSVM is
not strongly dependent to the choice of these values. Due to
space limitations, we summarize our studies on the choice of
these parameters as follows: the values should not be set very
large because it converts our method to batch learning.

We let all the methods first see an incoming batch of
WB = 100 instances before predicting the corresponding
labels of these instances. For FFIDCAD and HSTa, adaptation
is performed continuously, i.e., by receiving every batch, while
our proposed method adapts itself once a change point is
detected. The default settings of FFIDCAD [7] and HSTa [8]
are used. Like any score-based anomaly detection method,
a limitation of HSTa is in setting a cut-off threshold for
converting the scores to the predicted labels [20]. When no
ground truth labels or knowledge about the fraction of outliers
are available over time, and the prediction is performed in
an ongoing manner rather than batch processing, finding the
best cut-off threshold is even more challenging. To handle this
problem for each data set, we assume that the actual labels of
the initial training set D0 are available for HSTa to find an
effective cut-off threshold, which is then fixed for the rest of the
data stream. For each examined data set in our experiments, the



TABLE II
THE AUC OF OUR ESA-OCSVM IN COMPARISON WITH THE OTHER METHODS ON THE LAST 80%

Data set ESA-OSCVM BEA-OSCVM OCSVM FFIDCAD HSTa
Avg std Avg std Avg std Avg std Avg std

O-News-P 0.974 0.003 0.972 0.000 0.927 0.003 0.636 0.001 0.990 0.006
GSAD-S1 0.989 0.002 0.978 0.001 0.966 0.001 0.989 0.001 0.972 0.006
GSAD-S9 0.993 0.002 0.975 0.001 0.966 0.001 0.990 0.001 0.950 0.006
Shuttle 0.996 0.001 0.996 0.000 0.989 0.001 0.949 0.001 0.996 0.002
Forest 0.980 0.002 0.965 0.000 0.794 0.003 0.786 0.001 0.993 0.002
USPS 0.981 0.014 0.926 0.000 0.720 0.010 0.588 0.014 0.670 0.020
LG-S10 0.981 0.002 0.823 0.007 0.660 0.003 0.980 0.001 0.835 0.034
IBRL-S9 0.985 0.003 0.772 0.011 0.579 0.005 0.978 0.001 0.815 0.014
STB-S13 0.983 0.002 0.694 0.006 0.567 0.021 0.988 0.001 0.802 0.047
Banana 0.930 0.005 0.924 0.004 0.803 0.006 0.882 0.005 0.884 0.013
Avg 0.979 0.004 0.903 0.003 0.797 0.005 0.877 0.003 0.891 0.015

cut-off threshold is set to a value that maximises the accuracy
on the initial data set D0.

For our ESA-OCSVM, the first model M0 is trained on D0,
which includes 2, 000 instances. Then, {Oj}20

j=1 is computed
for each of the 20 detection windows of size WD = 100. The
values of µ̃, ε, and h are set to the average of {Oj}20

j=1, 0.1
and 5 times its corresponding standard deviation, respectively
[19]. These settings detect any increase in µ̃ equal to or greater
than 10% of the standard deviation of {Oj}20

j=1.
To evaluate all methods over time, the evaluation is per-

formed after observing 20%, 40%, and 80% of the examined
data sets, respectively on the rest 80%, 60%, and 20% data. We
use the Receiver Operating Characteristic (ROC) curve and the
corresponding Area Under the Curve (AUC) to evaluate the
accuracy as it is insensitive to the class imbalance problem.
The reported results were averaged over 500 runs.

B. Data Sets
We ran our experiments on nine real and one synthetic data

sets. Table I summarises the dimensions of the data sets.
The first five real data sets are extracted from the UCI

Machine Learning Repository1, namely Gas Sensor Array
Drift (GSAD)2, Online News Popularity (O-News-P), Forest
Cover Type (Forest), and Shuttle. The other four real data
sets are sensor measurements from IBRL3, Le Genepi (LG)
and St Bernard (STB) environmental monitoring systems4, and
USPS5 data set.

For the sensor-type data sets, sensors with non-stationary
behaviour are selected as follows: sensors 1 and 9 from GSAD,
sensor 9 from IBRL, sensor 10 from LG, and sensor 13 from
STB, and only the non-missing measurements are used. For
the Forest and USPS data sets, the emergence of the different
classes in the data is manipulated to create synthetic drift.
Since the Forest data set is very large, which slows down the
batch OCSVM considerably, a part of this data set is selected
randomly and used in the experiments.

1https://archive.ics.uci.edu/ml/datasets.html
2The measurements from two sensors of this data set are used.
3http://db.csail.mit.edu/labdata/labdata.html
4http://lcav.epfl.ch/page-86035-en.html
5https://www.otexts.org/1577

We also generated a synthetic Banana data set comprising
11 states, each of which have 2, 000 normal instances and
about 6◦ rotational drift in comparison with their nearby states.
All the data sets are scaled in the range [0, 1]. For all data
sets, 5% anomalies are perturbed around the normal data by
adding or subtracting uniform noise. In this way we know the
actual labels and we are able to evaluate the methods.

C. Results and Discussion

Tables II to IV report the accuracy of the examined methods
over time. Our proposed ESA-OCSVM is stable over time
and outperforms all the other methods on average. For the
cases where another method has a higher accuracy, the average
difference is marginal (0.009). The findings confirm that the
FFIDCAD method works well on simple data sets like GSAD,
LG, STB, and IBRL, but for the rest of the data sets that are
more complicated and have higher dimensions, its accuracy
decreases significantly. Although for the O-News-P, Shuttle
and Forest data sets that have minor emerging patterns, the
HSTa method have worked very well, its accuracy for the rest
of the data sets is lower and have larger variance over time.

We conduct the Wilcoxon signed-rank test on the findings
of Tables II to IV to identify the statistical significance of the
differences between the accuracy of our ESA-OCSVM and
the rest of the methods over time. In each comparison, the
aim is to investigate to what extent the null hypothesis H0,
which indicates that there is no difference between the first and
second methods in terms of their accuracy, can be rejected. For
each comparison, the test returns the sum of positive ranks
of the first method (R+), the sum of negative ranks of the
first method (R−), and the p-value. These statistics gives us
sufficient evidence to reject or accept the null hypothesis H0.
The p-value represents the lowest level of significance of a
hypothesis that results in a rejection. For all the comparisons in
this study the significance level α is set to 0.05. A p-value less
than α indicates that the null hypothesis H0 can be rejected.

Table V demonstrates that the null hypothesis H0 can be
rejected in all the comparisons, as the corresponding p-values
are less than the significance level α = 0.05. In other words,
our ESA-OCSVM significantly outperforms the rest of the



TABLE III
THE AUC OF OUR ESA-OCSVM IN COMPARISON WITH THE OTHER METHODS ON THE LAST 60%

Data set ESA-OSCVM BEA-OSCVM OCSVM FFIDCAD HSTa
Avg std Avg std Avg std Avg std Avg std

O-News-P 0.974 0.003 0.973 0.000 0.953 0.001 0.635 0.002 0.994 0.004
GSAD-S1 0.989 0.002 0.975 0.001 0.960 0.001 0.988 0.001 0.972 0.005
GSAD-S9 0.992 0.002 0.969 0.001 0.960 0.001 0.989 0.001 0.942 0.004
Shuttle 0.997 0.001 0.996 0.000 0.990 0.001 0.950 0.001 0.998 0.001
Forest 0.981 0.003 0.977 0.001 0.914 0.002 0.783 0.001 0.999 0.001
USPS 0.981 0.016 0.934 0.001 0.793 0.009 0.553 0.015 0.711 0.025
LG-S10 0.980 0.002 0.798 0.009 0.732 0.005 0.979 0.001 0.835 0.038
IBRL-S9 0.984 0.003 0.728 0.015 0.528 0.001 0.972 0.002 0.785 0.014
STB-S13 0.984 0.002 0.724 0.007 0.755 0.011 0.987 0.001 0.801 0.044
Banana 0.928 0.006 0.921 0.004 0.828 0.006 0.881 0.006 0.882 0.011
Avg 0.979 0.004 0.900 0.004 0.841 0.004 0.872 0.003 0.892 0.015

TABLE IV
THE AUC OF OUR ESA-OCSVM IN COMPARISON WITH THE OTHER METHODS ON THE LAST 20%

Data set ESA-OSCVM BEA-OSCVM OCSVM FFIDCAD HSTa
Avg std Avg std Avg std Avg std Avg std

O-News-P 0.976 0.005 0.977 0.001 0.970 0.000 0.641 0.003 0.999 0.001
GSAD-S1 0.973 0.007 0.932 0.001 0.869 0.001 0.977 0.002 0.922 0.013
GSAD-S9 0.976 0.006 0.908 0.004 0.869 0.001 0.973 0.002 0.826 0.039
Shuttle 0.996 0.001 0.995 0.000 0.990 0.000 0.950 0.001 0.998 0.001
Forest 0.982 0.004 0.984 0.001 0.968 0.001 0.744 0.002 1.000 0.000
USPS 0.994 0.014 0.996 0.001 0.892 0.006 0.546 0.027 0.875 0.048
LG-S10 0.978 0.004 0.754 0.014 0.871 0.006 0.975 0.001 0.878 0.036
IBRL-S9 0.984 0.005 0.722 0.016 0.548 0.006 0.966 0.003 0.878 0.013
STB-S13 0.983 0.003 0.579 0.004 0.552 0.004 0.984 0.001 0.577 0.062
Banana 0.931 0.010 0.917 0.007 0.932 0.010 0.884 0.010 0.911 0.021
Avg 0.977 0.006 0.876 0.005 0.846 0.004 0.864 0.005 0.886 0.023

methods. Moreover, our proposed method has higher rank
in comparison with the rest of the methods. It significantly
improves both batch OCSVM and BEA-OCSVM with a very
small p-value, which confirms our earlier statements about the
unreliability of applying batch learning and the blind retraining
strategy for OCSVMs in non-stationary environments.

The measurements of sensors in IBRL, LG, and STB change
rapidly, and we can categorise them as data sets including
concept transformation, while in the rest of the data sets, new
patterns emerge over time. Our method demonstrated superior
performance for all the data sets, hence, we conclude that the
proposed algorithms can be used in both the concept evolution
and transformation cases.

Table VI shows the percentage of batches that have caused
retraining in our proposed ESA-OCSVM for the examined
data sets. The average, highest and lowest values of the
percentages reported by Table VI for our ESA-OCSVM are
30%, 67.6%, and 1.4% of batches, respectively. For the rest of
the adaptive methods, 100% of batches have caused retraining,
which entails substantially higher computational cost. For the
Shuttle data set with 58, 000 instances, many unnecessary
updates are performed by the rest of the methods, while our
method performed retraining only in 1.4% of batches and still
has the highest accuracy. For IBRl-S9 and STB-S13 that have
higher dynamicity, the percentage of batches that have caused

TABLE V
THE RESULTS OF WILCOXON TEST FOR OUR ESA-OCSVM IN

COMPARISON WITH THE OTHER METHODS

ESA-OCSVM vs. R+ (our method) R− (others) P-value
BEA-OCSVM 420.5 14.5 0.000011
OCSVM 464.0 1.0 0.000002
FFIDCAD 404.5 30.5 0.000058
HSTa 389.4 45.5 0.000283

retraining are still more than 30% less than the rest of the
methods. The results are well correlated with the potential
number of changes in the data, because: sensors 1 and 9 of
GSAD have minor drifts over time; USPS, Forest and Banana
data sets have a few number of synthetic drifts; O-News-P is a
data set gathered through 2 years and includes the features of
published articles of a journal, which is prone to a small level
of change; while the Shuttle data set seems nearly static (the
accuracy of batch training on this data set over the different
time periods is reasonably stable and high). In contrast, the
measurements of the aforementioned sensors in IBRL, LG,
and STB change rapidly.

VI. CONCLUSION

In this paper, we proposed a novel ensemble based method
for non-stationary environments when performing anomaly
detection using the OCSVM method. This method utilized the



TABLE VI
THE PERCENTAGE OF THE BATCHES THAT CAUSE RETRAINING IN OUR

ESA-OCSVM

Data set % Data set %
O-News-P 26.8 USPS 13.2
GSAD-S1 5.6 LG-S10 35.7
GSAD-S9 7.6 IBRL-S9 67.6
Shuttle 1.4 STB-S13 67.4
Forest 23.9 Banana 27.9

observed fraction of outliers to detect change points, indepen-
dently from any external feedback (e.g., ground truth labels
or statistical analysis of the raw data) during the operational
phase. A novel method is also proposed to select only highly
related instances of the sliding window, which removes the
need for finding an optimal window size for each individual
data set. Experimental evaluation showed that our adaptive
OCSVM significantly improves the traditional batch OCSVM
method as well as the existing adaptive methods that can be
applied in an unsupervised manner.
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